Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82093
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳信銘(Hsin-Ming Chen)
dc.contributor.authorWei-Chia Changen
dc.contributor.author張維家zh_TW
dc.date.accessioned2022-11-25T05:35:42Z-
dc.date.available2023-10-25
dc.date.copyright2021-11-09
dc.date.issued2021
dc.date.submitted2021-10-26
dc.identifier.citation1. Annual report of cancer registry. https://www.hpa.gov.tw/Pages/TopicList.aspx?nodeid=269Health Promotion Administration Ministry of Health and welfare. 2. Brad W. Neville TAD. Oral Cancer and PrecancerousLesions. CA: A Cancer Journal for Clinicians 2002;52:195-215. 3. Douglas E. Morse WJP, Deborah Cleveland, Donald Cohen, Mireseyed Mohit-Tabatabai, Diane L. Kosis, Ellen Eisenberg. Smoking and drinking in relation to oral cancer and oral epithelial. Cancer Causes Control. 2007;18:919–929. 4. Morse DE, Psoter WJ, Baek LS, et al. Smoking and drinking in relation to depressive symptoms among persons with oral cancer or oral epithelial dysplasia. Head Neck. 2010;32(5):578-587. 5. Penfold CM, Thomas SJ, Waylen A, Ness AR. Change in alcohol and tobacco consumption after a diagnosis of head and neck cancer: Findings from Head and Neck 5000. Head Neck. 2018;40(7):1389-1399. 6. Tsai ST, Wong TY, Ou CY, et al. The interplay between alcohol consumption, oral hygiene, ALDH2 and ADH1B in the risk of head and neck cancer. Int J Cancer. 2014;135(10):2424-2436. 7. Ying-Chin Ko Y-LH, Chien-Hung Lee, Mei-Ju Chen, Li-Min Lin, and Chih-Cheng Tsai. Betel quid chewing, cigarette smoking and aicohoi consumption reiated to orai cancer in Taiwan. JOURNAL OF Oral Padtology Medicine. 1995;24:450-453. 8. Mager DL. Bacteria and cancer: cause, coincidence or cure? . Journal of Translational Medicine. 2006;4:14. 9. Campisi G, Giovannelli L. Controversies surrounding human papilloma virus infection, head neck vs oral cancer, implications for prophylaxis and treatment. Head Neck Oncol. 2009;1:8. 10. Balaram P, Sridhar H, Rajkumar T, et al. Oral cancer in southern India: The influence of smoking, drinking, paan-chewing and oral hygiene. International Journal of Cancer. 2002;98(3):440-445. 11. Tongzhang Zheng PB, Huanfang Hu, Jun Duan, Peijue Jiang, Daquan Ma, Liangpeng Shui, Shiru Niu, Crispian Scully, and Brian MacMahon Dentition, oral hygiene, and risk of oral cancer: a case-control study in Beijing, People's Republic of China. Cancer Causes and Control. 1990;1:235-241. 12. Bhisey RA. Betel-quid and Areca-nut Chewing and Some Areca-nut-derived Nitrosamines. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2003;85. 13. Nair U, Bartsch H, Nair J. Alert for an epidemic of oral cancer due to use of the betel quid substitutes gutkha and pan masala: a review of agents and causative mechanisms. Mutagenesis. 2004;19(4):251-262. 14. Gómez I, Seoane J, Varela‐Centelles P, Diz P, Takkouche B. Is diagnostic delay related to advanced‐stage oral cancer? A meta‐analysis. European journal of oral sciences. 2009;117(5):541-546. 15. Huang SH, O'Sullivan B. Overview of the 8th Edition TNM Classification for Head and Neck Cancer. Curr Treat Options Oncol. 2017;18(7):40. 16. Colevas AD, Yom SS, Pfister DG, et al. NCCN Guidelines Insights: Head and Neck Cancers, Version 1.2018. J Natl Compr Canc Netw. 2018;16(5):479-490. 17. K. Thomas Robbins JEM, Gregory T. Wolfe, Paul A. Levine, Roy B. Sessions, Charles W. Pruet. Standardizing Neck Dissection Terminology. Archives of otolaryngology-head and neck surgery 1991;117:601-605. 18. Shah JP, Gil Z. Current concepts in management of oral cancer--surgery. Oral Oncol. 2009;45(4-5):394-401. 19. Tsai W-C, Kung P-T, Wang S-T, Huang K-H, Liu S-A. Beneficial impact of multidisciplinary team management on the survival in different stages of oral cavity cancer patients: results of a nationwide cohort study in Taiwan. Oral oncology. 2015;51(2):105-111. 20. Chou H-C, Lin H-W, Yang J-H, et al. Clinical outcomes of oral cancer patients who survive for more than 5 years in Taiwan. Journal of the Formosan Medical Association. 2019;118(12):1616-1622. 21. Ord RA, Kolokythas A, Reynolds MA. Surgical salvage for local and regional recurrence in oral cancer. Journal of oral and maxillofacial surgery. 2006;64(9):1409-1414. 22. van der Waal I, de Bree R. Second primary tumours in oral cancer. Oral oncology. 2010;46(6):426-428. 23. CA AM, JL LP, Gutiérrez F, Hermsen M, MP FA. Second primary tumors in head and neck cancer. Acta otorrinolaringologica espanola. 2006;57(10):462-466. 24. Mücke T, Wagenpfeil S, Kesting MR, Hölzle F, Wolff K-D. Recurrence interval affects survival after local relapse of oral cancer. Oral oncology. 2009;45(8):687-691. 25. Honigsmann H. History of phototherapy in dermatology. Photochem Photobiol Sci. 2013;12(1):16-21. 26. Von Tappeiner H, Jodlbauer A. On the effect of photodynamic (fluorescent) substances on protozoa and enzymes. Deutsch Arch Klin Medizin. 1904;39:427-487. 27. Raab O. Uber die wirkung fluorescirender stoffe auf infusorien. Z biol. 1900;39:524-546. 28. Thomas J. Dougherty JEK, Abraham Goldfarb, Kenneth R. Weishaupt, Donn Boyle, and Arnold Mittleman. Photoradiation Therapy for the Treatment of Malignant Tumors. CANCER RESEARCH. 1978;38:2628-2635. 29. J. c. KENNEDY RHP, D. C. PROSS. PHOTODYNAMIC THERAPY WITH ENDOGENOUS PROTOPORPHYRIN IX: BASIC PRINCIPLES AND PRESENT CLINICAL EXPERIENCE. Journal of Photochemistry and Photobiology. 1990;6:143-148. 30. Malik R, Manocha A, Suresh D. Photodynamic therapy-A strategic review. Indian Journal of Dental Research. 2010;21(2):285. 31. Kalka K, Merk H, Mukhtar H. Photodynamic therapy in dermatology. Journal of the American Academy of Dermatology. 2000;42(3):389-413. 32. Donaldson IA, Alonzi R, Barratt D, et al. Focal therapy: patients, interventions, and outcomes—a report from a consensus meeting. European urology. 2015;67(4):771-777. 33. Kostron H, Obwegeser A, Jakober R. Photodynamic therapy in neurosurgery: a review. Journal of Photochemistry and Photobiology B: Biology. 1996;36(2):157-168. 34. Spitzer M, Krumholz B. Photodynamic therapy in gynecology. Obstetrics and gynecology clinics of North America. 1991;18(3):649-659. 35. Bown S, Millson C. Photodynamic therapy in gastroenterology. Gut. 1997;41(1):5. 36. Sudhakara Reddy .R RK, Ramesh Tatapudi , Subbarayudu Gudapati, Sai Madhavai .N, Sai Kiran .Ch Photo Dynamic Therapy in Oral Diseases. International Journal of Biological Medical Research. 2012;3(2):1875-1883. 37. Sieroń A, Adamek M, Kawczyk‐Krupka A, Mazur S, Ilewicz L. Photodynamic therapy (PDT) using topically applied δ‐aminolevulinic acid (ALA) for the treatment of oral leukoplakia. Journal of oral pathology medicine. 2003;32(6):330-336. 38. Hopper C. Photodynamic therapy: a clinical reality in the treatment of cancer. The lancet oncology. 2000;1(4):212-219. 39. BARBARA W. HENDERSON TJD. HOW DOES PHOTODNAMIC THERAPY WORK. Photochemistry and Photobiology. 1992;35(1):145-157. 40. Goslinski KKaT. Photodynamic Therapy in Dentistry. International and American Associations for Dental Research. 2007;86(8):694-707. 41. Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098-1107. 42. Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochemical Photobiological Sciences. 2002;1(1):1-21. 43. Lei Teng MN, Yutaka Hayashi, Takeshi Yoneyama, Shi-Guang Zhao and Jun-Ichiro Hamada. Current Applications of 5-ALA in Glioma Diagnostics and Therapy. Clinical Management and Evolving Novel Therapeutic Strategies for Patients with Brain Tumors2013:249-261. 44. Qian Peng TW, Kristian Berg, Johan Moan, Magne Kongshaug, Karl‐Erik Giercksky, Jahn M. Nesland. Aminolevulinic Acid–Based Photodynamic Therapy. CANCER. 1997;79:2282-2308. 45. Leibovici L, Schoenfeld N, Yehoshua HA, et al. Activity of porphobilinogen deaminase in peripheral blood mononuclear cells of patients with metastatic cancer. Cancer. 1988;62(11):2297-2300. 46. Schoenfeld N, Epstein O, Lahav M, Mamet R, Shaklai M, Atsmon A. The heme biosynthetic pathway in lymphocytes of patients with malignant lymphoproliferative disorders. Cancer letters. 1988;43(1-2):43-48. 47. Kondo M, Hirota N, Takaoka T, Kajiwara M. Heme-biosynthetic enzyme activities and porphyrin accumulation in normal liver and hepatoma cell lines of rat. Cell biology and toxicology. 1993;9(1):95-105. 48. Dailey HA, Smith A. Differential interaction of porphyrins used in photoradiation therapy with ferrochelatase. Biochemical Journal. 1984;223(2):441-445. 49. Van Hillegersberg R, Van Den Berg JWO, Kort WJ, Terpstra OT, Wilson JP. Selective accumulation of endogenously produced porphyrins in a liver metastasis model in rats. Gastroenterology. 1992;103(2):647-651. 50. Rubino G. Porphyrin metabolism in human neoplastic tissues. Panminerva Med. 1966;8:290-292. 51. Goff BA, Bachor R, Kollias N, Hasan T. Effects of photodynamic therapy with topical application of 5-aminolevulinic acid on normal skin of hairless guinea pigs. Journal of Photochemistry and Photobiology B: Biology. 1992;15(3):239-251. 52. Warloe T, Peng Q, Steen H, Giercksky K-E. Localization of porphyrins in human basal cell carcinoma and normal skin tissue induced by topical application of 5-amino levulinic acid. Paper presented at: EXCERPTA MEDICA INTERNATIONAL CONGRESS SERIES1993. 53. Mustajoki P, Timonen K, Gorchein A, Seppäläinen A, Matikainen E, Tenhunen R. Sustained high plasma 5‐aminolaevulinic acid concentration in a volunteer: no porphyric symptoms. European journal of clinical investigation. 1992;22(6):407-411. 54. LaRochelle EPM, Marra K, LeBlanc RE, Chapman MS, Maytin EV, Pogue BW. Modeling PpIX effective light fluence at depths into the skin for PDT dose comparison. Photodiagnosis and Photodynamic Therapy. 2019;25:425-435. 55. Casas A, Di Venosa G, Hasan T, Batlle A. Mechanisms of resistance to photodynamic therapy. Current medicinal chemistry. 2011;18(16):2486-2515. 56. Casas A, Perotti C, Ortel B, et al. Tumor cell lines resistant to ALA-mediated photodynamic therapy and possible tools to target surviving cells. International journal of oncology. 2006;29(2):397-405. 57. Tsunoda Y, Usuda J, Imai K, Kubota M, Maehara S, Ohtani K. The expression of BCRP/ABCG2 causes resistance to Photofrin-PDT. Jpn J Laser Surg Med. 2008;28:355-361. 58. Robey RW, Steadman K, Polgar O, Bates SE. ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer biology therapy. 2005;4(2):195-202. 59. DiProspero L, Singh G, Wilson BC, Rainbow AJ. Cross-resistance to photofrin-mediated photodynamic therapy and UV light and recovery from photodynamic therapy damage in Rif-8A mouse fibrosarcoma cells measured using viral capacity. Journal of Photochemistry and Photobiology B: Biology. 1997;38(2-3):143-151. 60. Granville DJ, Carthy CM, Jiang H, Shore GC, McManus BM, Hunt DW. Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy. FEBS letters. 1998;437(1-2):5-10. 61. Chiu S, Xue L, Usuda J, Azizuddin K, Oleinick N. Bax is essential for mitochondrion-mediated apoptosis but not for cell death caused by photodynamic therapy. British journal of cancer. 2003;89(8):1590-1597. 62. Wan Q, Liu L, Xing D, Chen Q. Bid is required in NPe6‐PDT‐induced apoptosis. Photochemistry and photobiology. 2008;84(1):250-257. 63. Luna MC, Gomer CJ. Isolation and initial characterization of mouse tumor cells resistant to porphyrin-mediated photodynamic therapy. Cancer research. 1991;51(16):4243-4249. 64. Kaufmann SHE. Paul Ehrlich: founder of chemotherapy. Nature Reviews Drug Discovery. 2008;7(5):373-373. 65. Gilman A. Therapeutic applications of chemical warfare agents. (0014-9446 (Print)). 66. Goodman Ls Fau - Wintrobe MM, Wintrobe MM, et al. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. (0002-9955 (Print)). 67. Gilman A Fau - Philips FS, Philips FS. The Biological Actions and Therapeutic Applications of the B-Chloroethyl Amines and Sulfides. (0036-8075 (Print)). 68. Gilman A. The initial clinical trial of nitrogen mustard. (0002-9610 (Print)). 69. Johnson IS, Armstrong JG, Gorman M, Burnett JP. The vinca alkaloids: a new class of oncolytic agents. AACR; 1963. 70. BRUNNER KW, YOUNG CW. A methylhydrazine derivative in Hodgkin's disease and other malignant neoplasms: therapeutic and toxic effects studied in 51 patients. Annals of internal medicine. 1965;63(1):69-86. 71. DeVita VT, Serpick A, Carbone PP. Preliminary clinical studies with ibenzmethyzin. Clinical Pharmacology Therapeutics. 1966;7(4):542-546. 72. Fisher B, Costantino JP, Redmond CK, et al. Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. JNCI: Journal of the National Cancer Institute. 1994;86(7):527-537. 73. Bonadonna G, Valagussa P, Brambilla C, et al. Primary chemotherapy in operable breast cancer: eight-year experience at the Milan Cancer Institute. Journal of Clinical Oncology. 1998;16(1):93-100. 74. Li MC, Whitmore WF, Golbey R, Grabstald H. Effects of combined drug therapy on metastatic cancer of the testis. Jama. 1960;174(10):1291-1299. 75. Iarc. Cisplatin. Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol 26, Some Antineoplastic and Immunosuppressive Agents. 1981:151-164. 76. Alderden RA, Hall MD, Hambley TW. The discovery and development of cisplatin. Journal of chemical education. 2006;83(5):728. 77. BARNETT ROSENBERG LVC, THOMAS KRIGAS Inhibition of Cell Division in Escherichia coli. Nature. 1965;205:698-699. 78. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nature Reviews Cancer. 2007;7(8):573-584. 79. Burger A, Double J, Newell D. Inhibition of telomerase activity by cisplatin in human testicular cancer cells. European Journal of Cancer. 1997;33(4):638-644. 80. Koster R, Van Vugt M, Timmer-Bosscha H, Gietema J, De Jong S. Unravelling mechanisms of cisplatin sensitivity and resistance in testicular cancer. Expert reviews in molecular medicine. 2013;15. 81. Coppin C, Gospodarowicz MK, James K, et al. Improved local control of invasive bladder cancer by concurrent cisplatin and preoperative or definitive radiation. The National Cancer Institute of Canada Clinical Trials Group. Journal of clinical oncology. 1996;14(11):2901-2907. 82. Shipley WU, Prout GR, Einstein AB, et al. Treatment of invasive bladder cancer by cisplatin and radiation in patients unsuited for surgery. Jama. 1987;258(7):931-935. 83. Rose PG, Bundy BN, Watkins EB, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. New England Journal of Medicine. 1999;340(15):1144-1153. 84. Lukka H, Hirte H, Fyles A, et al. Concurrent cisplatin-based chemotherapy plus radiotherapy for cervical cancer–a meta-analysis. Clinical Oncology. 2002;14(3):203-212. 85. Armstrong DK, Bundy B, Wenzel L, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. New England Journal of Medicine. 2006;354(1):34-43. 86. McGuire WP, Hoskins WJ, Brady MF, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. New England Journal of Medicine. 1996;334(1):1-6. 87. Group IALCTC. Cisplatin-based adjuvant chemotherapy in patients with completely resected non–small-cell lung cancer. New England Journal of Medicine. 2004;350(4):351-360. 88. Schaake-Koning C, Van den Bogaert W, Dalesio O, et al. Effects of concomitant cisplatin and radiotherapy on inoperable non-small-cell lung cancer. New England Journal of Medicine. 1992;326(8):524-530. 89. Vermorken JB, Remenar E, Van Herpen C, et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. New England Journal of Medicine. 2007;357(17):1695-1704. 90. Posner MR, Hershock DM, Blajman CR, et al. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. New England Journal of Medicine. 