請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82621
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張嘉銓(Chia-Chuan Chang) | |
dc.contributor.author | Zhao Li | en |
dc.contributor.author | 李昭 | zh_TW |
dc.date.accessioned | 2022-11-25T07:48:00Z | - |
dc.date.available | 2024-10-31 | |
dc.date.copyright | 2021-11-08 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-10-27 | |
dc.identifier.citation | Isah, M. B.; Tajuddeen, N.; Umar, M. I.; Alhafiz, Z. A.; Mohammed, A.; Ibrahim, M. A. Terpenoids as emerging therapeutic agents: Cellular targets and mechanisms of action against protozoan parasites. In Studies in Natural Products Chemistry; Elsevier, 2018; Vol. 59, pp 227–250. Nabavi, S., Saeedi, M., Silva, A. S., Eds.; Recent Advances in Natural Products Analysis, 1st ed.; Elsevier: Cambridge, 2020. Monro, A. K. The revision of species-rich genera: A phylogenetic framework for the strategic revision of Pilea (Urticaceae) based on CpDNA, NrDNA, and morphology. Am. J. Bot. 2006, 93 (3), 426–441. Li, J.; Tang, J.; Zeng, S.; Han, F.; Yuan, J.; Yu, J. Comparative plastid genomics of four Pilea (Urticaceae) species: Insight into interspecific plastid genome diversity in Pilea. BMC Plant Biol. 2021, 21 (1), 25. Ren, H.-C.; Zhang, J.; Liang, H. Two new p-coumaroylated sesquiterpenoids from Pilea cavaleriei. J. Asian Nat. Prod. Res. 2018, 20 (2), 109–116. Zhou, Y.; Ren, H.-C.; Zhang, Q.-Y.; Liang, H.; Tu, P.-F. Three new p-coumaroylated sesquiterpenoids from Pilea cavaleriei. Nat. Prod. Res. 2020, 1–7. Zhou, Y.; Li, L.-Y.; Ren, H.-C.; Qin, R.-D.; Li, Q.; Tu, P.-F.; Dou, G.-F.; Zhang, Q.-Y.; Liang, H. Chemical constituents from the whole plants of Pilea cavaleriei Levl subsp. cavaleriei. Fitoterapia 2017, 119, 100–107. Zhou, P.; Hu, J.; Wen, B.; Ding, J.; Lou, B.; Xiong, J.; Yang, G.; Hu, J. Sesquiterpenoids from Pilea aquarum subsp. brevicornuta. Tetrahedron 2020, 76 (13), 131026. Thuy, A. D. T.; Thanh, V. T. T.; Mai, H. D. T.; Le, H. T.; Litaudon, M.; Chau, V. M.; Pham, V. C. Pileamartines A and B: Alkaloids from Pilea aff. martinii with a new carbon skeleton. Tetrahedron Lett. 2018, 59 (20), 1909–1912. Doan Thi Thuy, A.; Trinh Thi Thanh, V.; Doan Thi Mai, H.; Le, H. T.; Litaudon, M.; Nguyen, V. H.; Chau, V. M.; Pham, V. C. Cytotoxic alkaloids from leaves of Pilea aff. martinii. Planta Med. 2019, 85 (06), 496–502. Wu Zheng-yi and Peter H. Raven, co-chairs of the editorial committee, Ed.; Flora of China; Science Press: Beijing, 2003; Vol. 5. Huang, T.-C., K., H., Ed.; Flora of Taiwan, 2nd ed.; Editorial Committee of the Flora of Taiwan: Taipei, Taiwan, 1993. Bianchini, A.; Tomi, F.; Richomme, P.; Bernardini, A.-F.; Casanova, J. Eudesm-5-en-11-ol from Helichrysum italicum essential oil. Magn. Reson. Chem. 2004, 42 (11), 983–984. Li, J.-J.; Yang, J.; Lü, F.; Qi, Y.-T.; Liu, Y.-Q.; Sun, Y.; Wang, Q. Chemical constituents from the stems of Celastrus orbiculatus. Chin. J. Nat. Med. 2012, 10 (4), 279–283. Benn, C. L.; Dua, P.; Gurrell, R.; Loudon, P.; Pike, A.; Storer, R. I.; Vangjeli, C. Physiology of hyperuricemia and urate-lowering treatments. Front. Med. 2018, 5, 160. Harzand, A.; Tamariz, L.; Hare, J. M. Uric acid, heart failure survival, and the impact of xanthine oxidase inhibition: Impact of xanthine oxidase inhibition. Congest. Heart Fail. 2012, 18 (3), 179–182. Cicero, A. F. G.; Fogacci, F.; Kuwabara, M.; Borghi, C. Therapeutic strategies for the treatment of chronic hyperuricemia: An evidence-based update. Medicina (Mex.) 2021, 57 (1), 58. Gliozzi, M.; Malara, N.; Muscoli, S.; Mollace, V. The treatment of hyperuricemia. Int. J. Cardiol. 2016, 213, 23–27. Pacher, P.; Nivorozhkin, A.; Szabó, C. Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacol. Rev. 2006, 58 (1), 87–114. Hayashi, T.; Nagayama, K.; Arisawa, M.; Shimizu, M.; Suzuki, S.; Yoshizaki, M.; Morita, N.; Ferro, E.; Basualdo, I.; Berganza, L. H. Pentagalloylglucose, a xanthine oxidase inhibitor from a paraguayan crude drug, “Molle-I” (Schinus Terebinthifolius). J. Nat. Prod. 1989, 52 (1), 210–211. Hsu, F.-C.; Tsai, S.-F.; Lee, S.-S. Chemical investigation of Hyptis Suaveolens seed, a potential antihyperuricemic nutraceutical, with assistance of HPLC-SPE-NMR. J. Food Drug Anal. 2019, 27 (4), 897–905. Altmann, R.; Falk, H. On the synthesis and chiroptical properties of the tri- and tetragalloylquinic acids. Monatshefte Chem. Chem. Mon. 1995, 126 (11), 1225–1232. Sefkow, M. First efficient synthesis of chlorogenic acid. Eur. J. Org. Chem. 2001, 5. Miyamae, Y.; Kurisu, M.; Han, J.; Isoda, H.; Shigemori, H. Structure-activity relationship of caffeoylquinic acids on the accelerating activity on ATP production. Chem. Pharm. Bull. (Tokyo) 2011, 59 (4), 502–507. Rohloff, J. C.; Kent, K. M.; Postich, M. J.; Becker, M. W.; Chapman, H. H.; Kelly, D. E.; Lew, W.; Louie, M. S.; McGee, L. R.; Prisbe, E. J.; Schultze, L. M.; Yu, R. H.; Zhang, L. Practical total synthesis of the anti-influenza drug GS-4104. J. Org. Chem. 1998, 63 (13), 4545–4550. Yeap Foo, L. Amariinic acid and related ellagitannins from Phyllanthus amarus. Phytochemistry 1995, 39 (1), 217–224. Nonaka, G.-I.; Nishioka, I. Seven quinic acid gallates from Quercus stenophylla. Phytochemistry 1984, 23 (11), 2621–2623. Kostić, D. A.; Dimitrijević, D. S.; Stojanović, G. S.; Palić, I. R.; Đorđević, A. S.; Ickovski, J. D. Xanthine oxidase: Isolation, assays of activity, and inhibition. J. Chem. 2015, 1–8. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82621 | - |
dc.description.abstract | "第一部分:大冷水麻地上部分化學成分之研究-Ⅱ 大冷水麻[Pilea melastomoides (Poir.) Wedd.] 是蕁麻科 (Urticaceae) 冷水麻屬 (Pilea) 的多年生草本植物,生長於印度、斯里蘭卡、爪哇、越南、台灣及中國大陸等地。在台灣,其常見於中海拔之山谷陰濕處。 經文獻查詢,許多研究已經報導自冷水麻屬 (Pilea) 植物中分離出多種三萜類和黃酮類化合物,卻鮮少有對大冷水麻化學成分之研究。因此,本研究的目的是分離並鑑定大冷水麻之中低極性化學成分。 通過液-液相分配進行極性劃分,將大冷水麻地上部的95%乙醇萃取物分爲二氯甲烷、乙酸乙酯、正丁醇和水可溶部分。通過矽膠管柱層析法將可溶於二氯甲烷的部分分離,鑑定出兩個萜類化合物:eudesm-5-en-11-ol (1) 和oleanonic acid (2)。 化合物的結構通過1H NMR、13C NMR、2D NMR及ESI-MS資料分析進行鑑定,其中化合物1是一種抗菌性倍半萜類化合物且首次在冷水麻屬植物中發現,化合物2是一種三萜類化合物,能夠抑制人類周邊血液單核細胞(PBMC)和單核細胞/巨噬細胞(M/M)培養物中HIV-1的感染。 第二部分:Galloylquinic acids及galloyl-D-glucuronic acids之製備暨其抑 制黃嘌呤氧化酶之研究 黃嘌呤氧化酶抑制劑 (Xanthine Oxidase Inhibitor) 常被用來治療痛風和高尿酸血症相關疾病。1,2,3,4,6-Penta-O-galloyl-β-D-glucose 是一種具有顯著抑制黃嘌呤氧化酶活性的天然化合物,本實驗室以與D-glucose結構相似之quinic acid 和D-glucuronic acid爲骨架,對其galloyl衍生物進行電腦分子模擬篩選,發現此類化合物對黃嘌呤氧化酶亦可能具有良好的抑制活性。 因此,本研究製備具有多種取代數量與取代位置之galloylquinic acids (20—23) 及galloyl-D-glucuronic acids (34—41),其中化合物20爲單取代,21與22爲雙取代,23爲三取代;化合物41爲雙取代,34、35、39及40爲三取代,36—38爲四取代。對這些化合物進行黃嘌呤氧化酶抑制活性測試,結果顯示,四取代且爲α form之methyl-1,2,3,4-tetra-O-galloyl-α-D-glucuronate (38) 抑制活性最佳,其濃度於50 μg/mL 時抑制率達73%,而galloylquinic acids類化合物之抑制活性均不理想,3,4,5-Tri-O-galloylquinic acid (23) 在濃度爲 100 μg/mL時抑制率約爲50%。本研究結果亦可推測在galloylquinic acids及galloyl-D-glucuronic acids中均呈現取代數量越多抑制活性越佳之關聯,而galloyl取代位置及galloyl-D-glucuronic acids之α與β構型差異對化合物抑制黃嘌呤氧化酶活性之影響仍需做進一步探討。" | zh_TW |
dc.description.provenance | Made available in DSpace on 2022-11-25T07:48:00Z (GMT). No. of bitstreams: 1 U0001-2610202115103500.pdf: 17182321 bytes, checksum: 5a32b97e9aaa66773471468558d305f2 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | "摘要 I Abstract III 總目錄 V 表目錄 X 流程圖目錄 XI 圖目錄 XII 英文名詞縮寫 XIII 第一部分:大冷水麻地上部分化學成分之研究-Ⅱ 1 1. 研究目的與植物简介 1 1.1 研究目的 1 1.2 植物簡介 2 1.2.1 冷水麻屬 (Pilea) 2 1.2.2 大冷水麻 2 2. 實驗結果與討論 8 2.1 大冷水麻地上部分成分之化學結構解析 9 2.1.1 Eudesm-5-en-11-ol (1) 9 2.1.2 Oleanonic acid (2) 11 3. 實驗部分 14 3.1 儀器與材料 14 3.1.1 理化性質測定儀器 14 3.1.2 成分分離使用之材料 14 3.1.3 試劑與溶媒 15 3.2 植物來源 16 3.3 大冷水麻地上部分成分萃取與純化 16 3.3.1 二氯甲烷可溶部分之分離 17 3.3.2 化合物1之分離 17 3.3.3 化合物2之分離 17 3.4 化合物之物理數據 19 第二部分:Galloylquinic acids及galloyl-D-glucuronic acids之製備暨其抑制黃嘌呤氧化酶之研究 20 1. 緒論與研究目的 20 1.1 高尿酸血症和痛風 20 1.2 黃嘌呤氧化酶抑制劑 21 1.3 Galloylquinic acids及galloyl-D-glucuronic acids 抑制黃嘌呤氧化酶活性探討 21 1.4 研究目的 22 2. 實驗結果與討論 23 2.1 Galloylquinic acids系列化合物之製備 23 2.1.1 Benzyl quinate (4) 之製備 23 2.1.2 3,4-O-Isopropylidene-1,5-quinic lactone (8) 之製備 23 2.1.3 3,4,5-tribenzyloxybenzoic acid (7) 之製備 24 2.1.4 3,4,5-triacetoxybenzoic acid (9) 之製備 25 2.1.5 Quinic acid與 gallic acid保護基之選擇 25 2.1.6 4-O-galloylquinic-acid (20), 3,4-di-O-galloylquinic-acid (21), 4,5-O-di-galloylquinic-acid (22), 3,4,5-tri-O-galloylquinic acid (23) 之製備 26 2.2 Galloyl-D-glucuronic acids 系列化合物之製備 31 2.3 黃嘌呤氧化酶抑制活性測試結果 38 3. 結論 40 4. 