請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81979完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳肇欣(Chao-Hsin Wu) | |
| dc.contributor.author | Hsin-Yu Lin | en |
| dc.contributor.author | 林欣瑜 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:33:31Z | - |
| dc.date.available | 2026-09-08 | |
| dc.date.copyright | 2021-10-21 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-09 | |
| dc.identifier.citation | [1] I. C. Systems. 'Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022 White Paper.' [2] M. Feng, N. Holonyak, and R. Chan, 'Quantum-well-base heterojunction bipolar light-emitting transistor,' Applied Physics Letters, vol. 84, no. 11, pp. 1952-1954, 2004/03/15, 2004. [3] G. Walter, N. Holonyak, M. Feng, and R. Chan, 'Laser operation of a heterojunction bipolar light-emitting transistor,' Applied Physics Letters, vol. 85, no. 20, pp. 4768-4770, 2004. [4] H. W. Then, M. Feng, and N. Holonyak, 'The Transistor Laser: Theory and Experiment,' Proceedings of the Ieee, vol. 101, no. 10, pp. 2271-2298, Oct, 2013. [5] F. Tan, R. Bambery, M. Feng, and N. Holonyak, Jr., 'Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,' Appl. Phys. Lett. 99, 061105, 2011 [6] M. R. Jokar, J. Qiu, F. T. Chong, L. L. Goddard, J. M. Dallesasse, M. Feng, and Y. Li, 'Baldur: A Power-Efficient and Scalable Network Using All-Optical Switches,' in Proceedings of the International Symposium on High Performance Computer Architecture (HPCA), pp. 153–166, 2020. [7] C. T. Tung, C. H. Chang, S. W. Chang, and C. H. Wu, 'Pulse compression irrespective of fiber dispersion using chirp of transistor lasers,' Opt Lett, vol. 44, no. 8, pp. 2109-2112, Apr 15, 2019. [8] C. T. Tung, S. W. Chang, and C. H. Wu, 'Chirp-free optical-signal generation using dual-and-direct current-voltage modulation of transistor lasers,' Optics Letters, vol. 45, no. 9, pp. 2474-2477, May 01, 2020. [9] W. Liu, Handbook of III–V Heterojunction Bipolar Transistors, Wiley, New York, 1998. [10] T. Ma, D. Ueda, W. S. Lee, J. Adkisson, and J. S. Hams, Jr., 'Influence of buffer layer thickness on DC performance of GaAdAlGaAs heterojunction bipolar transistors grown on silicon substrates,' IEEE Electron Device Lett., vol. 9, pp. 657-659, 1988. [11] Coldren, L. A., S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits: John Wiley Sons, 2012. [12] C. Buckers, E. K ¨ uhn, C. Schlichenmaier, S. Imhof, A. Thr ¨ anhardt, ¨ J. Hader, J. V. Moloney, O. Rubel, W. Zhang, T. Ackemann, and S. W. Koch, 'Quantum design of semiconductor active materials: Laser and amplifier applications,' Phys. Stat. Sol. B, vol. 247, no. 4, pp. 789–808, 2010. [13] Y. Huang, J. Ryou, R.D. Dupuis, 'Epitaxial structure design of a long wavelength InAlGaAs/InP transistor laser'. IEEE J. Quantum Electron. vol. 47, no. 5, pp. 642–650, May. 2011. [14] Photonic Integrated Circuit Simulator in 3D (PICS3D) manual, 2016. [15] E. Yablonovitch and E. Kane, 'Band structure engineering of semiconductor lasers for optical communications,' J. Lightwave Technnl., vol. 6, pp. 1292-1299, 1988. [16] S. W. Corzine, R. H. Van, and L. A. Coldren, 'Theoretical gain in strained InGaAs/AlGaAs quantum wells including valence- band mixing effects,' Appl. Phys. Lett. 57, 2835, 1990. [17] Doyeol Ahn and Shun-Lien Chuang, 'Optical Gain and Gain Suppression of Quantum-Well Lasers with Valence Band Mixing,' IEEE Journal of Quantum Electronics. vol. 26, no. 1, 1990. [18] Shun-Lien Chuang, 'Efficient band-structure