請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81759完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張英峯(Ing-Feng Chang) | |
| dc.contributor.author | Chun-Yi Hsu | en |
| dc.contributor.author | 許淳奕 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:26:52Z | - |
| dc.date.available | 2022-11-24T09:26:52Z | - |
| dc.date.copyright | 2021-11-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-21 | |
| dc.identifier.citation | 陳培元,2020。探討鹽逆境下阿拉伯芥WRKY25調控DREB1A的表現。國立臺灣大學植物科學所。 蔡旻潔,2013。阿拉伯芥DREB1A基因表現受ABF3及14-3-3蛋白調控機制之研究。國立臺灣大學植物科學所。 葉忠岳,2016。大量表達阿拉伯芥WRKY25基因影響鹽分逆境反應與生長發育。國立臺灣大學植物科學所。 Atkinson, N. J., Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63, 3523-3543. Bannister, A. J., Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21, 381-395. Chang, H. C., Tsai, M. C., Wu, S. S., Chang, I. F. (2019). Regulation of ABI5 expression by ABF3 during salt stress responses in Arabidopsis thaliana. Botanical Studies, 60. Chang, I. F., Curran, A., Woolsey, R., Quilici, D., Cushman, J. C., Mittler, R., Harmon, A., Harper, J. F. (2009). Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. PROTEOMICS, 9, 2967-2985. Chen, H., Lai, Z., Shi, J., Xiao, Y., Chen, Z., Xu, X. (2010). Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology, 10, 281. Chen, L., Luo, M., Wang, Y., Wu, K. (2010). Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. Journal of Experimental Botany, 61, 3345-3353. Chen, L., Song, Y., Li, S., Zhang, L., Zou, C., Yu, D. (2012). The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta, 1819, 120-128. Chen, X., Li, C., Wang, H., Guo, Z. (2019). WRKY transcription factors: evolution, binding, and action. Phytopathology Research, 1. Chi, Y., Yang, Y., Zhou, Y., Zhou, J., Fan, B., Yu, J. Q., Chen, Z. (2013). Protein–protein interactions in the regulation of WRKY transcription factors. Molecular Plant, 6, 287-300. Clough, S. J., Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16, 735-743. Curran, A., Chang, I. F., Chang, C. L., Garg, S., Miguel, R. M., Barron, Y. D., Li, Y., Romanowsky, S., Cushman, J. C., Gribskov, M., Harmon, A. C., Harper, J. F. (2011). Calcium-dependent protein kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates. Front Plant Sci, 2, 36. Deolu-Ajayi, A. O., Meyer, A. J., Haring, M. A., Julkowska, M. M., Testerink, C. (2019). Genetic Loci Associated with Early Salt Stress Responses of Roots. iScience, 21, 458-473. Devaiah, B. N., Karthikeyan, A. S., Raghothama, K. G. (2007). WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology, 143, 1789-1801. Ding, Z. J., Yan, J. Y., Li, C. X., Li, G. X., Wu, Y. R., Zheng, S. J. (2015). Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. The Plant Journal, 84, 56-69. Eulgem, T., Rushton, P. J., Robatzek, S., Somssich, I. E., footnotes, S. (2000). The WRKY superfamily of plant transcription factors. Trends in Plant Science, 5, 109-206. Glatt, S., Alfieri, C., Muller, C. W. (2011). Recognizing and remodeling the nucleosome. Current Opinion in Structural Biology, 21, 335-341. Gupta, B., Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 1-18. Hollender, C., Liu, Z. (2008). Histone deacetylase genes in Arabidopsis development. Journal of Integrative Plant Biology, 50, 875-885. Hu, Y., Chen, L., Wang, H., Zhang, L., Wang, F., Yu, D. (2013). Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. The Plant Journal, 74, 730-745. Jiang, Y., Deyholos, M. K. (2009). Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 69, 91-105. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 17, 287-291. Khan, S. A., Li, M. Z., Wang, S. M., Yin, H. J. (2018). Revisiting the role of plant transcription factors in the battle against abiotic stress. International Journal of Molecular Sciences, 19, 1634. Kim, K. C., Lai, Z., Fan, B., Chen, Z. (2008). Arabidopsis WRKY38 and WRKY62 Transcription Factors Interact with Histone Deacetylase 19 in Basal Defense. The Plant Cell, 20, 2357-2371. Knight, H., Trewavas, A. J., Knight, M. R. (1997). Calcium signalling in Arabidopsis thaliana responding to drought and salinity. The Plant Journal, 12, 1067-1078. Kranner, I., Minibayeva, F. V., Beckett, R. P., Seal, C. E. (2010). What is stress? Concepts, definitions and applications in seed science. New Phytologist, 188, 655-673. Lai, Z., Li, Y., Wang, F., Cheng, Y., Fan, B., Yu, J.-Q., Chen, Z. (2011). Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. The Plant Cell, 23, 3824-3841. Laohavisit, A., Richards, S. L., Shabala, L., Chen, C., Colaço, R. D. D. R., Swarbreck, S. M., Shaw, E., Dark, A., Shabala, S., Shang, Z., Davies, J. M. (2013). Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein Annexin1. Plant Physiology, 163, 253-262. Li, S., Fu, Q., Huang, W., Yu, D. (2009). Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Reports, 28, 683-693. Li, W., Wang, H., Yu, D. (2016). Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions. Molecular Plant, 9, 1492-1503. Little, D. Y., Rao, H., Oliva, S., Daniel-Vedele, F., Krapp, A., Malamy, J. E. (2005). The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proceedings of the National Academy of Sciences, 102, 13693-13698. Luo, M., Wang, Y. Y., Liu, X., Yang, S., Lu, Q., Cui, Y., Wu, K. (2012). HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. Journal of Experimental Botany, 63, 3297-3306. Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., Zhang, S. (2011). Phosphorylation of a WRKY Transcription Factor by Two Pathogen-Responsive MAPKs Drives Phytoalexin Biosynthesis in Arabidopsis. The Plant Cell, 23, 1639-1653. Miao, Y., Laun, T. M., Smykowski, A., Zentgraf, U. (2007). Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Molecular Biology, 65, 63-76. Murfett, J., Wang, X. J., Hagen, G., Guilfoyle, T. J. (2001). Identification of Arabidopsis Histone Deacetylase HDA6 Mutants That Affect Transgene Expression. The Plant Cell, 13, 1047-1061. Pandey, R. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Research, 30, 5036-5055. Paul, A. L., Denison, F. C., Schultz, E. R., Zupanska, A. K., Ferl, R. J. (2012). 14-3-3 phosphoprotein interaction networks - does isoform diversity present functional interaction specification? Frontiers in Plant Science, 3, 190. Phukan, U. J., Jeena, G. S., Shukla, R. K. (2016). WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Frontiers in Plant Science, 7, 760. Qiu, Y., Yu, D. (2009). Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany, 65, 35-47. Seifikalhor, M., Aliniaeifard, S., Shomali, A., Azad, N., Hassani, B., Lastochkina, O., Li, T. (2019). Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signaling Behavior, 14, 1665455. Shinozaki, K., Yamaguchi-Shinozaki, K. (2006). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58, 221-227. Thomas, D., Guthridge, M., Woodcock, J., Lopez, A. (2005). 14-3-3 Protein Signaling in Development and Growth Factor Responses. In (pp. 285-303): Elsevier. Tian, G., Lu, Q., Zhang, L., Kohalmi, S. E., Cui, Y. (2011). Detection of Protein Interactions in Plant using a Gateway Compatible Bimolecular Fluorescence Complementation (BiFC) System. Journal of Visualized Experiments. Wang, C., Deng, P., Chen, L., Wang, X., Ma, H., Hu, W., Yao, N., Feng, Y., Chai, R., Yang, G., He, G. (2013). A Wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS ONE, 8, e65120. Wang, P. H., Lee, C. E., Lin, Y. S., Lee, M. H., Chen, P. Y., Chang, H. C., Chang, I. F. (2019). The Glutamate Receptor-Like Protein GLR3.7 Interacts With 14-3-3omega and Participates in Salt Stress Response in Arabidopsis thaliana. Front Plant Sci, 10, 1169. Wang, Q., Wang, M., Zhang, X., Hao, B., Kaushik, S. K., Pan, Y. (2011). WRKY gene family evolution in Arabidopsis thaliana. Genetica, 139, 973-983. Wu, K., Zhang, L., Zhou, C., Yu, C. W., Chaikam, V. (2008). HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. Journal of Experimental Botany, 59, 225-234. Xu, J., Tian, Y. S., Peng, R. H., Xiong, A. S., Zhu, B., Jin, X. F., Gao, F., Fu, X. Y., Hou, X. L., Yao, Q. H. (2010). AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta, 231, 1251-1260. Xu, X., Chen, C., Fan, B., Chen, Z. (2006). Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. The Plant Cell, 18, 1310-1326. Xu, Y. P., Xu, H., Wang, B., Su, X. D. (2020). Crystal structures of N-terminal WRKY transcription factors and DNA complexes. Protein Cell, 11, 208-213. Yildiz, M., Poyraz, İ., Çavdar, A., Özgen, Y., Beyaz, R. (2021). Plant responses to salt stress. In: IntechOpen. Yoo, S. D., Cho, Y. H., Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565-1572. Yu, C. W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., Wu, K. (2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiology, 156, 173-184. Yu, C. W., Tai, R., Wang, S. C., Yang, P., Luo, M., Yang, S., Cheng, K., Wang, W. C., Cheng, Y. S., Wu, K. (2017). HISTONE DEACETYLASE6 acts in concert with Histone Methyltransferases SUVH4, SUVH5, and SUVH6 to regulate transposon silencing. The Plant Cell, 29, 1970-1983. Zhang, L., Chen, L., Yu, D. (2018). Transcription Factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiology, 176, 790-803. Zhao, C., Zhang, H., Song, C., Zhu, J. K., Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1, 100017. Zheng, Z., Mosher, S. L., Fan, B., Klessig, D. F., Chen, Z. (2007). Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biology, 7, 2. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81759 | - |
| dc.description.abstract | WRKY轉錄因子在逆境下扮演重要的角色,也被報導與多種蛋白會有交互作用。WRKY為植物特有之轉錄因子,可透過與w-box結合活化或是抑制以調節下游基因表現,並對植物生理功能上做出相對應的反應。透過雙分子螢光互補實驗發現14-3-3w及HDA6對於WRKY25有交互作用,其功能還不明確。另外,為了瞭解HDA6上的磷酸化位點為何,我們也透過激酶活性分析發現其片段中三到四個位點對於磷酸化似乎有著其重要性。為了研究WRKY25與HDA6交互作用之功能為何,我們將hda6突變株 (hda6-6) 與WRKY25大量表現株進行雜交。在鹽處理下,WRKY25大量表現株與35S:WRKY25/hda6-6與野生型相比有較高的生存率,hda6-6則是對野生型有相對低的生存率,表示35S:WRKY25/hda6-6抗鹽的表現型貢獻自WRKY25。另外我們也針對開花時間進行測試。過去文獻中發現hda6-6有晚開花的現象,而在實驗中發現WRKY25大量表現株會有早開花的現象,而35S:WRKY25/hda6-6則是介於兩者之間,表示大量表現WRKY25似乎能部分互補hda6-6對於開花的功能,使其開花時間提前發生。另外,也針對WRKY25潛在的磷酸化位點進行突變,我們發現到似乎WRKY25 第345號蘇胺酸為14-3-3w與WRKY25結合位,並且第345號蘇胺酸點突變株在鹽逆境下的生存率是有所差異的。綜合上述結果,阿拉伯芥中WRKY25可能透過與HDA6及14-3-3w之交互作用,並對於鹽分逆境與開花上有所調控。