2007;357(17):1705-1715. 91. Forastiere AA, Metch B, Schuller DE, et al. Randomized comparison of cisplatin plus fluorouracil and carboplatin plus fluorouracil versus methotrexate in advanced squamous-cell carcinoma of the head and neck: a Southwest Oncology Group study. Journal of Clinical Oncology. 1992;10(8):1245-1251. 92. Elattar T, Virji A. The inhibitory effect of curcumin, genistein, quercetin and cisplatin on the growth of oral cancer cells in vitro. Anticancer research. 2000;20(3A):1733-1738. 93. Andreadis C, Vahtsevanos K, Sidiras T, Thomaidis I, Antoniadis K, Mouratidou D. 5-Fluorouracil and cisplatin in the treatment of advanced oral cancer. Oral Oncology. 2003;39(4):380-385. 94. Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2001;478(1-2):23-43. 95. Eljack ND, Ma HY, Drucker J, et al. Mechanisms of cell uptake and toxicity of the anticancer drug cisplatin. Metallomics. 2014;6(11):2126-2133. 96. Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM. DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics (Sao Paulo). 2018;73(suppl 1):e478s. 97. Amable L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res. 2016;106:27-36. 98. Istvan Arany RLS. Cisplatin Nephrotoxicity. Seminars in Nephrology. 2003;23(5):460-464. 99. Lilterst C, Torres I, Guarino A. Plasma levels and organ distribution of platinum in the rat, dog, and dog fish following intravenous administration of cis-DDP (II). Clin Hematol Oncol. 1977;7:16. 100. Safirstein R, Miller P, Dikman S, Lyman N, Shapiro C. Cisplatin nephrotoxicity in rats: defect in papillary hypertonicity. American Journal of Physiology-Renal Physiology. 1981;241(2):F175-F185. 101. Megyesi J, Safirstein RL, Price PM. Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. The Journal of clinical investigation. 1998;101(4):777-782. 102. Astolfi L, Ghiselli S, Guaran V, et al. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: A retrospective evaluation. Oncology reports. 2013;29(4):1285-1292. 103. Köberle B, Tomicic MT, Usanova S, Kaina B. Cisplatin resistance: preclinical findings and clinical implications. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2010;1806(2):172-182. 104. Ishida S, McCormick F, Smith-McCune K, Hanahan D. Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer cell. 2010;17(6):574-583. 105. Burger H, Zoumaro‐Djayoon A, Boersma A, et al. Differential transport of platinum compounds by the human organic cation transporter hOCT2 (hSLC22A2). British journal of pharmacology. 2010;159(4):898-908. 106. Nakayama K, Kanzaki A, Ogawa K, Miyazaki K, Neamati N, Takebayashi Y. Copper‐transporting P‐type adenosine triphosphatase (ATP7B) as a cisplatin based chemoresistance marker in ovarian carcinoma: Comparative analysis with expression of MDR1, MRP1, MRP2, LRP and BCRP. International journal of cancer. 2002;101(5):488-495. 107. Li Z-h, Qiu M-z, Zeng Z-l, et al. Copper-transporting P-type adenosine triphosphatase (ATP7A) is associated with platinum-resistance in non-small cell lung cancer (NSCLC). Journal of translational medicine. 2012;10(1):21. 108. Yamasaki M, Makino T, Masuzawa T, et al. Role of multidrug resistance protein 2 (MRP2) in chemoresistance and clinical outcome in oesophageal squamous cell carcinoma. British journal of cancer. 2011;104(4):707-713. 109. Satoh T, Nishida M, Tsunoda H, Kubo T. Expression of glutathione S-transferase pi (GST-pi) in human malignant ovarian tumors. European Journal of Obstetrics Gynecology and Reproductive Biology. 2001;96(2):202-208. 110. Hishikawa Y, Abe Si, Kinugasa S, et al. Overexpression of metallothionein correlates with chemoresistance to cisplatin and prognosis in esophageal cancer. Oncology. 1997;54(4):342-347. 111. Dabholkar M, Bostick-Bruton F, Weber C, Bohr VA, Egwuagu C, Reed E. ERCC1 and ERCC2 expression in malignant tissues from ovarian cancer patients. JNCI: Journal of the National Cancer Institute. 1992;84(19):1512-1517. 112. Xuelei M, Jingwen H, Wei D, et al. ERCC1 plays an important role in predicting survival outcomes and treatment response for patients with HNSCC: a meta-analysis. Oral oncology. 2015;51(5):483-492. 113. Huang J, Zhou Y, Zhang H, et al. A phase II study of biweekly paclitaxel and cisplatin chemotherapy for recurrent or metastatic esophageal squamous cell carcinoma: ERCC1 expression predicts response to chemotherapy. Medical oncology. 2013;30(1):343. 114. Sakai W, Swisher EM, Karlan BY, et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature. 2008;451(7182):1116-1120. 115. Edwards SL, Brough R, Lord CJ, et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature. 2008;451(7182):1111-1115. 116. Ceppi P, Novello S, Cambieri A, et al. Polymerase η mRNA Expression Predicts Survival of Non–Small Cell Lung Cancer Patients Treated with Platinum-Based Chemotherapy. Clinical cancer research. 2009;15(3):1039-1045. 117. Hoffmann TK, Leenen K, Hafner D, et al. Antitumor activity of protein kinase C inhibitors and cisplatin in human head and neck squamous cell carcinoma lines. Anti-cancer drugs. 2002;13(1):93-100. 118. Cho HJ, Kim JK, Kim KD, et al. Upregulation of Bcl-2 is associated with cisplatin-resistance via inhibition of Bax translocation in human bladder cancer cells. Cancer letters. 2006;237(1):56-66. 119. Perego P, Giarola M, Righetti SC, et al. Association between cisplatin resistance and mutation of p53 gene and reduced bax expression in ovarian carcinoma cell systems. Cancer research. 1996;56(3):556-562. 120. Brown R, Clugston C, Edlin A, et al. Increased accumulation of p53 protein in cisplatin‐resistant ovarian cell lines. International journal of cancer. 1993;55(4):678-684. 121. Shimodaira H, Yoshioka-Yamashita A, Kolodner RD, Wang JY. Interaction of mismatch repair protein PMS2 and the p53-related transcription factor p73 in apoptosis response to cisplatin. Proceedings of the National Academy of Sciences. 2003;100(5):2420-2425. 122. Topping RP, Wilkinson JC, Scarpinato KD. Mismatch repair protein deficiency compromises cisplatin-induced apoptotic signaling. Journal of Biological Chemistry. 2009;284(21):14029-14039. 123. Brozovic A, Ambriović-Ristov A, Osmak M. The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Critical reviews in toxicology. 2010;40(4):347-359. 124. Miyake H, Hanada N, Nakamura H, et al. Overexpression of Bcl-2 in bladder cancer cells inhibits apoptosis induced by cisplatin and adenoviral-mediated p53 gene transfer. Oncogene. 1998;16(7):933-943. 125. Losa JH, Cobo CP, Viniegra JG, Lobo VJS-A, y Cajal SR, Sanchez-Prieto R. Role of the p38 MAPK pathway in cisplatin-based therapy. Oncogene. 2003;22(26):3998-4006. 126. Brozovic A, Osmak M. Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin-resistance. Cancer letters. 2007;251(1):1-16. 127. Lee S, Choi E-J, Jin C, Kim D-H. Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecologic oncology. 2005;97(1):26-34. 128. Zhao G, Cai C, Yang T, et al. MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma. PloS one. 2013;8(1). 129. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22(47):7265-7279. 130. Canti G, Nicolin A, Cubeddu R, Taroni P, Bandieramonte G, Valentini G. Antitumor efficacy of the combination of photodynamic therapy and chemotherapy in murine tumors. Cancer letters. 1998;125(1-2):39-44. 131. Chen Y-S, Peng Y-B, Yao M, et al. Cisplatin and photodynamic therapy exert synergistic inhibitory effects on small-cell lung cancer cell viability and xenograft tumor growth. Biochemical and biophysical research communications. 2017;487(3):567-572. 132. Crescenzi E, Chiaviello A, Canti G, Reddi E, Veneziani BM, Palumbo G. Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non–small cell lung cancer cells (H1299). Molecular cancer therapeutics. 2006;5(3):776-785. 