calculations of strained quantum wells,' Phys. Rev. B 43, 9649, 1991. [19] C. D. Parikh and F. A.Lindholm, 'A new charge-control model for single- and double-heterojunction bipolar transistors,' ZEEE Trans. Electron Devices, vol. 39, no. 6, pp. 1303-1311, June 1992. [20] M. Hosseini, H. Kaatuzian, and I. Taghavi, 'Graded index separate confinement heterostructure transistor laser: Analysis of various confinement structures,' Chin. Opt. Lett. 15, 062501 (2017). [21] T. -W. Lee and P. A. Houston, 'Generalized analytical transport modeling of the dc characteristics of heterojunction bipolar transistors,' IEEE Trans. Electron Devices, vol. 40, pp. 1390-1397, 1993. [22] Introduction to Silvaco© ATLAS TCAD Software. [23] D. A. B. Miller, 'Optical physics of quantum wells,' in Quantum Dynamics of Simple Systems, G.-L. Oppo, S. M. Barnett, E. Riis, and M. Wilkinson, Eds. London, U.K.: Instit. Phys., 1996. [24] W. G. Breiland, M. E. Coltrin, J. R. Creighton, H. Q. Hou, H. K. Moffat, and J. Y. Tsao, Mater. Sci. Eng., R. 24, 241 ~1999. [25] H.A.Zarem, J.A.Lebens, K.B.Nordstrom, P.C.Sercel, S.Sanders, L.E.Eng, A.Yariv, K.J.Vahala, Appl.Phys.Lett., 55, no. 25, pp.2622-2624, 1989. [26] D. C. Streit, M. E. Hafizi, D. K. Umemoto, J. R. Velebir, L. T. Tran, A. K. Oki, M. E. Kim, S. K. Wang, C. W. Kim, L. P. Sadwick, and R. J. Hwu, 'Effect of exponentially graded base doping on the performance of GaAs/AlGaAs heterojunction bipolar transistors,' IEEE Electron Device Lett., vol. 12, no. 5, pp. 194-196, 1991. [27] G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak, Jr., '4.3 GHz optical bandwidth light emitting transistor,' Appl. Phys. Lett., vol. 94, 2009. [28] Federico Capasso,' Band-Gap Engineering For New Photonic and Electronic Devices,' Nuclear Instruments and Methods in Physics Research, 1988. [29] C. G. Van de Walle, 'Band lineups and deformation potentials in the model-solid theory,' Phys. Rev. B 39, 1871, 1989. [30] B. Romero, I. Esquivais, S. Weisser, E. C. Larkins, and J. Rosensweig, 'Carrier capture and escape processes in In Ga As-GaAs quantum-well lasers,' IEEE Photon. Technol. Lett., vol. 11, pp. 779–781, 1999. [31] H. Schneider and K. V. Klitzing, 'Thermionic emission and Gaussian transport of holes in a GaAs/Alx Ga1−x As multiple-quantum-well structure,' Phys. Rev. B, vol. 38, no. 9, pp. 6160–6165, Sep. 1988 [32] Lee J–L, Kim Y–T, Yoo H M and Lee G Y, 'Au/Ge-based Ohmic contact to an AlGaAs/InGaAs pseudomorphic high electron mobility transistor with an undoped cap layer,' J. Vac. Sci. Technol B 17 1034–9, 1999. [33] H.-L. Wang, Y.-H. Huang, G.-S. Cheng, S. W. Chang, and C.-H. Wu, 'Analysis of tunable internal loss caused by Franz–Keldysh absorption in transistor lasers,' IEEE J. Sel.Top. Quantum Electron. 21(6), 270–276, 2015. [34] M. Feng, N. Holonyak, G. Walter, and R. Chan, 'Room temperature continuous wave operation of a heterojunction bipolar transistor laser,' Applied Physics Letters, vol. 87, no. 13, 2005. [35] Robert G. Hunsperger, Integrated Optics: Theory and Technology 6th ed., Springer Science Business Media, 2009. [36] David J. Klotzkin, Introduction to Semiconductor Lasers for Optical Communications: An Applied Approach, Springer: New York, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81979 | - |
