Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8216
Title: 應用基於均勻採樣資料集之生成模型於四連桿機構之路徑合成

A Generative Model for Path Synthesis of Four-bar Linkages via Uniformly Sampled Dataset
Authors: Sheng-Chia Yu
尤聖嘉
Advisor: 李志中(Jyh-Jone Lee)
Keyword: 平面四連桿,路徑演生,機器學習,生成模型,機構合成,資料集生成,
planar four-bar linkage,path synthesis,machine learning,generative model,mechanism synthesis,data generation,
Publication Year : 2020
Degree: 碩士
Abstract: 四連桿機構之路徑合成使用最佳化演算法會遇到缺陷問題與初始值設定問題。雖然近年來可見到結合深度學習的研究,成功解決使用最佳化演算法的問題,但在精準度上仍還有提升的空間。因此本研究提出一個模型架構,包含目標曲線之前處理、資料集生成以及模型訓練之過程,該模型架構可以自動判斷適合目標曲線的生成模型。本研究將目標曲線擬合後重新生成,解決目標曲線點數量不同與疏密不均勻的問題。針對資料集的生成,使用非監督式學習的方式調整不同形狀之曲線所佔的比例,讓生成資料集的過程可以均勻採樣到各種形狀的曲線,提升模型預測的準確性。本研究針對不同的四連桿機構種類,分別訓練對應的模型,並使用分類器自動判斷目標曲線適用的生成模型,簡化訓練的難度。本文中的範例顯示該模型架構可以成功合成各種封閉式曲線與開放式曲線。
Solving the path synthesis of four-bar linkages via optimization algorithm may encounter issues as defects and guess of initial values. Recently, the method for resolving such problems associated with deep-learning schemes shows that it can avoid these issues. However, there is still room for improving the accuracy of the scheme. In this work, a framework including preprocessing, data generation, and model training for the path synthesis of four-bar linkage are presented. The preprocess starts by regenerating the target path with evenly distributed points along the path, followed by the normalization of the shape and feature extraction. For data generation, an unsupervised learning is employed to adjust the distribution of paths of different shapes in the dataset so that the robustness of the model can be achieved. As for model training, models based on datasets of different types of four-bar linkages as well as a classifier to determine the suitable generative model for the target path is constructed. Finally, several examples including closed and open paths are illustrated to verify the effectiveness of the framework.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8216
DOI: 10.6342/NTU202003292
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2025-08-13
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
U0001-1308202016305800.pdf6.77 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved