請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82007完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李建模(Chien-Mo Li) | |
| dc.contributor.author | Wei-Chen Lin | en |
| dc.contributor.author | 林韋辰 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:33:58Z | - |
| dc.date.available | 2026-08-19 | |
| dc.date.copyright | 2021-11-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-19 | |
| dc.identifier.citation | [1] J. Lee, D. Walker, L. Milor, Y. Peng, and G. Hill, “Ic performance prediction for test cost reduction,” in 1999 IEEE International Symposium on Semiconductor Manufacturing Conference Proceedings (Cat No. 99CH36314), pp. 111–114, IEEE, 1999. [2] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Parameter variations and impact on circuits and microarchitecture,” in Proceedings of the 40th annual Design Automation Conference, pp. 338–342, 2003. [3] 蘇旻彥, “使用機器學習之晶片效能預測,” Master’s thesis, 國立臺灣大學, Jan 2019. [4] K. Kuhn, C. Kenyon, A. Kornfeld, M. Liu, A. Maheshwari, W.k. Shih, S. Sivakumar, G. Taylor, P. VanDerVoorn, and K. Zawadzki, “Managing process variation in intel’s 45nm cmos technology.,” Intel Technology Journal, vol. 12, no. 2, 2008. [5] K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. T. Ma, A. Maheshwari, and S. Mudanai, “Process technology variation,” IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2197–2208, 2011. [6] B. D. Cory, R. Kapur, and B. Underwood, “Speed binning with path delay test in 150nm technology,” IEEE Design Test of Computers, vol. 20, no. 5, pp. 41–45, 2003. [7] J. Chen, J. Zeng, L.C. Wang, J. Rearick, and M. Mateja, “Selecting the most relevant structural fmax for system fmax correlation,” in 2010 28th VLSI Test Symposium (VTS), pp. 99–104, IEEE, 2010. [8] 郭彥庭, “使用累積學習預測生產測試中晶片的最小工作電壓,” Master’s thesis, 國立臺灣大學, Jan 2020. [9] D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein, Logistic regression. Springer, 2002. [10] S. Borkar, “Designing reliable systems from unreliable components: the challenges of transistor variability and degradation,” Ieee Micro, vol. 25, no. 6, pp. 10–16, 2005. [11] S.P. Mu, M. C.T. Chao, S.H. Chen, and Y.M. Wang, “Statistical framework and builtin selfspeedbinning system for speed binning using onchip ring oscillators,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 5, pp. 1675–1687, 2015. [12] K.W. Chang, C.Y. Huang, S.P. Mu, J.M. Huang, S.H. Chen, and M. C.T. Chao, “Dvfs binning using machinelearning techniques,” in 2018 IEEE International Test Conference in Asia (ITCAsia), pp. 31–36, IEEE, 2018. [13] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas, “Varius: A model of process variation and resulting timing errors for microarchitects,” IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 1, pp. 3–13, 2008. [14] J. Chen, J. Zeng, L.C. Wang, M. Mateja, and J. Rearick, “Predicting multicore system fmax by datalearning methodology,” in Proceedings of 2010 International Symposium on VLSI Design, Automation and Test, pp. 220–223, IEEE, 2010. [15] M.Y. Su, W.C. Lin, Y.T. Kuo, C.M. Li, E. J.W. Fang, and S. S.Y. Hsueh, “Chip performance prediction using machine learning techniques,” in 2021 International Symposium on VLSI Design, Automation and Test (VLSIDAT), pp. 1–4, IEEE, 2021. [16] R. Cantoro, M. Huch, T. Kilian, R. Martone, U. Schlichtmann, and G. Squillero, “Machine learning based performance prediction of microcontrollers using speed monitors,” in 2020 IEEE International Test Conference (ITC), pp. 1–5, IEEE, 2020. [17] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear regression analysis. John Wiley Sons, 2021. [18] H. Hanson, S. W. Keckler, S. Ghiasi, K. Rajamani, F. Rawson, and J. Rubio, “Thermal response to dvfs: Analysis