| dc.description.abstract | "本篇論文的主要研究為電晶體雷射(Transistor Laser, TL)的磊晶結構設計、元件製作以及其量測特性結果分析。電晶體雷射是一同時具備光與電輸出的新穎元件,在順向主動區的操作下,基極-集極接面的電場會形成法蘭茲-凱爾迪西效應 (Franz-Keldysh effect),並對光造成吸收。因此在結構設計上,以如何在電晶體操作下達到雷射條件為出發,延續異質雙極性接面電晶體(Heterojunction Bipolar Transistor, HBT) 磊晶結構設計上的特點,分別探討主動區的設計、光學侷限因子的提升、漸變的基極設計、和雙異質雙極性接面對載子的侷限及其相對應的電性考量,並以模擬軟體為輔助完成上述磊晶設計的需求。將成長後的磊晶結構進行發光電晶體元件的製作,並量測其光和電的輸出,確認光強度、電流增益、膝節電壓、崩潰電壓的基本元件特性,探討設計結果在實驗與實際元件上的體現,以及比較其與過去發光電晶體元件的差異。 最後部分為電晶體雷射的製作,與發光電晶體除了幾何結構的不同,還需參與後端的切割與鍍膜流程。並將完成後的元件進行量測,包含室溫以及低溫的量測,分析和探討其雷射的特性、電晶體雷射的光學損失、和低溫下材料自身的特性變化與其相應的電與光特性變化。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:33:31Z (GMT). No. of bitstreams: 1 U0001-0809202107242500.pdf: 5542386 bytes, checksum: 832baebb0f8066bc6ef8aeb16dbfad33 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 I 中文摘要 III Abstract IV Table of Contents V List of Figures VII List of Tables XII Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Chapter Summary 5 Chapter 2. Epitaxial Structure Design and Simulation of Transistor Lasers 6 2.1. Epitaxial Structure Design of Transistor Lasers 6 2.1.1. Heterojunction Bipolar Transistor Design 6 2.1.2. Laser Principle and Transistor Operation on Transistor Laser Design 9 2.2. Simulation Results of the TL 12 2.2.1. Active Region Design 12 2.2.2. Carrier Confinement and Base-Collector Junction Design 16 2.2.3. Optical Confinement 22 2.2.4. QW position 25 2.2.5. Effect of the doping concentration 26 2.3. Graded Base Design 28 2.4. Summary 29 Chapter 3. Fabrication of Light Emitting Transistors and Measurement Results 31 3.1. Preface 31 3.2. LET Layout and Fabrication 32 3.3. DC Characteristics of the LETs 33 3.3.1. Knee Voltage and Offset Voltage 33 3.3.2. Current Gain 39 3.3.3. Output Power 43 3.4. Comparison of the LETs 46 3.4.1. Electrical Characteristics 46 3.4.2. Optical Characteristics 48 Chapter 4. Fabrication of Transistor Lasers and Measurement Results 51 4.1. TL Layout and Fabrication 51 4.2. Experimental Setup 54 4.3. DC Characteristics at Room Temperature 57 4.3.1. High Reflection and Anti-Reflection Mirror 57 4.3.2. Family Curves and L-I-V Characteristics 59 4.4 DC Characteristics at Cryogenic Measurement 62 4.4.1. Changes in the Material Properties 62 4.4.2. Investigation of Carrier Transport at Cryogenic Temperature 64 4.5 Analysis of the Optical Loss in the TL 66 4.5.1. Optical Loss in the TL 66 4.5.2. Emitter Crowding and Lateral Confinement 69 4.5.3. Future Works 73 Chapter 5. Conclusion 74 References 76 Appendix 79 | |
| dc.language.iso | en | |
| dc.subject | 法蘭茲-凱爾迪西效應 | zh_TW |
| dc.subject | 雙異質雙極性接面電晶體 | zh_TW |
| dc.subject | 發光電晶體 | zh_TW |
| dc.subject | 異質雙極性接面電晶體 | zh_TW |
| dc.subject | 電晶體雷射 | zh_TW |
| dc.subject | light emitting transistor | en |
| dc.subject | heterojunction bipolar transistor | en |
| dc.subject | double heterojunction bipolar transistor | en |
| dc.subject | Franz-Keldysh effect | en |
| dc.subject | Transistor lasers | en |
| dc.title | 電晶體雷射設計與製作之研究探討 | zh_TW |
| dc.title | Investigation of the design and fabrication of transistor lasers | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃定洧(Hsin-Tsai Liu),吳育任(Chih-Yang Tseng),張書維 | |
| dc.subject.keyword | 電晶體雷射,法蘭茲-凱爾迪西效應,異質雙極性接面電晶體,雙異質雙極性接面電晶體,發光電晶體, | zh_TW |
| dc.subject.keyword | Transistor lasers,Franz-Keldysh effect,heterojunction bipolar transistor,double heterojunction bipolar transistor,light emitting transistor, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU202103053 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-09-06 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0809202107242500.pdf 未授權公開取用 | 5.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
