請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81875完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉丙成(Ping-Cheng Yeh) | |
| dc.contributor.author | Po-Chun Chou | en |
| dc.contributor.author | 周柏均 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:05:34Z | - |
| dc.date.available | 2027-01-08 | |
| dc.date.copyright | 2022-02-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2022-01-12 | |
| dc.identifier.citation | [1] P.-C. Chou, Y.-F. Lo, C.-H. Lee, and P.-C. Yeh, “Molecular communications enhanced by time-varying electric field,” IEEE Transactions on NanoBioscience, Early access, 2021. [2] P. Mörters and Y. Peres, Brownian motion. Cambridge University Press, 2010, vol. 30. [3] S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, and T. Nakano, “Molecular communication,” Journal-Institute of Electronics Information and Communication Engineers, vol. 89, no. 2, p. 162, 2006. [4] I. F. Akyildiz, F. Brunetti, and C. Blázquez, “Nanonetworks: A new communication paradigm,” Computer Networks, vol. 52, no. 12, pp. 2260–2279, Aug. 2008. [5] T. Nakano, A. W. Eckford, and T. Haraguchi, Molecular communication. Cambridge University Press, 2013. [6] M. Pierobon and I. F. Akyildiz, “Noise analysis in ligand-binding reception for molecular communication in nanonetworks,” IEEE Transactions on Signal Processing, vol. 59, no. 9, pp. 4168–4182, 2011. [7] S. Kadloor, R. S. Adve, and A. W. Eckford, “Molecular communication using brownian motion with drift,” IEEE Trans. Nanobiosci., vol. 11, no. 2, pp. 89–99, June, 2012. [8] T. Nakano, T. Suda, T. Koujin, T. Haraguchi, and Y. Hiraoka, “Molecular communication through gap junction channels,” in Transactions on Computational Systems Biology X. Springer, 2008, pp. 81–99. [9] A. O. Bicen, I. F. Akyildiz, S. Balasubramaniam, and Y. Koucheryavy, “Linear channel modeling and error analysis for intra/inter-cellular Ca2+ molecular communication,” IEEE Transactions on NanoBioscience, vol. 15, no. 5, pp. 488–498, 2016. [10] M. Moore, A. Enomoto, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H. Kojima, H. Sakakibara, and K. Oiwa, “A design of a molecular communication system for nanomachines using molecular motors,” in Proc. Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW’06), 2006. [11] M. Gregori and I. F. Akyildiz, “A new nanonetwork architecture using flagellated bacteria and catalytic nanomotors,” IEEE Journal on selected areas in communications, vol. 28, no. 4, pp. 612–619, 2010. [12] M. Pierobon and I. F. Akyildiz, “A physical end-to-end model for molecular communication in nanonetworks,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 4, pp. 602–611, 2010. [13] B. Hsu, P. Chou, C. Lee, and P. Yeh, “Training-based synchronization for quantitybased modulation in inverse gaussian channels,” in Proc. IEEE International Conference on Communications (ICC), May 2017, pp. 1–6. [14] Z. Luo, L. Lin, W. Guo, S. Wang, F. Liu, and H. Yan, “One symbol blind synchronization in SIMO molecular communication systems,” IEEE Wireless Communications Letters, vol. 7, no. 4, pp. 530–533, Aug 2018. [15] B. Tepekule, A. E. Pusane, H. B. Yilmaz, C.-B. Chae, and T. Tugcu, “ISI mitigation techniques in molecular communication,” IEEE Trans. Mol. Biol. Multi-Scale Commun., vol. 1, no. 2, pp. 202–216, June 2015. [16] M. U. Mahfuz, D. Makrakis, and H. T. Mouftah, “Strength based receiver architecture and communication range and rate dependent signal detection characteristics of concentration encoded molecular communication,” in Proc. International Conference on Broadband, Wireless Computing, Communication and Applications (BWCCA), 2012, pp. 28–35. [17] R. Mosayebi, A. Gohari, M. Mirmohseni, and M. N. Kenari, “Type based sign modulation for molecular communication,” in Proc. Iran Workshop on Communication and Information Theory (IWCIT), May 2016, pp. 1–6. [18] A. Noel, K. C. Cheung, and R. Schober, “Optimal receiver design for diffusive molecular communication with flow and additive noise,” IEEE Transactions on NanoBioscience, vol. 13, no. 3, pp. 350–362, 2014. [19] A. Noel, K. C. Cheung, and R. Schober, “Diffusive molecular communication with disruptive flows,” in 2014 IEEE International Conference on Communications (ICC). IEEE, 2014, pp. 3600–3606. [20] T. Koike-Akino, J. Suzuki, and P. V. Orlik, “Molecular signaling design exploiting cyclostationary drift-diffusion fluid,” in Proc. IEEE Global Communications Conference (GLOBECOM), Dec. 2017, pp. 1–7. [21] Z. Ma, M. Liu, H. Yan, and L. Lin, “Electric field assisted molecular communication for high data rate transmission,” IEEE Wireless Communications Letters, vol. 8, no. 6, pp. 1571–1574, 2019. [22] W. Wicke, A. Ahmadzadeh, V. Jamali, H. Unterweger, C. Alexiou, and R. Schober,“Magnetic nanoparticle based molecular communication in microfluidic environments,” IEEE Trans. Nanobiosci., vol. 18, no. 2, pp. 156–169, Apr. 2019. [23] M. H. Teaima, M. A. A. Mohamed, R. T. Abd El Rehem, S. A. Tayel, M. A. ElNabarawi, and S. A. Fouad, “Enhanced transdermal delivery of bisoprolol hemifumarate via combined effect of iontophoresis and chemical enhancers: Ex vivo permeation/in vivo pharmacokinetic studies,” Pharmaceutics, vol. 13, no. 5, p. 682, 2021. [24] Y.-C. Lee, “Channel modeling and sde methods of finding channelimpulse response for diffusive molecularcommunication systems,” Ph.D. dissertation, National Taiwan University, 2020. [25] H. C. Berg, Random walks in biology. Princeton University Press, 1993. [26] A. Noel, K. C. Cheung, and R. Schober, “Using dimensional analysis to assess scalability and accuracy in molecular communication,” in Proc. IEEE International Conference on Communications Workshops (ICC), 2013, pp. 818–823. [27] H. B. Yilmaz, A. C. Heren, T. Tugcu, and C.-B. Chae, “Three-dimensional channel characteristics for molecular communications with an absorbing receiver,” IEEE Communications Letters, vol. 18, no. 6, pp. 929–932, 2014. [28] C. Yin and C. Wang, “Hitting time and place of brownian motion with drift,” The Open Statistics Probability Journal, vol. 1, no. 1, 2009. [29] R. P. Feynman, “Plenty of room at the bottom,” in APS annual meeting, 1959. [30] D. Blackwell, Information Theory, ser. Modern Mathematics for the Engineer: Second Series. New York: McGraw-Hill, 1961. [31] T. Berger, “Shannon lecture: living information theory,” in IEEE ISIT, 2002. [32] A. W. Eckford, “Nanoscale communication with brownian motion,” in 2007 41st Annual Conference on Information Sciences and Systems. IEEE, 2007, pp. 160–165. [33] S. Kadloor, R. S. Adve, and A. W. Eckford, “Molecular communication using brownian motion with drift,” IEEE Transactions on NanoBioscience, vol. 11, no. 2, pp. 89–99, 2012. [34] C. T. Chou, “A markovian approach to the optimal demodulation of diffusionbased molecular communication networks,” IEEE Transactions on Communications, vol. 63, no. 10, pp. 3728–3743, 2015. [35] N. Farsad, Y. Murin, A. Eckford, and A. Goldsmith, “On the capacity of diffusionbased molecular timing channels,” in Proc. 2016 IEEE International Symposium on Information Theory (ISIT). IEEE, 2016, pp. 1023–1027. [36] H. B. Yilmaz and C.-B. Chae, “Arrival modelling for molecular communication via diffusion,” Electronics Letters, vol. 50, no. 23, pp. 1667–1669, 2014. [37] D. Kilinc and O. B. Akan, “An information theoretical analysis of nanoscale molecular gap junction communication channel between cardiomyocytes,” IEEE Transactions on Nanotechnology, vol. 12, no. 2, pp. 129–136, 2012. [38] N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. Chae, and W. Guo, “A comprehensive survey of recent advancements in molecular communication,” IEEE Communications Surveys Tutorials, vol. 18, no. 3, pp. 1887–1919, 2016. [39] T. Koike-Akino, J. Suzuki, and P. V. Orlik, “Molecular signaling design exploiting cyclostationary drift-diffusion fluid,” in Proc. IEEE Global Communications Conference, 2017, pp. 1–7. [40] A. Noel, K. C. Cheung, and R. Schober, “Using dimensional analysis to assess scalability and accuracy in molecular communication,” in Proc. IEEE International Conference on Communications Workshops (ICC), 2013, pp. 818–823. [41] T. N. Cao, A. Ahmadzadeh, V. Jamali, W. Wicke, P. L. Yeoh, J. Evans, and R. Schober, “Diffusive mobile mc for controlled-release drug delivery with absorbing receiver,” in Proc. IEEE International Conference on Communications (ICC), 2019, pp. 1–7. [42] J. D. Byrne, M. N. Jajja, A. T. O’ Neill, L. R. Bickford, A. W. Keeler, N. Hyder, K. Wagner, A. Deal, R. E. Little, R. A. Moffitt et al., “Local iontophoretic adminis-tration of cytotoxic therapies to solid tumors,” Sci. Transl. Med., vol. 7, no. 273, p.273, 2015. [43] K. Song, U. Ha, J. Lee, K. Bong, and H.-J. Yoo, “An 87-mA·min iontophoresis controller ic with dual-mode impedance sensor for patch-type transdermal drug delivery system,” IEEE Journal of Solid-State Circuits, vol. 49, no. 1, pp. 167–178, 2014. [44] P. Nelson, Biological Physics: Energy, Information, Life, 1st ed. New York, NY, USA: W. H. Freeman, 2008. [45] K. Schulten and I. Kosztin, Lectures in theoretical biophysics, Univ. of Illinois at Urbana−Champaign, Urbana, IL, USA. 2000. [46] V. Jamali, A. Ahmadzadeh, W. Wicke, A. Noel, and R. Schober, “Channel modeling for diffusive molecular communication— a tutorial review,” Proc. IEEE, vol. 107, no. 7, pp. 1256–1301, 2019. [47] B. J. Kirby, Micro-and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge university press, 2010. [48] R. F. Probstein, Physicochemical hydrodynamics: an introduction. John Wiley Sons, 2005. [49] R. N. Bhattacharya and E. C. Waymire, Stochastic processes with applications. SIAM, 2009. [50] P. Billingsley, Probability and measure. John Wiley Sons, 2008. [51] A. D. Polyanin and V. E. Nazaikinskii, Handbook of linear partial differential equations for engineers and scientists. Chapman and hall, 2015. [52] M. Pierobon and I. F. Akyildiz, “Information capacity of diffusion-based molecular communication in nanonetworks,” in Proc. IEEE INFOCOM, 2011, pp. 506–510. [53] E. Shitiri, H. B. Yilmaz, and H. Cho, “A time-slotted molecular communication (tsmoc): Framework and time-slot errors,” IEEE Access, vol. 7, pp. 78 146–78 158, 2019. [54] H. B. Yilmaz and C.-B. Chae, “Arrival modelling for molecular communication via diffusion,” Electronics Letters, vol. 50, no. 23, pp. 1667–1669, Nov. 2014. [55] S. M. Kay, Fundamentals of statistical signal processing. Prentice Hall PTR, 1993. [56] B. Tepekule, A. E. Pusane, M. Ş. Kuran, and T. Tugcu, “A novel pre-equalization method for molecular communication via diffusion in nanonetworks,” IEEE Commun. Lett., vol. 19, no. 8, pp. 1311–1314, Aug. 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81875 | - |
| dc.description.abstract | 分子通訊近年來蓬勃發展,常用於傳統電磁通信性能不佳的環境中。在數種類型的分子通訊之中,由於擴散作用為自然界中常見的現象,擴散式分子通訊 (Molecular Communication via Diffusion)為熱門發展對象之一。基於提高擴散式分子通訊系統的傳輸效率,本文以端對端模型 (End-to-End Model) 為基石建構時隙分子通訊系統 (Time-Slotted Molecular Communication) 以達到連續傳輸的目的。然而連續傳輸將造成系統的符元間干擾 (Inter-Symbol Interference),因此本文透過設計時變輔助電場並使用離子作為訊息分子的方式以達到抑制系統的符元間干擾的目標。具輔助時變電場的分子通訊系統其離子的運動行為可以用偏微分方程 (Partial Differential Equation) 形式下的能斯特-普朗克方程式 (Nernst-Planck) 或隨機微分方程 (Stochastic Differential Equation)形式下的伊藤過程 (Itô Process) 來描述。然而當偏微分方程具有較複雜的輔助場與邊界條件時不容易得到解析的結果。因此本文以測度轉換與卡梅倫-馬丁-吉爾薩諾夫定理 (Cameron-Martin-Girsanov Theorem) 的方法求得受時變輔助場的離子於三維空間中時間與空間的聯合分佈。進而得到系統具球形被動接收器、球形全吸收接收器、方形被動接收器之通道脈衝響應,並基於這些結果建構端對端模型。此外、我們也分析了系統的錯誤率,並基於降低系統錯誤率提出最大化感測機率(MSP) 與最大化擊中機率 (MHP) 率為目標的時變輔助電場設計方式,且提出 MRP 演算法以解決 MSP 與 MHP 問題。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:05:34Z (GMT). No. of bitstreams: 1 U0001-1001202212393000.pdf: 1390421 bytes, checksum: da84c511fb886ac0d1f2722a525c9535 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "致謝 iii 摘要 v Abstract vii 1 Introduction 1 2 Background and Overview of Molecular Communication 7 2.1 Reasons for Using Molecular Communication . . . . . . . . . . . . . . . 8 2.2 A Brief History of Molecular Communication . . . . . . . . . . . . . . . 8 2.3 Contemporary Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Bioinspired Mechanisms for Molecular Communication . . . . . . . . . . 10 2.5 Molecular Communication Paradigm . . . . . . . . . . . . . . . . . . . . 11 2.5.1 One-Shot Molecular Communication Modeling by Using the Endto-End Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5.2 Successive Transmitted Molecular Communication Modeling by the Time-Slotted System . . . . . . . . . . . . . . . . . . . . . . 12 2.5.3 Inter-Symbol Interference of Molecular Communication System . 12 2.5.4 Contemporary Inter-Symbol Interference Mitigation Schemes . . 13 3 Molecular Communication Enhanced by a Time-Varying Assisted Electric Field 15 3.1 Environment Setting for Molecular Communication with a Time-Varying Assisted Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Simplified System Modeling . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Mathematical Modeling of Simplified System . . . . . . . . . . . . . . . 19 3.3.1 Channel Impulse Response of Molecular Communication . . . . 19 3.3.2 Advection-Diffusion Described by Itô Process . . . . . . . . . . 20 3.3.3 Channel Impulse Response of the System with the Spherical RX . 21 3.3.4 Channel Impulse Response of the System with the Cubic Passive RX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 Mathematical Modeling of the Successive Transmitted Simplified System 34 4 Performance Analysis for Successive Transmitted Molecular Communication 37 4.1 Maximum a posteriori (MAP) Detection of Molecular Communication with Perfect Decision-Feedback . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Bit-Error-Probability of the Simplified System with Inter-Symbol Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 Bit-Error-Probability of the Simplified System without Inter-Symbol Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Time-Varying Assisted Electric Field Design for Molecular Communication 43 5.1 Optimization Problems Formulation . . . . . . . . . . . . . . . . . . . . 44 5.2 Design for Maximizing Received Probability . . . . . . . . . . . . . . . 46 5.2.1 Simplified System with the Spherical Passive RX . . . . . . . . . 46 5.2.2 Simplified System with the Spherical Fully-Absorbing RX . . . . 51 5.2.3 Simplified System with the Cubic Passive RX [1] . . . . . . . . . 57 5.3 Design for Maximizing Signal-to-Interference Ratio . . . . . . . . . . . . 60 5.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6 Numerical Results: Accuracy, Received Probability, Bit-Error-Probability of System 63 6.1 Parameters Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2 Random-Walk (Particle-Based Simulation) [2] . . . . . . . . . . . . . . . 64 6.3 Verification of Accuracy between Derivation Results and Particle-Based Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.4 Observation of the Received Probability . . . . . . . . . . . . . . . . . . 66 6.5 Performance of the Simplified System with the Time-Varying Assisted Electric Field Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.5.1 The Cubic RX . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.5.2 The Spherical RX . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7 Conclusions and Future Works 83 Bibliography 85" | |
| dc.language.iso | en | |
| dc.subject | 最佳化 | zh_TW |
| dc.subject | 分子通訊 | zh_TW |
| dc.subject | 能斯特-普朗克方程式 | zh_TW |
| dc.subject | 伊藤過程 | zh_TW |
| dc.subject | 卡梅倫-馬丁-吉 爾薩諾夫定理 | zh_TW |
| dc.subject | 測度轉換 | zh_TW |
| dc.subject | 符元間干擾 | zh_TW |
| dc.subject | Itô Process | en |
| dc.subject | inter-symbol interference (ISI) | en |
| dc.subject | time-varying assist electric field | en |
| dc.subject | change of measure | en |
| dc.subject | Cameron-Martin-Girsanov theorem | en |
| dc.subject | Molecular communications | en |
| dc.subject | Nernst-Planck equation | en |
| dc.subject | optimization | en |
| dc.title | 具有時變輔助電場的擴散分子通信的通道建模和性能優化 | zh_TW |
| dc.title | Channel Modeling and Performance Optimization for Diffusive Molecular Communication with Time-Varying Assisted Electric Field | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-6096-6275 | |
| dc.contributor.oralexamcommittee | 李佳翰(Su-Hua LEE),孟令三(Hao-Yun Chen),鄭皓中,蘇炫榮 | |
| dc.subject.keyword | 分子通訊,能斯特-普朗克方程式,伊藤過程,卡梅倫-馬丁-吉 爾薩諾夫定理,測度轉換,符元間干擾,最佳化, | zh_TW |
| dc.subject.keyword | Molecular communications,Nernst-Planck equation,Itô Process,Cameron-Martin-Girsanov theorem,change of measure,time-varying assist electric field,inter-symbol interference (ISI),optimization, | en |
| dc.relation.page | 91 | |
| dc.identifier.doi | 10.6342/NTU202200032 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-01-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2027-01-08 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1001202212393000.pdf 此日期後於網路公開 2027-01-08 | 1.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