with an intel pentium m,” in Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED’07), pp. 219–224, IEEE, 2007. [19] F. Diniz Rossi, M. Storch, I. de Oliveira, and C. A. F. De Rose, “Modeling power consumption for dvfs policies,” in 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1879–1882, 2015. [20] B. J. Huang, E. J. W. Fang, S. S. . Y. Hsueh, R. Huang, A. Lin, C. H. Chiang, Y. H. Lin, W. W. Hsieh, B. Chen, Y. C. Zhuang, C. Y. Wu, J. M. Chen, Y. Chen, C. T. Wan, E. Wang, A. Chiou, P. Kao, Y. Tsai, H. H. Chen, and S. A. Hwang, “35.1 an octacore 2.8/2ghz dualgear sensorassisted highspeed and powerefficient cpu in 7nm finfet 5g smartphone soc,” in 2021 IEEE International Solid State Circuits Conference (ISSCC), vol. 64, pp. 490–492, 2021. [21] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794, 2016. [22] S. Balakrishnama and A. Ganapathiraju, “Linear discriminant analysisa brief tutorial,” Institute for Signal and information Processing, vol. 18, no. 1998, pp. 1–8, 1998. [23] D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods. Academic press, 2014. [24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikitlearn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011. [25] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research on machine learning applications and trends: algorithms, methods, and techniques, pp. 242–264, IGI global, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82007 | - |
| dc.description.abstract | 我們提出了一種兩階段的晶片效能預測流程,其能夠避免客戶退貨,降低功率消耗,並減少產出損失。在第一階段,我們首先預測最小工作電壓的初始值;在第二階段,我們先預測每個晶片所在的箱並應用不同的防護帶。在851顆先進的7奈米手機晶片上的實驗結果顯示,所有晶片的預測最小工作電壓都大於實際的最小工作電壓,而這能夠避免客戶退貨。此外,功耗可降低2.69%。當最小工作電壓要求為1.20縮放的最小電壓時,產出損失最多可減少5.05%。與傳統流程相比,實行我們提出的流程只需要花費多一點的運行時間,流程的運行時間仍是短的,但我們可以節省每個晶片測量最小工作電壓的時間。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:33:58Z (GMT). No. of bitstreams: 1 U0001-1608202121435700.pdf: 7373437 bytes, checksum: 3f19b7a6ec566225127018e3d8f00130 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Acknowledgements i 摘要 iii Abstract iv Contents v List of Figures viii List of Tables x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Proposed Techniques 6 1.3 Contribution 7 1.4 Organization 8 Chapter 2 Background 9 2.1 Process variation 9 2.2 Previous work 13 2.3 Machine Learning Models 17 2.3.1 Linear Regression 17 2.3.2 Logistic Regression 18 Chapter 3 Proposed Techniques 21 3.1 Overall Flow 21 3.2 Build Vmin Prediction Model 22 3.3 Dimension Reduction 24 3.4 Build BinPrediction Model 27 3.5 Determine Guard Band 28 Chapter 4 Experimental Results 32 4.1 Experimental Setup 32 4.2 Experiment Visualization 32 4.3 Benefit of dimension reduction 35 4.4 Different number of bins 37 4.5 Power Saving 38 4.6 Yield loss reduction 39 4.7 Time Comparison 40 Chapter 5 Discussion 42 Chapter 6 Conclusion 44 References 45 | |
| dc.language.iso | en | |
| dc.subject | 多重裝箱 | zh_TW |
| dc.subject | 晶片效能預測 | zh_TW |
| dc.subject | 製程變異 | zh_TW |
| dc.subject | Chip performance prediction | en |
| dc.subject | Multiple binning | en |
| dc.subject | Process variation | en |
| dc.title | 機器學習輔助之低功率消耗的多重防護帶及最小工作電壓分級 | zh_TW |
| dc.title | ML-Assisted Vmin Binning with Multiple Guard Bands for Low Power Consumption | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江蕙如(Hsin-Tsai Liu),方家偉(Chih-Yang Tseng) | |
| dc.subject.keyword | 製程變異,晶片效能預測,多重裝箱, | zh_TW |
| dc.subject.keyword | Process variation,Chip performance prediction,Multiple binning, | en |
| dc.relation.page | 49 | |
| dc.identifier.doi | 10.6342/NTU202102410 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-08-19 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202121435700.pdf 未授權公開取用 | 7.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
