請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82120完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂東武(Tung-Wu Lu) | |
| dc.contributor.author | Li-Wei Hung | en |
| dc.contributor.author | 洪立維 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:36:16Z | - |
| dc.date.available | 2026-10-22 | |
| dc.date.copyright | 2021-10-23 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-18 | |
| dc.identifier.citation | 1. Prescher, A., Anatomical basics, variations, and degenerative changes of the shoulder joint and shoulder girdle. European journal of radiology, 2000. 35(2): p. 88-102. 2. Wang, Q., et al., Motor control training for the shoulder with smart garments. Sensors, 2017. 17(7): p. 1687. 3. Sonawane, K., et al., Uncovering secrets of the beauty bone: A comprehensive review of anatomy and regional anesthesia techniques of clavicle surgeries. Open Journal of Orthopedics and Rheumatology, 2021. 6(1): p. 019-029. 4. Carter, H.V. and H. Gray, Anatomy of the human body. Bartleby. com: Gray's Anatomy, Plate, 1918. 392. 5. Ornitz, D.M. and P.J. Marie, FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes development, 2002. 16(12): p. 1446-1465. 6. Setiawati, R. and P. Rahardjo, Bone development and growth. Osteogenesis and bone regeneration, 2019. 10. 7. Bernat, A., et al., The anatomy of the clavicle: A Three‐dimensional Cadaveric Study. Clinical anatomy, 2014. 27(5): p. 712-723. 8. Miniato, M.A., A. Mudreac, and J. Borger, Anatomy, Thorax, Scapula. StatPearls [Internet], 2020. 9.Mancuso, M., Evaluation and robotic simulation of the glenohumeral joint. 2020, EPFL. 10.Lopes, A.D., et al., Visual scapular dyskinesis: kinematics and muscle activity alterations in patients with subacromial impingement syndrome. Archives of physical medicine and rehabilitation, 2015. 96(2): p. 298-306. 11. Ruland III, L.J., C.M. Ruland, and L.S. Matthews, Scapulothoracic anatomy for the arthroscopist. Arthroscopy: The Journal of Arthroscopic Related Surgery, 1995. 11(1): p. 52-56. 12. Terry, G.C. and T.M. Chopp, Functional anatomy of the shoulder. Journal of athletic training, 2000. 35(3): p. 248. 13. Zlotolow, D.A., et al., Surgical exposures of the humerus. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 2006. 14(13): p. 754-765. 14. Murdoch, A.H., K. Mathias, and F. Smith, Measurement of the bony anatomy of the humerus using magnetic resonance imaging. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2002. 216(1): p. 31-35. 15. Soslowsky, L.J., et al., Biomechanics of the rotator cuff. Orthopedic Clinics, 1997. 28(1): p. 17-30. 16. Postacchini, F., et al., Epidemiology of clavicle fractures. Journal of shoulder and elbow surgery, 2002. 11(5): p. 452-456. 17. Neer, C.S., 2nd, Nonunion of the clavicle. J Am Med Assoc, 1960. 172: p. 1006-11. 18. Allman, F.L., Jr., Fractures and ligamentous injuries of the clavicle and its articulation. J Bone Joint Surg Am, 1967. 49(4): p. 774-84. 19. Stanley, D., E. Trowbridge, and S. Norris, The mechanism of clavicular fracture. A clinical and biomechanical analysis. The Journal of bone and joint surgery. British volume, 1988. 70(3): p. 461-464. 20. Robinson, C.M., Fractures of the clavicle in the adult: epidemiology and classification. The Journal of bone and joint surgery. British volume, 1998. 80(3): p. 476-484. 21. Edwards, S.G., A.P. Whittle, and G.W. Wood, Nonoperative treatment of ipsilateral fractures of the scapula and clavicle. JBJS, 2000. 