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:26:52Z (GMT). No. of bitstreams: 1 U0001-2010202111165000.pdf: 3771632 bytes, checksum: f217e5f116c2bda74ef5b182b7d673e2 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "誌謝 I 摘要 II Abstract III Abbreviations V List of tables XI List of figures XII Supplementary data XIII Appendix XIV 1. Introduction 1 1.1 Environmental stresses 1 1.1.1 Salt stress responses in plants 1 1.1.2 Sensing and signal transduction in salt stress 2 1.2 WRKY transcription factors 3 1.2.1 WRKY25 4 1.2.2 WRKY TFs in plant development 5 1.2.3 WRKY TFs in abiotic stress responses 6 1.2.4 Interacting partners of WRKYs 6 1.2.5 Phosphorylation of WRKY TFs 7 1.3 14-3-3 proteins…. 8 1.4 Histone deacetylases 9 1.4.1 HISTONE DEACETYLASE 6 10 1.5 Project goals 11 2. Materials and Methods 12 2.1 Plant materials 12 2.2 Growth conditions 12 2.3 Generation of constructs for WRKY25 overexpression lines 13 2.4 Arabidopsis transformation by floral dipping 14 2.5 Isolation of T-DNA insertional mutants and splice site mutant 15 2.6 RNA extraction and gene expression analysis 16 2.7 Semi-quantitative and quantitative real-time PCR analysis 16 2.8 Measurement of survival rates and seed germination rates 17 2.9 Phenotyping of flowering days and rosette leaf number 17 2.10 Isolation of Arabidopsis leaf protoplasts 18 2.11 Bimolecular Fluorescence Complementation (BiFC) assay 19 2.11.1 BiFC analysis using Arabidopsis protoplast 19 2.11.2 BiFC analysis in N. benthamiana 20 2.12 Purification of recombinant protein 20 2.13 Protein quantification by Bradford assay 21 2.14 In vitro kinase assay 22 2.15 Total protein extraction 23 2.16 Immunoprecipitation and in gel digestion 23 2.17 In-solution trypsin digestion 24 2.18 Statistical analysis 25 3. Results 26 3.1 Isolation of wrky25 mutant and WRKY25 overexpression lines 26 3.2 Interactions between WRKY25, 14-3-3 and HDA6 26 3.3 Thr424/Thr425/Ser427/Ser429 of HDA6 might be phosphorylated by CDPK16 in vitro 27 3.4 Isolation of splicing mutant hda6-6 and cross lines of hda6 and WRKY25 overexpression line 29 3.5 35S:WRKY25/hda6-6 exhibits higher salt tolerant 30 3.6 35S:WRKY25/hda6-6 showed early flowering phenotype 31 3.7 Mutation of Thr345 site of WRKY25 to Ala affects Arabidopsis salt tolerance 32 4. Discussion 33 4.1 WRKY25 and HDA6 are involved in flowering 33 4.2 35S:WRKY25/hda6-6 exhibits higher tolerant than hda6-6 under salt stress condition 35 4.3 Function of the phosphorylation sites of HDA6 37 5. References 39 Table 45 Figures 54 Supplementary data 69 Appendixes 78" | |
| dc.language.iso | en | |
| dc.subject | 14-3-3 | zh_TW |
| dc.subject | WRKY25 | zh_TW |
| dc.subject | HDA6 | zh_TW |
| dc.subject | 鹽逆境 | zh_TW |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | 生存率 | zh_TW |
| dc.subject | 開花 | zh_TW |
| dc.subject | WRKY25 | en |
| dc.subject | survival rate | en |
| dc.subject | phosphorylation | en |
| dc.subject | salt stress | en |
| dc.subject | HDA6 | en |
| dc.subject | 14-3-3 | en |
| dc.subject | flowering | en |
| dc.title | WRKY25與HDA6交互作用對於鹽分逆境反應及開花的影響 | zh_TW |
| dc.title | Effects of interaction of WRKY25 and HDA6 in salt stress response and flowering in Arabidopsis | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳克強(Hsin-Tsai Liu),謝旭亮(Chih-Yang Tseng),鄭貽生,謝明勳 | |
| dc.subject.keyword | WRKY25,HDA6,鹽逆境,磷酸化,生存率,開花,14-3-3, | zh_TW |
| dc.subject.keyword | WRKY25,HDA6,salt stress,phosphorylation,survival rate,flowering,14-3-3, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU202103918 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-10-23 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2010202111165000.pdf 未授權公開取用 | 3.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