實驗方法 41 4.1 儀器與材料 41 4.1.1 理化性質測定儀器 41 4.1.2 化合物合成、純化使用之材料 41 4.1.3 溶劑與試藥 42 4.1.4 黃嘌呤氧化酶抑制活性試驗使用試劑與儀器 43 4.2 化合物之製備 44 4.2.1 Benzyl quinate 之製備 44 4.2.2 3,4,5-Tri-O-benzyl gallic acid (7) 之製備 44 4.2.3 3,4-O-Isopropylidene-1,5-quinic lactone (8) 之製備 45 4.2.4 3,4,5-triacetoxybenzoic acid (9) 之製備 46 4.2.5 Galloylquinic acids系列化合物之製備 47 4.2.5.1 Benzyl-4-O-tri-O-benzylgalloyl-quinate (16), benzyl-3,4-bis-O-tri-O-benzylgalloyl-quinate (17), benzyl-4,5-bis-O-tri-O-benzylgalloyl-quinate (18) 及benzyl-3,4,5-tris-O-tri-O-benzylgalloyl-quinate (19) 之製備 47 4.2.5.2 4-O-galloylquinic-acid (20) 之製備 50 4.2.5.3 3,4-Di-O-galloylquinic-acid (21) 之製備 50 4.2.5.4 4,5-O-Di-galloylquinci-acid (22) 之製備 51 4.2.5.5 3,4,5-Tri-O-galloylquinic acid (23) 之製備 52 4.2.6 Galloyl-D-glucuronic acids系列化合物之製備 53 4.2.6.1 D-glucuronic acid benzyl ester (25) 之製備 53 4.2.6.2 1,2,3-Tri-O-(per-O-benzylgalloyl)-β-D-glucuronic acid methyl ester (26), 1,2,3-tri-O-(per-O-benzylgalloyl)-β-D-glucuronic acid benzyl ester (27), 1,2,3,4-tetra-O-(per-O-benzylgalloyl)-β-D-glucuronic acid methyl ester (28), 1,2,3,4-tetra-O-(per-O-benzylgalloyl)-β-D-glucuronic acid benzyl ester (29), 1,2,3,4-tetra-O-(per-O-benzylgalloyl)-α-D-glucuronic acid methyl ester (30), 1,2,3-tri-O-(per-O-benzylgalloyl)-α-D-glucuronic acid benzyl ester (31), 1,2,3-tri-O-(per-O-benzylgalloyl)-α-D-glucuronic acid methyl ester (32), 1,3-di-O-(per-O-benzylgalloyl)-β-D-glucuronic acid benzyl ester (33) 之製備 53 4.2.6.3 1,2,3-Tri-O-galloyl-β-D-glucuronic acid methyl ester (34) 之製備 58 4.2.6.4 1,2,3-Tri-O-galloyl-β-D-glucuronic acid (35) 之製備 59 4.2.6.5 1,2,3,4-Tetra-O-galloyl-β-D-glucuronic acid methyl ester (36) 之製備 60 4.2.6.6 1,2,3,4-Tetra-O-galloyl-β-D-glucuronic acid (37) 之製備 60 4.2.6.7 1,2,3,4-Tetra-O-galloyl-α-D-glucuronic acid methyl ester (38) 之製備 61 4.2.6.8 1,2,3-Tri-O-galloyl-α-D-glucuronic acid (39) 之製備 62 4.2.6.9 1,2,3-Tri-O-galloyl-α-D-glucuronic acid methyl ester (40) 之製備 63 4.2.6.10 1,3-Di-O-galloyl-β-D-glucuronic acid (41) 之製備 64 4.3 黃嘌呤氧化酶抑制活性試驗 65 4.3.1 原理 65 4.3.2 實驗方法 66 4.3.3 實驗步驟 66 4.3.4 IC50 之計算 67 References 68 附圖 71 附圖目錄 72" | |
dc.language.iso | zh-TW | |
dc.title | 第一部分:大冷水麻地上部分化學成分之研究-Ⅱ 第二部分:Galloylquinic acids及galloyl-D-glucuronic acids之製備暨其抑制黃嘌呤氧化酶之研究 | zh_TW |
dc.title | Part Ⅰ:Chemical constituents from the aerial part of Pilea melatomoides-Ⅱ Part Ⅱ:Preparation of galloylquinic acids and galloyl-D-glucuronic acids as xanthine oxidase inhibitors | en |
dc.date.schoolyear | 109-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 李水盛(Shoei-Sheng Lee) | |
dc.contributor.oralexamcommittee | 許麗卿(Hsin-Tsai Liu),(Chih-Yang Tseng) | |
dc.subject.keyword | 大冷水麻,萜類,黃嘌呤氧化酶,奎尼酸,没食子酸,葡萄糖醛酸,galloylquinic acids,galloyl-D-glucuronic acids, | zh_TW |
dc.subject.keyword | Pilea melatomoides,terpenoid,xanthine oxidase,quinic acid,gallic acid,D-glucuronic acid,galloylquinic acids,galloyl-D-glucuronic acids, | en |
dc.relation.page | 170 | |
dc.identifier.doi | 10.6342/NTU202104234 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2021-10-27 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
dc.date.embargo-lift | 2024-10-31 | - |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2610202115103500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 16.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。