82(6): p. 774. 22. Lenza, M., et al., Surgical versus conservative interventions for treating fractures of the middle third of the clavicle. Cochrane Database Syst Rev, 2019. 1(1): p. Cd009363. 23. Robinson, C.M., et al., Open reduction and plate fixation versus nonoperative treatment for displaced midshaft clavicular fractures: a multicenter, randomized, controlled trial. J Bone Joint Surg Am, 2013. 95(17): p. 1576-84. 24. Zlowodzki, M., et al., Treatment of acute midshaft clavicle fractures: systematic review of 2144 fractures: on behalf of the Evidence-Based Orthopaedic Trauma Working Group. Journal of orthopaedic trauma, 2005. 19(7): p. 504-507. 25. Lazarides, S. and G. Zafiropoulos, Conservative treatment of fractures at the middle third of the clavicle: the relevance of shortening and clinical outcome. J Shoulder Elbow Surg, 2006. 15(2): p. 191-4. 26. Devji, T., et al., Operative versus nonoperative interventions for common fractures of the clavicle: a meta-analysis of randomized controlled trials. CMAJ open, 2015. 3(4): p. E396. 27. Guerra, E., et al., Midshaft clavicle fractures: surgery provides better results as compared with nonoperative treatment: a meta-analysis. The American journal of sports medicine, 2019. 47(14): p. 3541-3551. 28. Andersen, K., P.Ø. Jensen, and J. Lauritzen, Treatment of clavicular fractures: Figure-of-elght bandage versus a slmple sling. Acta Orthopaedica Scandinavica, 1987. 58(1): p. 71-74. 29. Lenza, M. and F. Faloppa, Conservative interventions for treating middle third clavicle fractures in adolescents and adults. Cochrane Database of Systematic Reviews, 2016(12). 30. McKee, M.D., L.M. Wild, and E.H. Schemitsch, Midshaft malunions of the clavicle. JBJS, 2003. 85(5): p. 790-797. 31. Denard, P.J., et al., Management of midshaft clavicle fractures in adults. Am J Orthop (Belle Mead NJ), 2005. 34(11): p. 527-36. 32. Housner, J.A., et al., Clavicle fractures: individualizing treatment for fracture type. The Physician and sportsmedicine, 2003. 31(12): p. 30-36. 33. Inman, V.T. and J.D.M. Saunders, Observations on the function of the clavicle. California medicine, 1946. 65(4): p. 158. 34. Hill, J.M., M.H. McGuire, and L.A. Crosby, Closed treatment of displaced middle-third fractures of the clavicle gives poor results. J Bone Joint Surg Br, 1997. 79(4): p. 537-9. 35. Godfrey, J., et al., Reliability, validity, and responsiveness of the simple shoulder test: psychometric properties by age and injury type. Journal of Shoulder and Elbow Surgery, 2007. 16(3): p. 260-267. 36. Bernstein, J., Nonoperative treatment compared with plate fixation of displaced midshaft clavicular fractures. J Bone Joint Surg Am, 2007. 89(8): p. 1866; author reply 1866-7. 37. Morgan, R.J., et al., Evolving management of middle-third clavicle fractures in the National Football League. Am J Sports Med, 2010. 38(10): p. 2092-6. 38. Perren, S., et al., The limited contact dynamic compression plate (LC-DCP). Archives of orthopaedic and trauma surgery, 1990. 109(6): p. 304-310. 39. Lavertu, P., et al., The AO system for primary mandibular reconstruction. The American journal of surgery, 1994. 168(5): p. 503-507. 40. Celestre, P., et al., Biomechanical evaluation of clavicle fracture plating techniques: does a locking plate provide improved stability? Journal of orthopaedic trauma, 2008. 22(4): p. 241-247. 41. Chu, C.-M., S.-J. Wang, and L.-C. Lin, Fixation of mid-third clavicular fractures with Knowles pins: 78 patients followed for 2-7 years. Acta Orthopaedica Scandinavica, 2002. 73(2): p. 134-139. 42. Frima, H., et al., Clavicle fractures in adults; current concepts. European Journal of Trauma and Emergency Surgery, 2020. 46(3): p. 519-529. 43. Jester, A., et al., Disabilities of the arm, shoulder and hand (DASH) questionnaire: determining functional activity profiles in patients with upper extremity disorders. Journal of hand surgery, 2005. 30(1): p. 23-28. 44. Sallay, P.I. and L. Reed, The measurement of normative American Shoulder and Elbow Surgeons scores. Journal of shoulder and elbow surgery, 2003. 12(6): p. 622-627. 45. Constant, C.R., et al., A review of the Constant score: modifications and guidelines for its use. Journal of shoulder and elbow surgery, 2008. 17(2): p. 355-361. 46. Cole, P.A., G. Freeman, and J.R. Dubin, Scapula fractures. Current Reviews in Musculoskeletal Medicine, 2013. 6(1): p. 79-87. 47. Struyf, F., et al., Scapular positioning and movement in unimpaired shoulders, shoulder impingement syndrome, and glenohumeral instability. Scandinavian journal of medicine science in sports, 2011. 21(3): p. 352-358. 48. Codman, E., The Shoulder. 1934: G. Miller amp Company, Boston. 49. Rundquist, P.J., et al., Shoulder kinematics in subjects with frozen shoulder. Archives of physical medicine and rehabilitation, 2003. 84(10): p. 1473-1479. 50. Barnes, C.J., S.J. Van Steyn, and R.A. Fischer, The effects of age, sex, and shoulder dominance on range of motion of the shoulder. Journal of Shoulder and Elbow Surgery, 2001. 10(3): p. 242-246. 51. Qvist, A., et al., Plate fixation compared with nonoperative treatment of displaced midshaft clavicular fractures: a randomized clinical trial. Bone Joint J, 2018. 100(10): p. 1385-1391. 52. Ahrens, P.M., et al., The clavicle trial: a multicenter randomized controlled trial comparing operative with nonoperative treatment of displaced midshaft clavicle fractures. JBJS, 2017. 99(16): p. 1345-1354. 53. McKnight, B., et al., Surgical management of midshaft clavicle nonunions is associated with a higher rate of short-term complications compared with acute fractures. Journal of shoulder and elbow surgery, 2016. 25(9): p. 1412-1417. 54. Pecci, M. and J.B. Kreher, Clavicle fractures. American family physician, 2008. 77(1): p. 65-70. 55. Gummesson, C., I. Atroshi, and C. Ekdahl, The disabilities of the arm, shoulder and hand (DASH) outcome questionnaire: longitudinal construct validity and measuring self-rated health change after surgery. BMC musculoskeletal disorders, 2003. 4(1): p. 1-6. 56. Constant, C. and A. Murley, A clinical method of functional assessment of the shoulder. Clinical orthopaedics and related research, 1987(214): p. 160-164. 57. Richards, R.R., et al., A standardized method for the assessment of shoulder function. Journal of Shoulder and Elbow Surgery, 1994. 3(6): p. 347-352. 58. Kuo, M.-Y., et al., INTRA-AND INTER-EXAMINER RELIABILITY OF IN VIVO THREE-DIMENSIONAL MEASUREMENT OF THE SCAPULAR POSES USING A MARKER-BASED LOCATOR. Biomedical Engineering: Applications, Basis and Communications, 2018. 30(01): p. 1850001. 59. Karduna, A.R., et al., Dynamic measurements of three-dimensional scapular kinematics: a validation study. J. Biomech. Eng., 2001. 123(2): p. 184-190. 60. Ehrig, R.M., et al., A survey of formal methods for determining the centre of rotation of ball joints. Journal of biomechanics, 2006. 39(15): p. 2798-2809. 61. Monnet, T., et al., Comparison of the SCoRE and HA methods for locating in vivo the glenohumeral joint centre. Journal of biomechanics, 2007. 40(15): p. 3487-3492. 62. Garner, B.A. and M.G. Pandy, A kinematic model of the upper limb based on the visible human project (vhp) image dataset. Computer methods in biomechanics and biomedical engineering, 1999. 2(2): p. 107-124. 63. Lu, T.-W. and J. O’connor, Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of biomechanics, 1999. 32(2): p. 129-134. 64. Wu, G., et al., ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. Journal of biomechanics, 2005. 38(5): p. 981-992. 65. Astephen, J.L., et al., Biomechanical changes at the hip, knee, and ankle joints during gait are associated with knee osteoarthritis severity. Journal of orthopaedic research, 2008. 26(3): p. 332-341. 66. Rossi, D.M., et al., Scapulothoracic kinematic pattern in the shoulder pain and scapular dyskinesis: a principal component analysis approach. Journal of biomechanics, 2018. 77: p. 138-145. 67. Kuo, M.-Y., et al., Intra- and Inter-Examiner Reliability Of in Vivo three-Dimensional Measurement of the Scapular Poses Using a Marker-Based Locator. Biomedical Engineering: Applications, Basis and Communications, 2018. 30(01). 68. Matsuki, K., et al., In vivo 3-dimensional analysis of scapular kinematics: comparison of dominant and nondominant shoulders. Journal of Shoulder and Elbow Surgery, 2011. 20(4): p. 659-665. 69. Uhl, T.L., et al., Evaluation of clinical assessment methods for scapular dyskinesis. Arthroscopy: the journal of arthroscopic related surgery, 2009. 25(11): p. 1240-1248. 70. Yoshizaki, K., et al., Analysis of the scapulohumeral rhythm and electromyography of the shoulder muscles during elevation and lowering: comparison of dominant and nondominant shoulders. Journal of Shoulder and Elbow Surgery, 2009. 18(5): p. 756-763. 71. Morais, N.V. and A.G. Pascoal, Scapular positioning assessment: is side-to-side comparison clinically acceptable? Manual Therapy, 2013. 18(1): p. 46-53. 72. Sainburg, R.L., Evidence for a dynamic-dominance hypothesis of handedness. Experimental brain research, 2002. 142(2): p. 241-258. 73. Forthomme, B., et al., Factors correlated with volleyball spike velocity. The American journal of sports medicine, 2005. 33(10): p. 1513-1519. 74. Merrill, A., K. Guzman, and S.L. Miller, Gender differences in glenoid anatomy: an anatomic study. Surgical and radiologic anatomy, 2009. 31(3): p. 183-189. 75. Paraskevas, G., et al., Morphological parameters of the acromion. Folia Morphologica, 2008. 67(4): p. 255-260. 76. Shklar, A. and Z. Dvir, Isokinetic strength relationships in shoulder muscles. Clinical biomechanics, 1995. 10(7): p. 369-373. 77. Anders, C., et al., Activation of shoulder muscles in healthy men and women under isometric conditions. Journal of Electromyography and Kinesiology, 2004. 14(6): p. 699-707. 78. Schwartz, C., et al., Dominance effect on scapula 3-dimensional posture and kinematics in healthy male and female populations. Journal of shoulder and elbow surgery, 2014. 23(6): p. 873-881. 79. Cappozzo, A., et al., Human movement analysis using stereophotogrammetry: Part 1: theoretical background. Gait posture, 2005. 