133. Nonaka M, Ikeda H, Inokuchi T. Effect of combined photodynamic and chemotherapeutic treatment on lymphoma cells in vitro. Cancer letters. 2002;184(2):171-178. 134. Khdair A, Chen D, Patil Y, et al. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. Journal of Controlled Release. 2010;141(2):137-144. 135. He C, Duan X, Guo N, et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nature communications. 2016;7(1):1-12. 136. Lottner C, Knuechel R, Bernhardt G, Brunner H. Combined chemotherapeutic and photodynamic treatment on human bladder cells by hematoporphyrin–platinum (II) conjugates. Cancer letters. 2004;203(2):171-180. 137. Loh C, MacRobert A, Bedwell J, Regula J, Krasner N, Bown S. Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy. British journal of cancer. 1993;68(1):41-51. 138. Ahn J-C, Biswas R, Mondal A, Lee Y-K, Chung P-S. Cisplatin enhances the efficacy of 5-aminolevulinic acid mediated photodynamic therapy in human head and neck squamous cell carcinoma. Gen Physiol Biophys. 2014;33:53-62. 139. Wei X-Q, Ma H-Q, Liu A-H, Zhang Y-Z. Synergistic anticancer activity of 5-aminolevulinic acid photodynamic therapy in combination with low-dose cisplatin on Hela cells. Asian Pac J Cancer Prev. 2013;14(5):3023-3028. 140. Chiarugi A, Moskowitz MA. PARP-1--a perpetrator of apoptotic cell death? Science. 2002;297(5579):200-201. 141. Boulares AH, Yakovlev AG, Ivanova V, et al. Role of poly (ADP-ribose) polymerase (PARP) cleavage in apoptosis: caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. Journal of Biological Chemistry. 1999;274(33):22932-22940. 142. Kim J, Lim W, Kim S, et al. Photodynamic therapy (PDT) resistance by PARP 1 regulation on PDT‐induced apoptosis with autophagy in head and neck cancer cells. Journal of oral pathology medicine. 2014;43(9):675-684. 143. Dewaele M, Martinet W, Rubio N, et al. Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage. Journal of cellular and molecular medicine. 2011;15(6):1402-1414. 144. Kurokawa H, Ito H, Matsui H. The cisplatin-derived increase of mitochondrial reactive oxygen species enhances the effectiveness of photodynamic therapy via transporter regulation. Cells. 2019;8(8):918. 145. Döring F, Walter J, Will J, et al. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. The Journal of clinical investigation. 1998;101(12):2761-2767. 146. Tsai Y-S. The Ferrochelatase Plays a Key Role in Molecular Basis of Oral Cancer Cells with Resistance to Photodynamic Therapy. 2019. 147. Mao W, Sun Y, Zhang H, Cao L, Wang J, He P. A combined modality of carboplatin and photodynamic therapy suppresses epithelial-mesenchymal transition and matrix metalloproteinase-2 (MMP-2)/MMP-9 expression in HEp-2 human laryngeal cancer cells via ROS-mediated inhibition of MEK/ERK signalling pathway. Lasers in medical science. 2016;31(8):1697-1705. 148. Mrkvicova A, Chmelarova M, Peterova E, et al. The effect of sodium butyrate and cisplatin on expression of EMT markers. PLoS One. 2019;14(1):e0210889. 149. Wang H, Guo S, Kim S-J, et al. Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Theranostics. 2021;11(5):2442. 150. Huang L, Lin H, Chen Q, Yu L, Bai D. MPPa-PDT suppresses breast tumor migration/invasion by inhibiting Akt-NF-κB-dependent MMP-9 expression via ROS. BMc cancer. 2019;19(1):1-11. 151. Yu H, Shen Y, Hong J, Xia Q, Zhou F, Liu X. The contribution of TGF-β in Epithelial-Mesenchymal Transition (EMT): Down-regulation of E-cadherin via snail. Neoplasma. 2015;62(1):1-15. 152. Zhang Y, Xu L, Li A, Han X. The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomedicine Pharmacotherapy. 2019;110:400-408. 153. Xie J-J, Xie Y-M, Chen B, et al. ATF3 functions as a novel tumor suppressor with prognostic significance in esophageal squamous cell carcinoma. Oncotarget. 2014;5(18):8569.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82093-
