請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81869完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹智強(Chih-Chiang Chan) | |
| dc.contributor.author | Jui-Yu Yeh | en |
| dc.contributor.author | 葉芮妤 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:05:26Z | - |
| dc.date.available | 2026-06-30 | |
| dc.date.copyright | 2021-07-07 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-06-10 | |
| dc.identifier.citation | [1] Bradley W.G., Madrid R, Davis C.J. The peroneal muscular atrophy syndrome. J Neurol Sci 1977; 32: 123–36. [2] Skre H. Genetic and clinical aspects of Charcot‐Marie‐Tooth’s disease. Clinical Genetics 1974. [3] Hsu Y.H., Lin K.P., Guo Y.C., et.al. Mutation spectrum of Charcot-Marie-Tooth disease among the Han Chinese in Taiwan. Ann Clin Transl Neurol. 2019 27;6(6):1090-1101. [4] Bucci C, Bakke O, Progida C. Charcot-Marie-Tooth disease and intracellular traffic. Progress in Neurobiology 2012;99:191–225. [5] Olkkonen, V.M., Ikonen, E., 2000. Genetic defects of intracellular-membrane trans- port. N. Engl. J. Med. 343, 1095–1104. [6] Ferguson, C.J., Lenk, G.M., Meisler, M.H., 2009. Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum. Mol. Genet. 18, 4968–4978. [7] Ferguson, C.J., Lenk, G.M., Meisler, M.H., 2010. PtdIns(3,5)P2 and autophagy in mouse models of neurodegeneration. Autophagy 6, 170–171. [8] De Jonghe, P., Mersivanova, I., Nelis, E, et.al. 2001. Further evidence that neurofilament light chain gene mutations can cause Charcot–Marie–Tooth disease type 2E. Ann. Neurol. 49, 245–249. [9] Xia C.H, Roberts E.A, Her L.S, et al. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J Cell Biol 2003;161:55–66. [10] Bucci C, Bakke O, Progida C. Charcot-Marie-Tooth disease and intracellular traffic. Prog Neurobiol 2012;99:191–225. [11] Kraut R, Chia W, Jan L.Y, et al. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 1996;383:50–55. [12] Kraut R, Campos-Ortega J.A. inscuteable, A Neural Precursor Gene of Drosophila, Encodes a Candidate for a Cytoskeleton Adaptor Protein. Dev Biol 1996;174:65-81. [13] Izaki T, Kamakura S, Kohjima M, et al. Two forms of human Inscuteable-related protein that links Par3 to the Pins homologues LGN and AGS3. Biochem Biophys Res Commun 2006;341:1001–1006. [14] Yu F, Morin X, Cai Y, Yang X, et al. Analysis of partner of Inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in Inscuteable apical localization. Cell 2000;100, 399–409. [15] Du Q, Macara I.G. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 2004;119, 503–516. [16] Zhu J et al. LGN/mInsc and LGN/NuMA complex structures suggest distinct functions in asymmetric cell division for the Par3/mInsc/LGN and Gai/LGN/NuMA pathways. Mol. Cell 2011;43, 418–431. [17] Mapelli M, Gonzalez C. On the inscrutable role of Inscuteable: Structural basis and functional implications for the competitive binding of NuMA and Inscuteable to LGN. Open Biol 2012. [18] Lechler, T. Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 2005;437, 275–280. [19] Peyre, E. et al. A lateral belt of cortical LGN and NuMA guides mitotic spindle movements and planar division in neuroepithelial cells. J. Cell Biol. 2011;193, 141–154. [20] Kamakura S, Nomura M, Hayase J, et al. The cell polarity protein minsc regulates neutrophil chemotaxis via a noncanonical G protein signaling pathway. Dev Cell 2013;26:292–302. [21] Sans N, Wang PY, Du Q, et al. mPins modulates PSD-95 and SAP102 trafficking and influences NMDA receptor surface expression. Nat Cell Biol 2005;7:1079–1090. [22] Yuzawa S, Kamakura S, Iwakiri Y, et al. Structural basis for interaction between the conserved cell polarity proteins Inscuteable and Leu–Gly–Asn repeat-enriched protein (LGN). Proc. Natl Acad. Sci. USA 2011;108, 19 210–19 215. [23] Gunawardena S, Goldstein L.S.B. Polyglutamine Diseases and Transport Problems: Deadly Traffic Jams on Neuronal Highways. Arch Neurol.2005;62(1):46–51. [24] Tazir M, Hamadouche T, Nouioua S, et al. Hereditary motor and sensory neuropathies or Charcot-Marie-Tooth diseases: an update. J Neurol Sci. 2014 ;347(1-2):14-22. [25] Hasan, Z., and Stuart, D.G. Animal solutions to problems of movement control: the role of proprioceptors. Annu. Rev. Neurosci.1988;11, 199–223. [26] Isakov, A., Buchanan, S.M., Sullivan, B., et al. Recovery of locomotion after injury in Drosophila melanogaster depends on proprioception. J. Exp. Biol. 2016;219, 1760–1771. [27] Proske, U., and Gandevia, S.C. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 2012;92, 1651–1697. [28] Kars H.J.J, Hijmans J.M., Geertzen J.H.B., et al. The effect of reduced somatosensation on standing balance: A systematic review. J Diabetes Sci Technol 2009;3:931–943. [29] Bidaye, S.S., Bockemuuhl, T., and Buuschges, A. Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms. J. Neurophysiol. 2018;119, 459–475. [30] Field, L.H., and Matheson, T. Chordotonal organs of insects. In Advances in Insect Physiology, P.D. Evans, ed. (San Diego: Academic Press Inc.), 1998;pp. 1–228. [31] Field, L.H., and Pfluuger, H.J. The femoral chordotonal organ: a bifunctional orthopteran (Locusta migratoria) sense organ? Comp. Biochem. Physiol. A Comp. Physiol. 1989;93, 729–743. [32] Kavlie R.G., Albert J.T. Chordotonal organs. Curr Biol. 2013 May 6;23(9):R334-5. [33] Downing K.H, Nogales E. Tubulin and microtubule structure. Curr Opin Cell Biol. 1998 Feb;10(1):16-22. [34] Tuthill J.C., Azim E. Proprioception. Curr Biol 2018;28:R194–R203. [35] Xie Z and Klionsky D.J. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 2007;9, 1102-1109. [36] Banerjee R, Beal M.F., Thomas B. Autophagy in neurodegenerative disorders: Pathogenic roles and therapeutic implications. Trends Neurosci 2010;33:541–549. [37] Tammineni P, Jeong Y.Y., Feng T, et al. Impaired axonal retrograde trafficking of the retromer complex augments lysosomal deficits in Alzheimer’s disease neurons. Hum Mol Genet 2017;26:4352–4366. [38] Caccamo A, et al. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid- beta, and Tau: effects on cognitive impairments. J Biol Chem 2010;285:13107–13120. [39] Spilman P, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid- beta levels in a mouse model of Alzheimer’s disease. PLoS One 2010;5:e9979. [40] Ravikumar B, Acevedo-Arozena A, Imarisio S, et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet 2005;37:771–776. [41] Lee SM, Olzmann JA, Chin LS, et al. Mutations associated with Charcot-Marie- Tooth disease cause SIMPLE protein mislocalization and degradation by the proteasome and aggresome-autophagy pathways. J Cell Sci 2011;124:3319–3331. [42] Chin LS, Olzmann JA, Li L. Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochem Soc Trans. 2010 Feb;38(Pt 1):144-9. [43] Blumer JB, Smrcka A V., Lanier SM. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol Ther 2007;113:488–506. [44] Zhu J, Wen W, Zheng Z, et al. LGN/mInsc and LGN/NuMA complex structures suggest distinct functions in asymmetric cell division for the Par3/mInsc/LGN and Gαi/LGN/NuMA pathways. Mol Cell. 2011;43(3):418-431. [45] Pattingre S, De Vries L, Bauvy C, et al. The G-protein regulator AGS3 controls an early event during macroautophagy in human intestinal HT-29 cells. J Biol Chem. 2003 Jun 6;278(23):20995-1002. [46] Garcia-Marcos M, Ear J, Farquhar M.G, et al. A GDI (AGS3) and a GEF (GIV) regulate autophagy by balancing G protein activity and growth factor signals. Mol Biol Cell 2011;22:673–686. [47] Vural A, Oner S, An N, et al. Distribution of Activator of G-Protein Signaling 3 within the Aggresomal Pathway: Role of Specific Residues in the Tetratricopeptide Repeat Domain and Differential Regulation by the AGS3 Binding Partners Giα and Mammalian Inscuteable. Mol Cell Biol 2010;30:1528–1540. [48] Vural A, Fadillioglu E, Kelesoglu F, et al. Role of G-proteins and phosphorylation in the distribution of AGS3 to cell puncta. J Cell Sci 2018;131. [49] Singhvi A, Garriga G. Asymmetric divisions, aggresomes and apoptosis. Trends Cell Biol 2009;19:1–7. [50] Rujano MA, Bosveld F, Salomons FA, et al. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol 2006;4:e417. [51] Avery L, Horvitz HR. A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant. Cell 1987;51:1071–8. [52] Bergstralh DT, Haack T, St Johnston D. Epithelial polarity and spindle orientation: Intersecting pathways. Philos Trans R Soc B Biol Sci 2013;368. [53] Guan W, Venkatasubramanian L, Baek M, et al. Visualize Drosophila Leg Motor Neuron Axons Through the Adult Cuticle. J Vis Exp 2018. [54] Tenenbaum C.M, Gavis E.R. Removal of drosophila muscle tissue from larval fillets for immunofluorescence analysis of sensory neurons and epidermal cells. J Vis Exp 2016;117. [55] Wu S, Tan KJ, Govindarajan LN, et al. Fully automated leg tracking of drosophila neurodegeneration models reveals distinct conserved movement signatures. PLoS Biol 2019;17:7. [56] Banerjee A, Wu S, Cheng L, et al. Fully Automated Leg Tracking in Freely Moving Insects using Feature Learning Leg Segmentation and Tracking (FLLIT). J Vis Exp 2020;158. [57] An H, Ge W, Xi Y, Yang X. Inscuteable maintains type I neuroblast lineage identity via Numb/Notch signaling in the Drosophila larval brain. J Genet Genomics. 2017;44(3):151-162. [58] Bulgheresi S, Kleiner E, Knoblich J.A. Inscuteable-dependent apical localization of the microtubule-binding protein Cornetto suggests a role in asymmetric cell division. J Cell Sci. 2001;114:3655-62. [59] Kwon Y, Shen W.L., Shim H.S., et al. Fine thermotactic discrimination between the optimal and slightly cooler temperatures via a TRPV channel in chordotonal neurons. J Neurosci. 2010;30(31):10465-71. [60] R. J. Crook, K. Dickson, R. T. Hanlon, E. T. Walters, Nociceptive sensitization reduces predation risk. Curr. Biol. 2014;24, 1121–1125. [61] Khuong T.M., Wang Q.P., Manion J, et al. Nerve injury drives a heightened state of vigilance and neuropathic sensitization in Drosophila. Sci Adv 2019;5. [62] Zhai J, Lin H, Julien J.P., Schlaepfer WW. Disruption of neurofilament network with aggregation of light neurofilament protein: a common pathway leading to motor neuron degeneration due to Charcot-Marie-Tooth disease-linked mutations in NFL and HSPB1. Hum Mol Genet. 2007 Dec 15;16(24):3103-16. [63] Xie Z, Klionsky D.J. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 2007; 9:1102-9. [64] Schubert U, Anton L.C., Gibbs J, et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature. 2000;404:770–4. [65] Hundeshagen P, Hamacher-Brady A, Eils R, et al. Concurrent detection of autolysosome formation and lysosomal degradation by flow cytometry in a high- content screen for inducers of autophagy. BMC Biology. 2011, 9: 38 [66] Gho, M. and Schweisguth, F. Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila. Nature 1998;393, 178-181. [67] Orgogozo V, Schweisguth F, Bellaïche Y. Lineage, cell polarity and inscuteable function in the peripheral nervous system of the Drosophila embryo. Development 2001;128:631–643. [68] Knirr S, Breuer S, Paululat A, et al. Somatic mesoderm differentiation and the development of a subset of pericardial cells depend on the not enough muscles (nem) locus, which contains the inscuteable gene and the intron located gene, skittles. Mech Dev 1997;67:69–81. [69] Chakraborty A, Murphy S, Coleman N. The Role of NMDA Receptors in Neural Stem Cell Proliferation and Differentiation. Stem Cells Dev 2017;26:798–807. [70] Johnston J.A., Ward C.L., Kopito R.R. Aggresomes: A cellular response to misfolded proteins. J Cell Biol 1998;143:1883–1898. [71] Braunstein K.E., Eschbach J, Ròna-Vörös K, et al. A point mutation in the dynein heavy chain gene leads to striatal atrophy and compromises neurite outgrowth of striatal neurons. Hum Mol Genet. 2010;19(22):4385-4398. [72] Crimella C, Baschirotto C, Arnoldi A, et al. Mutations in the motor and stalk domains of KIF5A in spastic paraplegia type 10 and in axonal Charcot-Marie-Tooth type 2. Clin Genet. 2012 Aug;82(2):157-64. [73] Franker M.A.M., Hoogenraad C.C. Microtubule-based transport -basic mechanisms, traffic rules and role in neurological pathogenesis. J Cell Sci 2013;126:2319–2329. [74] Lai EC, Orgogozo V. A hidden program in Drosophila peripheral neurogenesis revealed: Fundamental principles underlying sensory organ diversity. Dev Biol 2004;269:1–17. [75] Heidary G, Fortini M.E. Identification and characterization of the Drosophila tau homolog. Mech Dev 2001;108:171–178. [76] Klionsky D.J., Emr S.D. Autophagy as a regulated pathway of cellular degradation. Science. 2000 Dec 1;290(5497):1717-21. [77] Sarkar S, Davies J.E., Huang Z, et al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J Biol Chem 2007;282:5641–5652. [78] Rubinsztein D.C., Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 2012;11:709–730. [79] Dwane, S., Durack, E. Kiely, P.A. Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration. BMC Res Notes 2013;6;366. [80] Riemann BL, Lephart SM. The Sensorimotor System, Part II: The Role of Proprioception in Motor Control and Functional Joint Stability.J Athl Train. 2002;37(1):80-84. [81] Rossignol S, Dubuc R, Gossard JP. Dynamic sensorimotor interactions in locomotion. Physiol Rev. 2006 Jan;86(1):89-154. [82] Johnston JA, Ward CL, Kopito RR. Aggresomes: a cellular response to misfolded proteins. 1998;143(7):1883-1898. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81869 | - |
| dc.description.abstract | Charcot-Marie-Tooth(CMT)氏病為遺傳性周邊神經病變最常見的疾病之一,造成患者在青壯年時期遠端肢體出現感覺、運動覺或本體感覺的喪失。目前約有90種以上的CMT致病基因已被發掘,但仍有近三成的患者其基因仍屬未知,導致在疾病治療上出現困難。臨床研究的團隊利用全外顯子定序技術對於台灣CMT的家族進行檢測,發現一個新穎型的致病點突變-Inscuteable(Insc)c.209T>G(p.INSC M70R)。Insc是在演化上高度保守性的基因,而先前文獻對於其功能認知大多在發育學上藉由調控微管,使神經母細胞進行不對等分裂;而對於此基因在成體是否參與維持神經穩定性之能力仍屬未知。為了能探討該突變對於成體神經系統之影響,我同時利用果蠅與人類細胞作為疾病模式,發現人類的 INSCWT能夠救援果蠅之神經元喪失,代表果蠅成體中的肢體感覺神經與人類呈現功能上的保守。而若於成體時期,對於果蠅之Insc進行抑制,發現其運動及感覺神經都出現明顯退化,代表Insc具有穩定神經系統之功能。人類之INSCM70R無法救援果蠅的神經元喪失,顯示INSCM70R為一種loss-of-function突變。另一方面,用ppk-Gal4在野生型(wild type)的個體單獨過表達INSCM70R也會造成神經出現明顯退化,顯示INSCM70R突變同時 也具有gain-of-toxicity的特性。藉由觀察果蠅Insc 基因的表現,我發現Insc會專一性的表現在本體感覺受體-弦音感受器(一種微管含量極為豐富的組織)之中,顯示Insc可能具有調控感覺輸入以及運動輸出的能力。在分子層次,藉由改變Insc的表現量,我同時在果蠅與細胞模式之下都觀察到自噬體堆積與微管形態異常,而堆積的情況卻能夠因為加入抑制 mTORC1的藥物而瓦解。總結而言,我認為INSCM70R會造成弦音感受器之中微管之穩定性降低,進而使堆積物無法於微管上進行正常的傳輸,導致物質無法獲得有效清除而大量滯留於細胞之中,進而出現神 經退化的狀況,而此現象卻能夠因為施予mTORC1的抑制性藥物而獲得改善,故或許本研究能夠帶給未來CMT氏病進行藥物治療的一個新方向。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:05:26Z (GMT). No. of bitstreams: 1 U0001-2704202116081500.pdf: 4875208 bytes, checksum: 3da9b99764a8c8ab0b7d7411fdbdb2a1 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 I 致謝 II 中文摘要 III 英文摘要 IV 目錄 V 第一章 研究背景 1 1.1 關於遺傳性周邊神經病變-Charcot-Marie-Tooth 氏病之研究重要性及其分子基轉 2 1.2 Inscuteable 於發育學上和發育學後期所扮演的角色 3 1.3 INSCM70R 與 INSCQ300H 之點突變的發現以及研究方向探討 6 1.4 人類與疾病模式動物之感覺系統之結構與功能性分析 7 1.5 細胞自噬作用與神經退化之關聯性分析 9 1.6 Insc 與細胞自噬作用之關聯性 11 1.7 實驗目的與假說之總結 13 第二章 研究材料與方法 16 2.1 果蠅飼養條件及方法 17 2.2 質體建構方法 17 2.3 基因轉殖果蠅製備方式 18 2.4 實驗用果蠅珠 19 2.5 即時聚合酶鏈式反應方法 20 2.6 實驗用抗體及藥品種類 22 2.7 果蠅組織免疫螢光染色 24 2.8 果蠅爬行試驗 26 2.9 果蠅步態分析系統 26 2.10 體外培養人類神經母細胞瘤方法 27 2.11 細胞免疫螢光染色 28 2.12 果蠅溫度覺行為測試系統 28 2.13 共軛焦顯微鏡與澄清化螢光顯微鏡拍攝條件 29 2.14 影像處理與分析方法 29 2.15 統計方法 29 第三章 研究結果 31 3.1 Insc 以及其周邊蛋白會表現在果蠅成體肢端之本體感覺受體-弦音感覺器 32 3.2 於果蠅幼蟲階段抑制 Insc 不會影響神經肌肉接合處的型態,但是卻會影響 感覺神經的型態表現 33 3.3 排除 Insc 在發育階段的影響,發現在成體階段抑制 Insc 會導致神經退化的產生 35 3.4 於果蠅成體之神經及本體感覺專一性抑制 Insc 表現,隨著時間增加,會逐 漸降低果蠅之爬行能力,且其步態也會出現異常 36 3.5 Insc 於人類與果蠅之間具有功能上的保守性,且人類之 INSCM70R 屬於一種 同時帶有 loss-of-function 和 gain-of-toxicity 的點突變 38 3.6 INSCM70R 會造成神經細胞之延展長度及細胞本體面積的下降 39 3.7 INSCM70R 會造成其和周邊蛋白 PAR3 之共定位上升;與 LGN 之共定位下降 40 3.8 INSCM70R 會造成蛋白堆積於神經細胞中,並阻斷選擇性細胞自噬作用的進行 41 3.9 利用 GFP-mCherry-LC3 發現 INSCM70R 會導致人類纖維母細胞的細胞自噬 作用受到阻斷,使自噬體大量堆積 43 3.10 隨著時間增加,抑制 Insc 會造成果蠅弦音感覺器之選擇性細胞自噬作用 受到阻斷 44 3.11 隨著時間增加,抑制 Insc 會造成果蠅弦音感覺器中的微管蛋白出現異常 型態並且堆積 45 3.12 抑制 Insc 及過表達 hINSCM70R 所造成的運動能力異常能夠藉由促進細胞 自噬作用而獲得有效改善 47 3.13 抑制 Insc 及過表達 hINSCM70R 會造成成體果蠅肢端之溫度感受能力下 降,且可因為促進細胞自噬作用而獲得善 47 3.14 實驗結果統整 49 第四章 研究討論 50 4.1 本研究之重要性以及發現之總整理 51 4.2 抑制與過表達 Insc 均會產生 CMT 疾病之相關表徵 51 4.3 Insc 及其周邊蛋白對於聚集體自噬的調控 53 4.4 Insc 及其周邊蛋白在本體感覺之中所扮演的角色 54 4.5 對於 INSC 的點突變所造成之 CMT 疾病可能的藥物標的分析 55 第五章 未來實驗規劃 56 5.1 於成體果蠅腿部之弦音感受器深入觀察 INSC 與周邊蛋白之互動是否因 點突變而改變 58 5.2 利用 INSC siRNA 對 SH-SY5Y 細胞進行抑制,觀察細胞之形態及功能性差異 58 5.3 建立 INSCM70R 之 CRISPR 基因敲入果蠅 58 5.4 果蠅行為實驗與分子層次探討的連接橋樑 59 5.5 提高藥物學操弄的專一性 59 第六章 實驗圖表 60 圖一 Insc 表現在果蠅組織中的分佈位置圖 61 圖二 Insc 會表現在果蠅成蟲腿部的機械性受器-弦音感覺器 62 圖三 Insc 及其周邊蛋白 aPKC 和 Numb 也同時會表現在弦音感覺器 63 圖四 降低 Insc 的表現並不會影響果蠅三齡幼蟲的神經肌肉接合處的形態 64 圖五 抑制 Insc 會造成果蠅三齡幼蟲體表之多樹突型神經細胞之樹突延展性降低 65 圖六 在排除發育學所造成的影響,發現抑制 Insc 會造成果蠅之腿部跗節之感覺神經的退化 66 圖七 在排除發育學所造成的影響,發現抑制 Insc 及 aPKC 也會造成其運動能力的下降 68 圖八 在果蠅成體階段抑制 Insc 會導致其步態隨著年齡增加而異常 69 圖九 於本體感覺專一性抑制 Insc 會導致果蠅之爬行能力隨著時間增加而下降 71 圖十 抑制 Insc 會導致果蠅腿部對於溫度感知能力下降 72 圖十一 人類與果蠅的 Insc 在腿部的感覺神經具有演化上的保守性,INSCM70R 為一個同時具有 loss-of-function 和 gain-of-toxicity 的點突變 73 圖十二 於人類 SH-SY5Y 細胞株中轉染 INSCM70R 會導致神經細胞延展性降低 74 圖十三 於人類 SH-SY5Y 細胞株中轉染 INSCM70R 會導致其和周邊蛋白 LGN 的螢光共定位下降,但是和 PAR3 之螢光共定位上升 75 圖十四 於果蠅之弦音感受器同時表現 INSCM70R 和 Bazooka 會導致兩者之共 定位上升 76 圖十五 於人類 SH-SY5Y 進行藥物試驗,發現 INSCM70R 和 INSCQ300H 會導致 INSC 蛋白堆積的程度改變 77 圖十六 於人類 SH-SY5Y 進行藥物試驗,發現 INSCM70R 會導致其與選擇性細 胞自噬作用之標記蛋白 p62 共定位現象改變 78 圖十七 於人類 SH-SY5Y 同時轉染 mRFP-GFP-LC3 和 INSCM70R,發現細胞自 噬作用會受到阻礙而產生堆積 79 圖十八 於果蠅之本體感覺受體降低 Insc 表現,隨著時間增加會造成弦音感覺 器之細胞自噬作用受到阻斷 80 圖十九 於果蠅弦音感覺器中降低 Insc 的表現,隨著時間增加會造成腿部之微 管蛋白形態改變及堆積 81 圖二十 促進細胞自噬作用能夠有效回復(reverse)過表達 hINSCM70R 及抑制 Insc 所導致的爬行能力異常 82 圖二十一 新穎型 CMT 致病基因之分子機轉及潛在治癒方式模式圖 83 補充圖一 不同 Insc-Gal4 表現於果蠅組織中之位置 84 補充圖二 Insc 在成體果蠅肢端所表現的位置 85 補充圖三 果蠅之 Insc RNAi 的抑制效果 86 補充圖四 於人類 SH-SY5Y 中抑制 INSC 的表現會導致細胞形態改變 87 補充圖五 過表達 INSCM70R 會造成成體果蠅周邊神經感覺細胞之本體數量減 少 88 補充圖六 六種 Gal4 於果蠅成體腿部感覺神經細胞表現之型態比較 89 補充圖七 果蠅 Insc 與人類 INSC 之氨基酸序列比對圖 90 第七章 參考文獻 91 第八章 附錄 99 附錄一 pUASt-attB-hINSCWT 質體建構資訊 100 附錄二 pUASt-attB-hINSCM70R 質體建構資訊 101 附錄三 pUASt-attB-hINSCWT-EGFP 質體建構資訊 102 附錄四 pUASt-attB-hINSCM70R-EGFP 質體建構資訊 104 附錄五 pUASt-attB-dPins-EGFP 質體建構資訊 106 附錄六 pUASt-attB-dPins-mCherry 質體建構資訊 108 附錄七 pUASt-attB-dInsc-EGFP 質體建構資訊 110 | |
| dc.language.iso | zh-TW | |
| dc.subject | 神經退化 | zh_TW |
| dc.subject | 聚集體 | zh_TW |
| dc.subject | 細胞自噬 | zh_TW |
| dc.subject | Inscuteable | zh_TW |
| dc.subject | Charcot-Marie-Tooth 氏病 | zh_TW |
| dc.subject | 本體感覺 | zh_TW |
| dc.subject | aggrephagy | en |
| dc.subject | autophagy | en |
| dc.subject | Inscuteable | en |
| dc.subject | proprioception | en |
| dc.subject | Charcot-Marie-Tooth neuropathy | en |
| dc.subject | neurodegeneration | en |
| dc.title | 新穎型Charcot-Marie-Tooth氏症之致病基因 Inscuteable突變之作用機轉及潛在治療方向 | zh_TW |
| dc.title | A Novel Pathogenic Mutation in Inscuteable Causes Charcot-Marie-Tooth Neuropathy: Investigating the Molecular Mechanism and Potential Therapy | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0003-2860-5987 | |
| dc.contributor.oralexamcommittee | 李宜中(Hsin-Tsai Liu),陳俊安(Chih-Yang Tseng),姚季光 | |
| dc.subject.keyword | Charcot-Marie-Tooth 氏病,Inscuteable,細胞自噬,神經退化,聚集體,本體感覺, | zh_TW |
| dc.subject.keyword | Charcot-Marie-Tooth neuropathy,Inscuteable,autophagy,neurodegeneration,aggrephagy,proprioception, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU202100859 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-06-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-06-30 | - |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2704202116081500.pdf 此日期後於網路公開 2026-06-30 | 4.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