21(2): p. 186-196. 80. Oyama, S., et al., Asymmetric resting scapular posture in healthy overhead athletes. Journal of athletic training, 2008. 43(6): p. 565-570. 81. Ribeiro, A. and A.G. Pascoal, Resting scapular posture in healthy overhead throwing athletes. Manual Therapy, 2013. 18(6): p. 547-550. 82. Burkhart, S.S., C.D. Morgan, and W.B. Kibler, The disabled throwing shoulder: spectrum of pathology Part III: The SICK scapula, scapular dyskinesis, the kinetic chain, and rehabilitation. Arthroscopy, 2003. 19(6): p. 641-661. 83. Boone, D.C. and S.P. Azen, Normal range of motion of joints in male subjects. JBJS, 1979. 61(5): p. 756-759. 84. Rowe, C.R., An atlas of anatomy and treatment of midclavicular fractures. Clin Orthop Relat Res, 1968. 58: p. 29-42. 85. Mark, D. and C.S. Lazarus, Fractures of the Clavicle. 6th ed. Rockwood Green's Fractures in Adults. 2006: Lippincott Wiliams Wilkins. 86. Postacchini, R., et al., Long-term results of conservative management of midshaft clavicle fracture. Int Orthop, 2010. 34(5): p. 731-6. 87. Eskola, A., et al., Outcome of clavicular fracture in 89 patients. Arch Orthop Trauma Surg, 1986. 105(6): p. 337-8. 88. Ledger, M., et al., Short malunions of the clavicle: an anatomic and functional study. J Shoulder Elbow Surg, 2005. 14(4): p. 349-54. 89. Kibler, W.B. and A. Sciascia, Current concepts: scapular dyskinesis. British journal of sports medicine, 2010. 44(5): p. 300-305. 90. Ludewig, P.M. and T.M. Cook, Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther, 2000. 80(3): p. 276-91. 91. Myers, J.B., et al., Scapular position and orientation in throwing athletes. Am J Sports Med, 2005. 33(2): p. 263-71. 92. Mirzatolooei, F., Comparison between operative and nonoperative treatment methods in the management of comminuted fractures of the clavicle. Acta Orthop Traumatol Turc, 2011. 45(1): p. 34-40. 93. Kontaxis, A., et al., A framework for the definition of standardized protocols for measuring upper-extremity kinematics. Clinical Biomechanics, 2009. 24(3): p. 246-253. 94. Merolla, G., et al., Assessment of anatomical and reverse total shoulder arthroplasty with the scapula-weighted Constant-Murley score. Int Orthop, 2019. 43(3): p. 659-667. 95. Su, W.R., et al., Evaluation of three-dimensional scapular kinematics and shoulder function in patients with short malunion of clavicle fractures. J Orthop Sci, 2016. 21(6): p. 739-744. 96. Cutti, A.G. and E.K. Chadwick, Shoulder biomechanics and the success of translational research. Med Biol Eng Comput, 2014. 52(3): p. 205-10. 97. Kim, D., et al., Effects of short malunion of the clavicle on in vivo scapular kinematics. J Shoulder Elbow Surg, 2017. 26(9): p. e286-e292. 98. Shields, E., et al., Scapular dyskinesis following displaced fractures of the middle clavicle. J Shoulder Elbow Surg, 2015. 24(12): p. e331-6. 99. Rundquist, P.J. and P.M. Ludewig, Patterns of motion loss in subjects with idiopathic loss of shoulder range of motion. Clin Biomech (Bristol, Avon), 2004. 19(8): p. 810-8. 100. Kibler, W.B., et al., Clinical implications of scapular dyskinesis in shoulder injury: the 2013 consensus statement from the 'Scapular Summit'. Br J Sports Med, 2013. 47(14): p. 877-85. 101. Hung, L.W., et al., Effects of Internal Fixation for Mid-Shaft Clavicle Fractures on Shoulder Kinematics During Humeral Elevations. Front Bioeng Biotechnol, 2021. 9: p. 710787. 102. van der Meijden, O.A., T.R. Gaskill, and P.J. Millett, Treatment of clavicle fractures: current concepts review. J Shoulder Elbow Surg, 2012. 21(3): p. 423-9. 103. Ferran, N.A., et al., Locked intramedullary fixation vs plating for displaced and shortened mid-shaft clavicle fractures: a randomized clinical trial. J Shoulder Elbow Surg, 2010. 19(6): p. 783-9. 104. Tang, C., et al., The effect of simulated elbow arthrodesis on the ability to perform activities of daily living. The Journal of hand surgery, 2001. 26(6): p. 1146-1150. 105. Nelson, D., Functional wrist motion. Hand Clinics, 1997. 13(1): p. 83-92. 106. Rasmussen, J.V., et al., A retrospective study of the association between shortening of the clavicle after fracture and the clinical outcome in 136 patients. Injury, 2011. 42(4): p. 414-7. 107. Cutti, A.G., et al., Prediction bands and intervals for the scapulo-humeral coordination based on the Bootstrap and two Gaussian methods. J Biomech, 2014. 47(5): p. 1035-44. 108. Robinson, C.M., et al., Estimating the risk of nonunion following nonoperative treatment of a clavicular fracture. J Bone Joint Surg Am, 2004. 86(7): p. 1359-65. 109. Deluzio, K. and J. Astephen, Biomechanical features of gait waveform data associated with knee osteoarthritis: an application of principal component analysis. Gait posture, 2007. 25(1): p. 86-93. 110. Rossi, D.M., et al., Scapulothoracic kinematic pattern in the shoulder pain and scapular dyskinesis: A principal component analysis approach. J Biomech, 2018. 77: p. 138-145. 111. Ludewig, P.M., et al., Motion of the shoulder complex during multiplanar humeral elevation. The Journal of Bone and Joint Surgery. American volume., 2009. 91(2): p. 378. 112. Teece, R.M., et al., Three-dimensional acromioclavicular joint motions during elevation of the arm. journal of orthopaedic sports physical therapy, 2008. 38(4): p. 181-190. 113. Astephen, J. and K. Deluzio, Changes in frontal plane dynamics and the loading response phase of the gait cycle are characteristic of severe knee osteoarthritis application of a multidimensional analysis technique. Clinical biomechanics, 2005. 20(2): p. 209-217. 114. Reisman, D.S. and J.P. Scholz, Aspects of joint coordination are preserved during pointing in persons with post‐stroke hemiparesis. Brain, 2003. 126(11): p. 2510-2527. 115. Hawkes, D.H., et al., Patterns of muscle coordination during dynamic glenohumeral joint elevation: An EMG study. PloS one, 2019. 14(2): p. e0211800. 116. Ricci, F.P.F., et al., Upper extremity coordination strategies depending on task demand during a basic daily activity. Gait posture, 2015. 42(4): p. 472-478. 117. Diedrichsen, J., R. Shadmehr, and R.B. Ivry, The coordination of movement: optimal feedback control and beyond. Trends in cognitive sciences, 2010. 14(1): p. 31-39. 118. Matsumura, N., et al., Effect of shortening deformity of the clavicle on scapular kinematics: a cadaveric study. Am J Sports Med, 2010. 38(5): p. 1000-6. 119. Kibler, B.W. and J. McMullen, Scapular dyskinesis and its relation to shoulder pain. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 2003. 11(2): p. 142-151. 120. Miachiro, N.Y., et al., Can clinical observation differentiate individuals with and without scapular dyskinesis? Brazilian journal of physical therapy, 2014. 18: p. 282-289. 121. Huang, T.-S., et al., Specific kinematics and associated muscle activation in individuals with scapular dyskinesis. Journal of shoulder and elbow surgery, 2015. 24(8): p. 1227-1234. 122. Huang, T.-S., et al., Movement pattern of scapular dyskinesis in symptomatic overhead athletes. Scientific reports, 2017. 7(1): p. 1-7. 123. Tate, A.R., et al., A clinical method for identifying scapular dyskinesis, part 2: validity. Journal of athletic training, 2009. 44(2): p. 165-173. 124. Lin, C.-C., et al., An Automated Three-Dimensional Bone Pose Tracking Method Using Clinical Interleaved Biplane Fluoroscopy Systems: Application to the Knee. Applied Sciences, 2020. 10(23): p. 8426. 125. Lin, C.C., et al., A model‐based tracking method for measuring 3D dynamic joint motion using an alternating biplane x‐ray imaging system. Medical physics, 2018. 45(8): p. 3637-3649. 126. Lin, C.-C., et al., Comparisons of surface vs. volumetric model-based registration methods using single-plane vs. bi-plane fluoroscopy in measuring spinal kinematics. Medical engineering physics, 2014. 36(2): p. 267-274. 127. Lu, T.-W., et al., In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Medical engineering physics, 2008. 30(8): p. 1004-1012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82120 | - |
| dc.description.abstract | 鎖骨中段骨折占肩關節傷害的35%至44%。以往認為鎖骨骨折不癒合機率極低,所以皆以保守方式治療。近年越來越多文獻支持以手術治療鎖骨骨折,以恢復鎖骨長度方式進而恢復肩關節功能。然而研究指出,部分患者即使手術後,關節恢復還是不如預期,其中最常被報告的是肩胛骨活動不良。過去的研究方法,因為肩胛骨皮膚移動誤差問題,無法在體外精確量測其活動,對於鎖骨骨折術後病患的肩胛骨活動細節並不清楚,所以目前對鎖骨中段骨折的最佳治療方式尚未定論。本研究使用光學運動分析系統搭配可調整式肩胛骨定位器,可克服皮膚運動誤差,並精確量化不同治療方式對中段鎖骨骨折病患在多平面手臂抬高過程的肩關節骨骼運動力學。本研究招募手術組、保守治療組與控制組各15名受試者,在他們手臂抬高的各階段,測量肩關節骨骼的活動。結果發現,兩個實驗組的肩部功能都已恢復到與控制組相當。然而,即使兩組骨折病患關節活動角度和控制組沒有顯著差異,實驗結果發現在他們患側和健側的鎖骨與肩胛骨在手臂抬高過程中的各平面都有程度不同的內轉與前引,此運動偏差可能造成對旋轉肌腱進一步的磨損甚至是永久性的傷害。本實驗結果支持鎖骨骨折病患在康復過程中監測多平面肩部運動力學的必要性,並建議病患在健側與患側都需要進行復健訓練以改善肩關節之運動控制。本研究亦針對以上數據進行主成分分析,在龐大的數據維度中找出十個主成分,並發現在不同的治療方式的受試者之間只有一個主成分有顯著差異。各主成分與臨床醫學的關聯則是未來研究上重要的課題。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:36:16Z (GMT). No. of bitstreams: 1 U0001-1810202110304200.pdf: 5898156 bytes, checksum: 020e9028b48e59e313bcd68dae74256e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Acknowledgement i 中文摘要 ii ABSTRACT iii TABLE OF CONTENTS iv LIST OF TABLES v LIST OF FIGURES vi Chapter 1. Introduction 1 1.1 Shoulder Complex 1 1.1.1 Overview 1 1.1.2 Clavicle 2 1.2 Clavicle Fractures 18 1.2.1 Epidemiology 18 1.2.2 Prognosis 19 1.2.3 Allman Classification 20 1.2.6 Conservative Treatments 29 1.2.7 Surgical Treatment 31 1.3 Operative versus Conservative Treatment of Clavicular Fractures 36 1.3.1 Outcome Measurements: Functional Scores and Pain 36 1.3.2 Current Outcome Studies 37 1.4 Scapular Motion 38 1.4.1 Overview 38 1.4.2 The Scapular Rhythm 39 1.5 Scapula motion after Clavicle Fracture 41 Chapter 2. Methods and Materials 45 2.1 Subjects 45 2.1.1 Surgical Group 46 2.1.2 Non-Surgical Group 47 2.1.3 Control Group 48 2.2 Instrument Software 50 2.3 Shoulder Kinematic Data 52 2.4 Shoulder Complex Kinematic Model 55 2.5 Local Coordinate System 57 2.6 Principal Component Analysis 61 2.7 Evaluation Parameters 62 2.8 Statistical Analysis 62 Chapter 3. Comparative Analyses of the Dominant and Non-Dominant Upper Limbs During the Arm Multiplane Elevation 63 3.1 Materials and Methods 64 3.1.1 Subjects 64 3.1.2 Test Activities 64 3.1.3 Data Analysis 65 3.1.4 Statistical Analysis 65 3.2 Results 67 3.3 Discussion 72 Chapter 4. Residual Kinematic Deviations of the Shoulder During Humeral Elevations after Conservative Treatment for Midshaft Clavicle Fractures 77 4.1 Materials and Methods 78 4.1.1 Subjects 78 4.1.2 Test Activities 80 4.1.3 Data Analysis 81 4.1.4 Statistical Analysis 81 4.2 Results 82 4.3 Discussion 88 Chapter 5. Effects of Internal Fixation for Midshaft Clavicle Fractures on Shoulder Kinematics During Humeral Elevations 93 5.1 Materials and Methods 94 5.1.1 Subjects 94 5.1.2 Test Activities 96 5.1.3 Data Analysis 97 5.1.4 Statistical Analysis 97 5.2 Results 98 5.3 Discussion 103 Chapter 6. Principal Component Analysis of Shoulder Complex Kinematic Pattern During Humeral Elevations after Conservative Treatment for Midshaft Clavicle Fractures 107 6.1 Methods and Materials 108 6.1.1 Subjects 108 6.1.2 Test Activities 110 6.1.4 Principal Component Analysis (PCA) 111 6.1.5 Statistical Analysis 112 6.2 Results 113 6.3 Discussion 122 Chapter 7. Principal Component Analysis of Shoulder Complex Kinematic Pattern During Humeral Elevations after Surgical Treatment for Midshaft Clavicle Fractures 127 7.1 Methods and Materials 128 7.1.1 Subjects 128 7.1.2 Test Activities 129 7.1.3 Data Analysis 130 7.1.4 Principal Component Analysis (PCA) 130 7.1.5 Statistical Analysis 131 7.2 Results 132 7.3 Discussion 141 Chapter 8 Conclusions and Suggestions 145 8.1. Conclusions 146 8.1.1. Comparative Analyses of the Dominant and Non-Dominant Upper Limbs During the Arm Multiplane Elevation 146 8.1.2. Residual Kinematic Deviations of the Shoulder During Humeral Elevations after Conservative Treatment for Midshaft Clavicle Fractures 147 8.1.3. Effects of Internal Fixation for Midshaft Clavicle Fractures on Shoulder Kinematics During Humeral Elevations 148 8.1.4. Principal Component Analysis of Shoulder Complex Kinematic Pattern During Humeral Elevations after Conservative Treatment for Midshaft Clavicle Fractures 149 8.1.5. Principal Component Analysis of Shoulder Complex Kinematic Pattern During Humeral Elevations after Surgical Treatment for Midshaft Clavicle Fractures 150 8.2. Suggestions for Further Studies 151 8.2.1. Clinical Applications 151 8.2.2. Further Studies 152 References 154 | |
| dc.language.iso | en | |
| dc.subject | 保守治療 | zh_TW |
| dc.subject | 主成分分析 | zh_TW |
| dc.subject | 手術治療 | zh_TW |
| dc.subject | 動作分析 | zh_TW |
| dc.subject | 鎖骨骨折 | zh_TW |
| dc.subject | principal component analysis | en |
| dc.subject | clavicle fracture | en |
| dc.subject | motion analysis | en |
| dc.subject | surgical treatment | en |
| dc.subject | conservative treatment | en |
| dc.title | 手術及保守治療對鎖骨中段骨折病患於多平面上舉時肩關節運動之影響 | zh_TW |
| dc.title | Effects of Surgical and Conservative Treatment for Mid-Shaft Clavicle Fractures on the Kinematics of the Shoulder Complex During Multi-Plane Elevation | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 釋高上(Hsin-Tsai Liu),王廷明(Chih-Yang Tseng),陳祥和,陳文斌 | |
| dc.subject.keyword | 鎖骨骨折,動作分析,手術治療,保守治療,主成分分析, | zh_TW |
| dc.subject.keyword | clavicle fracture,motion analysis,surgical treatment,conservative treatment,principal component analysis, | en |
| dc.relation.page | 162 | |
| dc.identifier.doi | 10.6342/NTU202103812 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-10-22 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1810202110304200.pdf 未授權公開取用 | 5.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