dc.description.abstract"口腔癌為全球第六大常見癌症,在台灣,儘管治療的方式一直在進步且推動早期篩檢,口腔癌仍蟬聯男性十大癌症發生率及死亡率之第四位已久。根據文獻,台灣口腔癌病人的總存活率(overall survival rate)只有50-60 %,影響的原因除了延遲治療外,病人也有一定的機率會發生局部復發(recurrence)、二次原發性癌症(second primary cancer)、及遠端轉移(metastasis),都是當前口腔癌存活率沒有明顯改變的原因,而其中局部復發和二次原發性癌症都好發於初次原發癌(primary cancer)附近的位置,再次使用手術治療的可能性大幅降低,因此迫切需要找尋替代的治療方案。 許多文獻指出合併使用低劑量的光動力和化學治療在卵巢癌、膀胱癌、血癌、淋巴瘤中都具有協同效果,但是應用在口腔癌上的研究較少,且其中機制尚未釐清。而光動力治療與順鉑都是需要比較長時間的療法,產生抗光性及抗藥性機率不低,所以本篇主要研究低劑量光動力治療與順鉑在口腔癌上是否具有協同效果,並嘗試探討其中機制,另外將探討當細胞對光動力治療或順鉑均產生抗性時,合併療法是否也能順利作用,還有將討論合併治療是否能抑制上皮細胞間質轉化,降低口腔癌細胞轉移的機率。 實驗結果顯示,合併使用低劑量的光動力治療和順鉑會對口腔癌細胞造成大量毒殺效果,比單獨光動力治療或順鉑治療造成的死亡率都高,說明合併治療具有協同效果。而其效果可能源於加入低劑量的順鉑可以誘導肽轉運蛋白1 (Peptide transporter 1 , PEPT1)的表現量上升,進而提高5-ALA的攝取,促進細胞中原紫質IX (Protoporphyrin IX, PpIX)的累積,當給予適當波長的光線後,能夠產生大量的活性氧類(Reactive oxygen species,ROS)造成細胞大量死亡。當細胞產生順鉑抗藥性時,使用合併療法依然能得到良好的治療效果,顯示造成順鉑抗藥 性的原因並不會影響到協同效果的產生;然而當細胞產生光動力抗光性時,觀察到不論是單獨給予5-ALA或是先給予低劑量順鉑後再加入5-ALA,抗光性細胞中的PpIX都比親代細胞顯著減少許多,而無法觀察到明顯的協同效果,其原因可能為抗光性細胞中高表現量的鐵螯合酶 (Ferrochelatase, FECH)會將PpIX大量代謝成血基質(heme),降低光動力治療的效果,但在加入FECH抑制劑後可以明顯改善治療效果。 同時透過傷口癒合測試和跨孔遷移測試可以觀察到經合併療法處理過後的細胞在水平及垂直遷移都有被顯著抑制的效果,甚至比單獨光動力治療或單獨順鉑治療的效果還要好。另外透過西方墨點法可以得知,經過合併治療後,上皮細胞間質轉化(Epithelial-mesenchymal transition, EMT)和侵襲(invasion)相關的蛋白表現量也都有顯著下降,說明合併治療有能力可以減少腫瘤轉移的機會。但是就此篇實驗觀察,應該不全然是由ROS抑制EMT和invasion相關蛋白表現,因為在合併治療的同時加入ROS抑制劑-乙醯半胱氨酸(N-acetyl cysteine, NAC)後,部分蛋白表現並沒有回歸到原本的狀態,推測低劑量的順鉑可能也會造成些許的影響。 由於合併低劑量的順鉑與光動力治療對口腔癌親代細胞、具順鉑抗藥性的細胞、具光動力抗光性的細胞都具有良好的治療效果,且具有降低細胞轉移的能力,又是一種非侵入性的治療,很適合作為局部復發和二次原發性癌症的替代治療方案。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:35:42Z (GMT). No. of bitstreams: 1
U0001-2510202116180600.pdf: 6874211 bytes, checksum: 9da0a83fc1c5f2fd25da0493a9e11f69 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"中文摘要 II ABSTRACT IV 目錄 VI 表目錄 VIII 圖目錄 IX 第1章 緒論 1 1.1 口腔癌 1 1.1.1 口腔癌的診斷及分期 2 1.1.2 口腔癌的治療 4 1.2 光動力治療 5 1.2.1 光動力治療的機制 5 1.2.2 5-氨基酮戊酸介導的光動力治療 7 1.3 化學治療 10 1.3.1 順鉑 (cisplatin) 11 1.3.2 順鉑的作用機制 11 1.3.3 順鉑的毒性與抗藥性 13 第2章 材料與方法 17 2.1 細胞株 17 2.2 細胞培養 18 2.3 光動力治療 19 2.4 順鉑化學治療 19 2.5 實驗組別 20 2.6 細胞存活率測試-MTT ASSAY 20 2.7 西方墨點法( WESTERN BLOT ANALYSIS, WB) 21 2.7.1. 蛋白檢體處理 21 2.7.2. SDS-PAGE膠體製備及電泳 21 2.7.3 轉印與化學冷光呈色(Transfer and Chemiluminescence) 22 2.8 流式細胞術 24 2.9 傷口癒合測試 (WOUND HEALING ASSAY) 24 2.10 細胞遷移測試 (TRANSWELL MIGRATION ASSAY) 24 第3章 結果 26 3.1 順鉑和光動力治療對不同種細胞的劑量依存性 26 3.2 合併治療在親代細胞中產生的協同效應 28 3.3 合併治療在抗藥性及抗光性細胞中產生的協同效應 31 3.4 PPIX在各種細胞中經不同處理後的累積量 33 3.5 不同種細胞在經過順鉑處理後PEPT1的螢光表現量變化 34 3.6 比較PPIX和PEPT1在親代細胞與具抗光性細胞中經過處理過後表現量的不同 35 3.7 抗光性細胞中加入FECH抑制劑NMPP後與未加NMPP的組別比較細胞中PPIX的累積量及合併治療後的細胞活性 36 3.8 傷口癒合測試 37 3.9 跨孔遷移試驗 (TRANSWELL MIGRATION ASSAY) 41 3.10 經過合併治療後上皮-間質型轉換的蛋白量下降 44 第四章 討論 48 第五章 結論 53 第六章 圖與表 54 第七章 REFERENCE 94"
dc.language.isozh-TW
dc.subject光動力抗性細胞zh_TW
dc.subject5-胺基酮戊酸zh_TW
dc.subject順鉑zh_TW
dc.subject順鉑抗藥性細胞zh_TW
dc.subject合併療法zh_TW
dc.subject口腔癌zh_TW
dc.subject光動力治療zh_TW
dc.subject肽轉運蛋白1zh_TW
dc.subjectphotodynamic therapyen
dc.subjectoral canceren
dc.subject5-ALAen
dc.subjectPEPT1en
dc.subjectcisplatin resistance cell linesen
dc.subjectPDT resistance cell linesen
dc.subjectcombination therapyen
dc.subjectcisplatinen
dc.title合併低劑量順鉑與光動力治療對於口腔癌細胞株凋亡與上皮間質轉化之影響具加乘效應zh_TW
dc.titleCombination Effect of Low Dose Cisplatin and Photodynamic Therapy on Apoptosis and Epithelial-mesenchymal Transition in Oral Cancer Cell Linesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江俊斌(Hsin-Tsai Liu),黎萬鈞(Chih-Yang Tseng),侯欣翰
dc.subject.keyword5-胺基酮戊酸,順鉑,順鉑抗藥性細胞,合併療法,口腔癌,光動力治療,肽轉運蛋白1,光動力抗性細胞,zh_TW
dc.subject.keywordoral cancer,photodynamic therapy,cisplatin,combination therapy,PDT resistance cell lines,cisplatin resistance cell lines,PEPT1,5-ALA,en
dc.relation.page106
dc.identifier.doi10.6342/NTU202104155
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
dc.date.embargo-lift2023-10-25-
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2510202116180600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved