Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81652
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林乃君(Nai-Chun Lin)
dc.contributor.authorYa-Wen Changen
dc.contributor.author張雅文zh_TW
dc.date.accessioned2022-11-24T09:25:16Z-
dc.date.available2022-11-24T09:25:16Z-
dc.date.copyright2021-08-06
dc.date.issued2021
dc.date.submitted2021-07-26
dc.identifier.citationAbdallah, A.M., Gey van Pittius NC, Champion PAD, Cox J, Luirink J , Appelmelk BJ. , Vandenbroucke-Grauls, C. M. and Bitter, W. 2007. Type VII secretion--mycobacteria show the way. Nat. Rev. Microbiol. 5:883–891 Abdallah, A. M., Savage, N. D., Van Zon, M., Wilson, L., Vandenbroucke-Grauls, C. M., Van Der Wel, N. N. and Bitter, W. 2008. The ESX-5 secretion system of Mycobacterium marinum modulates the macrophage response. J. Immunol. 181: 7166–7175. Ahmad, S., Wang, B., Walker, M. D., Tran, H. K. R., Stogios, P. J., Savchenko, A., Grant, R. A., McArthur, A. G., Laub, M. T., and Whitney, J. C. 2019. An interbacterial toxin inhibits target cell growth by synthesizing (p) ppApp. Nature. 575: 674–678. Alfano, J. R., and Collmer, A. 2004. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42: 385–414. Aloulou A., Ali Y.B., Bezzine S., Gargouri Y., Gelb M.H. 2012. Phospholipases: An Overview. Page 63–85 in: Methods in Molecular Biology. Sandoval G. Altindis, E., Dong, T., Catalano, C., and Mekalanos, J. 2015. Secretome analysis of Vibrio cholerae type VI secretion system reveals a new effector-immunity pair. mBio. 6: e00075–15. Alvarez-Martinez, C. E., and Christie, P. J. 2009. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73: 775–808. Aschtgen, M. S., Bernard, C. S., De Bentzmann, S., Lloubes, R., and Cascales, E. 2008. SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J. Bacteriol. 190: 7523–7531. Aschtgen, M. S., Gavioli, M., Dessen, A., Lloubès, R., and Cascales, E. 2010. The SciZ protein anchors the enteroaggregative Escherichia coli type VI secretion system to the cell wall. Mol. Microbiol. 75: 886–899. Ates, L. S., Ummels, R., Commandeur, S., van der Weerd, R., Sparrius, M., Weerdenburg, E. and Houben, E. N. 2015. Essential role of the ESX-5 secretion system in outer membrane permeability of pathogenic mycobacteria. PLoS Genet. 11: e1005190. Aubert, D. F., Xu, H., Yang, J., Shi, X., Gao, W., Li, L., Bisaro, F., Chen, S., Valvano, M. A., and Shao, F. 2016. A Burkholderia type VI effector deamidates Rho GTPases to activate the pyrin inflammasome and trigger inflammation. Cell Host Microbe. 19: 664–674. Bachmann, V., Kostiuk, B., Unterweger, D., Diaz-Satizabal, L., Ogg, S., and Pukatzki, S. 2015. Bile salts modulate the mucin-activated type VI secretion system of pandemic Vibrio cholerae. PLoS Neglected Trop. Dis. 9: e0004031. Barnhart, M. M., and Chapman, M. R. 2006. Curli biogenesis and function. Annu. Rev. Microbiol. 60: 131–147. Basler, á., Pilhofer, á., Henderson, G., Jensen, G., and Mekalanos, J. 2012. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature. 483: 182–186. Basler, M., Ho, B., and Mekalanos, J. 2013. Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152: 884–894. Bernal, P., Llamas, M. A., and Filloux, A. 2018. Type VI secretion systems in plant‐associated bacteria. Environ. Microbiol. 20: 1–15. Bhoite, S., Gerven, N. V., Chapman, M. R., and Remaut, H. 2019. Curli biogenesis: bacterial amyloid assembly by the type VIII secretion pathway. Page 163–171 in: Protein Secretion in Bacteria. M. Sandkvist, E. Cascales and P.J. Christie. Bingle, L. E., Bailey, C. M., and Pallen, M. J. 2008. Type VI secretion: a beginner's guide. Curr. Opin. Microbiol. 11: 3–8. Bondage, D. D., Lin, J. S., Ma, L. S., Kuo, C. H., and Lai, E. M. 2016. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor–effector complex. Proc. Natl. Acad. Sci. U. S. A. 113: e3931–e3940. Bowran, K., and Palmer, T. 2021. Extreme genetic diversity in the type VII secretion system of Listeria monocytogenes suggests a role in bacterial antagonism: Read the story behind the paper on the Microbe Post here. Microbiology. 167: 001034. Boyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y., and Attree, I. 2009. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics. 10: 104. Brackmann, M., Nazarov, S., Wang, J., and Basler, M. 2017. Using force to punch holes: mechanics of contractile nanomachines. Trends Cell Biol. 27: 623–632. Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics. 77: 71–94. Brunet, Y. R., Bernard, C. S., Gavioli, M., Lloubès, R., and Cascales, E. 2011. An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet. 7: e1002205. Buell, C. R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I. T., Gwinn, M. L., Dodson, R. J., Deboy, R. T., Durkin, A. S., and Kolonay, J. F. 2003. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Scis. U. S. A. 100: 10181–10186. Burkinshaw, B. J., Liang, X., Wong, M., Le, A. N., Lam, L., and Dong, T. G. 2018. A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone–co-chaperone complex. Nat. Microbiol. 3: 632–640. Burlinson, P., Studholme, D., Cambray-Young, J., Heavens, D., Rathjen, J., Hodgkin, J., and Preston, G. M. 2013. Pseudomonas fluorescens NZI7 repels grazing by C. elegans, a natural predator. ISME J. 7: 1126–1138. Cascales, E., and Cambillau, C. 2012. Structural biology of type VI secretion systems. Philos. Trans. R. Soc., B. 367: 1102–1111. Cherrak, Y., Rapisarda, C., Pellarin, R., Bouvier, G., Bardiaux, B., Allain, F., Malosse, C., Rey, M., Chamot-Rooke, J., and Cascales, E. 2018. Biogenesis and structure of a type VI secretion baseplate. Nat. Microbiol. 3: 1404–1416. Chen KY, 2015. Characterization of the Type VI Secretion System VgrG proteins in Pseudomonas syringae pv. tomato DC3000. Taipei: National Taiwan University, Master Thesis . Chien, C. F., Liu, C. Y., Lu, Y. Y., Sung, Y. H., Chen, K. Y., and Lin, N. C. 2020. HSI-II gene cluster of Pseudomonas syringae pv. tomato DC3000 encodes a functional type VI secretion system required for interbacterial competition. Front. Microbiol. 11: 1118. Costa, T. R., Felisberto-Rodrigues, C., Meir, A., Prevost, M. S., Redzej, A., Trokter, M., and Waksman, G. 2015. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13: 343–359. Cunnac, S., Lindeberg, M., and Collmer, A. 2009. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Cur. Opin. Microbiol. 12: 53–60. Cuppels, D. A. 1986. Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Appl. Environ. Microbiol. 51: 323–327. Dar, Y., Salomon, D., and Bosis, E. 2018. The antibacterial and anti-eukaryotic type VI secretion system MIX-effector repertoire in vibrionaceae. Mar. Drug. 16: 433. Das, S., and Chaudhuri, K. 2003. Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol. 3: 287–300. De Geyter, J., Smets, D., Karamanou, S., and Economou, A. 2019. Inner membrane translocases and insertases. Page 337–366 in: Bacterial Cell Walls and Membranes. Subcellular Biochemistry, Kuhn A. Deng, W., Marshall, N. C., Rowland, J. L., McCoy, J. M., Worrall, L. J., Santos, A. S., Strynadka, N. C., and Finlay, B. B. 2017. Assembly, structure, function and regulation of type III secretion systems. Nat. Rev. Microbiol. 15: 323–337. Dong, T. G., Ho, B. T., Yoder-Himes, D. R., and Mekalanos, J. J. 2013. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl. Acad. Sci. U. S. A. 110: 2623–2628. Douzi, B., Durand, E., Roussel, A., Cascales, E., and Cambillau, C. 2018. Towards a complete structural deciphering of Type VI secretion system. Cur. Opin. Struct. Biol. 49: 77–84. Durand, E., Cambillau, C., Cascales, E., and Journet, L. 2014. VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends Microbiol. 22: 498–507. Durand, E., Zoued, A., Spinelli, S., Watson, P. J., Aschtgen, M. S., Journet, L., Cambillau, C., and Cascales, E. 2012. Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J. Biol. Chem. 287: 14157–14168. Elliott, C. 1951. Manual of Bacterial Plant Pathogens., The Chronica Botanica Co., Waltham. Felisberto-Rodrigues, C., Durand, E., Aschtgen, M. S., Blangy, S., Ortiz-Lombardia, M., Douzi, B., Cambillau, C., and Cascales, E. 2011. Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog. 7: e1002386. Filloux, A., Wettstadt, S., and Wood, T. E. 2019. Delivery of the Pseudomonas aeruginosa phospholipase effectors PldA and PldB in a VgrG- and H2- T6SS-dependent manner. Front. Microbiol. 10: 1718. Flaugnatti, N., Le, T. T. H., Canaan, S., Aschtgen, M. S., Nguyen, V. S., Blangy, S., Kellenberger, C., Roussel, A., Cambillau, C., and Cascales, E. 2016. A phospholipase A1 antibacterial type VI secretion effector interacts directly with the C‐terminal domain of the VgrG spike protein for delivery. Mol. Microbiol. 99: 1099–1118. Flaugnatti, N., Rapisarda, C., Rey, M., Beauvois, S. G., Nguyen, V. A., Canaan, S., Durand, E., Chamot‐Rooke, J., Cascales, E., and Fronzes, R. 2020. Structural basis for loading and inhibition of a bacterial T6SS phospholipase effector by the VgrG spike. EMBO J. 39: 104129. Fridman, C. M., Keppel, K., Gerlic, M., Bosis, E., and Salomon, D. 2020. A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors. Nat. Commun. 11: 1-14. Fuqua, C., Parsek, M. R., and Greenberg, E. P. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35: 439–468. Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F., and Grimont, P. 1999. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov.(ex Sutic and Dowson 1959). Int. J. Syst. Evol. Microbiol. 49: 469–478. Gerlach, R. G., and Hensel, M. 2007. Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int. J. Med. Microbiol. 297: 401–415. Gilson, L., Mahanty, H. K., and Kolter, R. 1990. Genetic analysis of an MDR‐like export system: the secretion of colicin V. EMBO J. 9: 3875–3884. Gode-Potratz, C. J., and McCarter, L. L. 2011. Quorum sensing and silencing in Vibrio parahaemolyticus. J. Bacteriol. 193: 4224–4237. Goodman, A. L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R. S., and Lory, S. 2004. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell. 7: 745–754. Green, E. R., and Mecsas, J. 2016. Bacterial secretion systems: an overview. Page 213–239 in Virulence mechanisms of bacterial pathogens, Kudva,I. T., Cornick,N. A., Plummer, P. J., Zhang, Q., Nicholson,T. L., Bannantine,J. P. and Bellaire, B. H. Green, M. R., Hughes, H., Sambrook, J., and MacCallum, P, eds. 2012. Molecular cloning: a laboratory manual. Grohmann, E., Christie, P. J., Waksman, G., and Backert, S. 2018. Type IV secretion in Gram‐negative and Gram‐positive bacteria. Mol. Microbiol. 107: 455–471. Haapalainen, M., Mosorin, H., Dorati, F., Wu, R.-F., Roine, E., Taira, S., Nissinen, R., Mattinen, L., Jackson, R., and Pirhonen, M. 2012. Hcp2, a secreted protein of the phytopathogen Pseudomonas syringae pv. tomato DC3000, is required for fitness for competition against bacteria and yeasts. J. Bacteriol. 194: 4810–4822. Hachani, A., Allsopp, L. P., Oduko, Y., and Filloux, A. 2014. The VgrG proteins are “a la carte” delivery systems for bacterial type VI effectors. J. Biol. Chem. 289: 17872–17884. Hachani, A., Lossi, N. S., Hamilton, A., Jones, C., Bleves, S., Albesa-Jové, D., and Filloux, A. 2011. Type VI secretion system in Pseudomonas aeruginosa secretion and multimerization of VgrG proteins. J. Biol. Chem. 286: 12317–12327. Han, Y., Wang, T., Chen, G., Pu, Q., Liu, Q., Zhang, Y., Xu, L., Wu, M., and Liang, H. 2019. A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition. PLoS pathog. 15: e1008198. Hernandez, R. E., Gallegos‐Monterrosa, R., and Coulthurst, S. J. 2020. Type VI secretion system effector proteins: effective weapons for bacterial competitiveness. Cell. Microbiol. 22: 13241. Hersch, S. J., Watanabe, N., Stietz, M. S., Manera, K., Kamal, F., Burkinshaw, B., Lam, L., Pun, A., Li, M., and Savchenko, A. 2020. Envelope stress responses defend against type six secretion system attacks independently of immunity proteins. Nat. Microbiol. 5: 706–714. Ho, B. T., Basler, M., and Mekalanos, J. J. 2013. Type 6 secretion system–mediated immunity to type 4 secretion system–mediated gene transfer. Science. 342: 250–253. Holland, I. B., Schmitt, L., and Young, J. 2005. Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway. Mol. Membr. Biol. 22: 29–39. Hood, R. D., Singh, P., Hsu, F., Güvener, T., Carl, M. A., Trinidad, R. R., Silverman, J. M., Ohlson, B. B., Hicks, K. G., and Plemel, R. L. 2010. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 7: 25–37. Hwang, H. H., Yu, M., and Lai, E. M. 2017. Agrobacterium-mediated plant transformation: biology and applications. The Arabidopsis Book. 15. Ishikawa, T., Rompikuntal, P. K., Lindmark, B., Milton, D. L., and Wai, S. N. (2009). Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PloS One. 4: e6734. Jana, B., Fridman, C. M., Bosis, E., and Salomon, D. 2019. A modular effector with a DNase domain and a marker for T6SS substrates. Nat. Commun. 10: 1–12. Jana, B., and Salomon, D. 2019. Type VI secretion system: a modular toolkit for bacterial dominance. Future Microbiol. 14: 1451–1463. Jensen, K. F. 1993. The Escherichia coli K-12' wild types' W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J. Bacteriol. 175: 3401–3407. Joshi, A., Kostiuk, B., Rogers, A., Teschler, J., Pukatzki, S., and Yildiz, F. H. 2017. Rules of engagement: the type VI secretion system in Vibrio cholerae. Trends Microbiol. 25: 267–279. Judson, N., and Mekalanos, J. J. 2000. TnAraOut, a transposon-based approach to identify and characterize essential bacterial genes. Nat. Biotechnol. 18: 740–745. Kanamaru, S., Leiman, P. G., Kostyuchenko, V. A., Chipman, P. R., Mesyanzhinov, V. V., Arisaka, F., and Rossmann, M. G. 2002. Structure of the cell-puncturing device of bacteriophage T4. Nature. 415: 553557. Kanamaru, S. 2009. Structural similarity of tailed phages and pathogenic bacterial secretion systems. Proc. Natl. Acad. Sci. 106: 4067-4068. Kanonenberg, K., Schwarz, C. K., and Schmitt, L. 2013. Type I secretion systems–a story of appendices. Res. Microbiol. 164: 596–604. Kapitein, N., Bönemann, G., Pietrosiuk, A., Seyffer, F., Hausser, I., Locker, J. K., and Mogk, A. 2013. ClpV recycles VipA/VipB tubules and prevents non‐productive tubule formation to ensure efficient type VI protein secretion. Mol. Microbiol. 87: 1013–1028. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., and Sternberg, M. J. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10: 845–858. Khan, M., Subramaniam, R., and Desveaux, D. 2016. Of guards, decoys, baits and traps: pathogen perception in plants by type III effector sensors. Cur. Opin. Microbiol. 29: 49–55. Kikuchi, T., Mizunoe, Y., Takade, A., Naito, S., and Yoshida, S. i. 2005. Curli fibers are required for development of biofilm architecture in Escherichia coli K‐12 and enhance bacterial adherence to human uroepithelial cells. Microbiol. Immunol. 49: 875–884. Kitaoka, M., Miyata, S. T., Brooks, T. M., Unterweger, D., and Pukatzki, S. 2011. VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic Vibrio cholerae. J. Bacteriol. 193: 6471–6482. Korotkov, K. V., Sandkvist, M., and Hol, W. G. 2012. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol. 10: 336–351. Koskiniemi, S., Lamoureux, J. G., Nikolakakis, K. C., de Roodenbeke, C. T. K., Kaplan, M. D., Low, D. A., and Hayes, C. S. 2013. Rhs proteins from diverse bacteria mediate intercellular competition. Proc. Natl. Acad. Sci. 110: 7032–7037. Kostyuchenko, V. A., Leiman, P. G., Chipman, P. R., Kanamaru, S., Van Raaij, M. J., Arisaka, F., Mesyanzhinov, V. V., and Rossmann, M. G. 2003. Three-dimensional structure of bacteriophage T4 baseplate. Nat. Struct. Mol. Biol. 10: 688–693. LaCourse, K. D., Peterson, S. B., Kulasekara, H. D., Radey, M. C., Kim, J., and Mougous, J. D. 2018. Conditional toxicity and synergy drive diversity among antibacterial effectors. Nat. Microbiol. 3: 440–446. Lasica, A. M., Ksiazek, M., Madej, M., and Potempa, J. 2017. The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front. Cell. Infect. Microbiol. 7: 215. Leiman, P. G., Basler, M., Ramagopal, U. A., Bonanno, J. B., Sauder, J. M., Pukatzki, S., Burley, S. K., Almo, S. C., and Mekalanos, J. J. 2009. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. 106: 4154–4159. Letoffe, S., Delepelaire, P., and Wandersman, C. 1996. Protein secretion in gram‐negative bacteria: assembly of the three components of ABC protein‐mediated exporters is ordered and promoted by substrate binding. EMBO J. 15: 5804–5811. Lewin, R. 1983. Finches show competition in ecology. Science. 219: 1411–1412. Liang, X., Moore, R., Wilton, M., Wong, M. J., Lam, L., and Dong, T. G. 2015. Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc. Natl Acad. Sci. 112: 9106–9111. Lien YC, 2018. Studies of the VgrG-Hcp interaction, and the roles of PSPTO_ 3485, PSPTO_3744 and PSPTO_5250 involved in interbacterial competition in Pseudomonas syringae pv. tomato DC3000. Taipei: National Taiwan University, Master Thesis . Lien, Y. W., and Lai, E. M. 2017. Type VI secretion effectors: methodologies and biology. Front. Cell. Infect. Microbiol. 7: 254. Lin, H. H., Yu, M., Sriramoju, M. K., Hsu, S. T. D., Liu, C. T., and Lai, E.-M. 2020. A high-throughput interbacterial competition screen identifies ClpAP in enhancing recipient susceptibility to type VI secretion system-mediated attack by Agrobacterium tumefaciens. Front. Microbiol. 10: 3077. Lin, J., Zhang, W., Cheng, J., Yang, X., Zhu, K., Wang, Y., Wei, G., Qian, P. Y., Luo, Z. Q., and Shen, X. 2017. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat. Commun. 8: 1–12. Lin, J. S., Wu, H. H., Hsu, P. H., Ma, L. S., Pang, Y. Y., Tsai, M. D., and Lai, E. M. 2014. Fha interaction with phosphothreonine of TssL activates type VI secretion in Agrobacterium tumefaciens. PLoS Pathog. 10: e1003991. Lindeberg, M., Myers, C. R., Collmer, A., and Schneider, D. J. 2008. Roadmap to new virulence determinants in Pseudomonas syringae: insights from comparative genomics and genome organization. Mol. Plant-Microbe Interact. 21: 685–700. Lossi, N. S., Dajani, R., Freemont, P., and Filloux, A. 2011. Structure–function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiol. 157: 3292. Ma, J., Sun, M., Dong, W., Pan, Z., Lu, C., and Yao, H. 2017. PAAR‐Rhs proteins harbor various C‐terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ. Microbiol. 19: 345–360. Ma, L. S., Hachani, A., Lin, J. S., Filloux, A., and Lai, E.-M. 2014. Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe. 16: 94–104. Ma, L.-S., Narberhaus, F., and Lai, E.-M. 2012. IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J. Biol. Chem. 287: 15610–15621. Mackman, N., Nicaud, J. M., Gray, L., and Holland, I. 1985. Identification of polypeptides required for the export of haemolysin 2001 from E. coli. Mol. Gen. Genet. 201: 529-536. Maffei, B., Francetic, O., and Subtil, A. 2017. Tracking proteins secreted by bacteria: what's in the toolbox? Front. Cell. Infect. Microbiol. 7: 221. Metzger, L. C., Stutzmann, S., Scrignari, T., Van der Henst, C., Matthey, N., and Blokesch, M. 2016. Independent regulation of type VI secretion in Vibrio cholerae by TfoX and TfoY. Cell Reports. 15: 951–958. Meuskens, I., Saragliadis, A., Leo, J. C., and Linke, D. 2019. Type V secretion systems: an overview of passenger domain functions. Front. Microbiol. 10: 1163. Miyata, S. T., Kitaoka, M., Brooks, T. M., McAuley, S. B., and Pukatzki, S. 2011. Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect. Immun. 79: 2941–2949. Miyata, S. T., Unterweger, D., Rudko, S. P., and Pukatzki, S. 2013. Dual expression profile of type VI secretion system immunity genes protects pandemic Vibrio cholerae. PLoS Pathog. 9: e1003752. Moscoso, J. A., Mikkelsen, H., Heeb, S., Williams, P., and Filloux, A. 2011. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c‐di‐GMP signalling. Environ. Microbiol. 13: 3128–3138. Mougous, J. D., Cuff, M. E., Raunser, S., Shen, A., Zhou, M., Gifford, C. A., Goodman, A. L., Joachimiak, G., Ordoñez, C. L., and Lory, S. 2006. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 312: 1526–1530. Mougous, J. D., Gifford, C. A., Ramsdell, T. L., and Mekalanos, J. J. 2007. Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat. Cell Biol. 9: 797–803. Navarro-Garcia, F., Ruiz-Perez, F., Cataldi, A. A., and Larzabal, M. 2019. Type VI secretion system in pathogenic escherichia coli: structure, role in virulence and acquisition. Front. Microbiol. 10: 1965. Nazarov, S., Schneider, J. P., Brackmann, M., Goldie, K. N., Stahlberg, H., and Basler, M. 2018. Cryo‐EM reconstruction of type VI secretion system baseplate and sheath distal end. EMBO J. 37: e97103. Nicaud, J.-M., Mackman, N., Gray, L., and Holland, I. 1985. Regulation of haemolysin synthesis in E. coli determined by HLY genes of human origin. Mol. Gen. Genet. 199: 111–116. Nivaskumar, M., and Francetic, O. 2014. Type II secretion system: a magic beanstalk or a protein escalator. Biochim. Biophys. Acta, Mol. Cell Res. 1843: 1568–1577. Pallen, M., Chaudhuri, R., and Khan, A. 2002. Bacterial FHA domains: neglected players in the phospho-threonine signalling game? Trends Microbiol. 10: 556–563. Park, Y. J., Lacourse, K. D., Cambillau, C., DiMaio, F., Mougous, J. D., and Veesler, D. 2018. Structure of the type VI secretion system TssK–TssF–TssG baseplate subcomplex revealed by cryo-electron microscopy. Nat. Commun. 9: 1–11. Pei, T.T., Li, H., Liang, X., Wang, Z.H., Liu, G., Wu, L. L., Kim, H., Xie, Z., Yu, M., and Lin, S. 2020. Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system. Nat. Commun. 11: 1–13. Pineau, C., Guschinskaya, N., Robert, X., Gouet, P., Ballut, L., and Shevchik, V. E. 2014. Substrate recognition by the bacterial type II secretion system: more than a simple interaction. Mol. Microbiol. 94: 126–140. Planamente, S., Salih, O., Manoli, E., Albesa‐Jové, D., Freemont, P. S., and Filloux, A. 2016. TssA forms a gp6‐like ring attached to the type VI secretion sheath. EMBO J. 35: 1613–1627. Puhar, A., and Sansonetti, P. J. 2014. Type III secretion system. Cur. Biol. 24: 784-791. Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D., and Mekalanos, J. J. 2007. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl. Acad. Sci. 104: 15508–15513. Pukatzki, S., Ma, A. T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W. C., Heidelberg, J. F., and Mekalanos, J. J. 2006. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl. Acad. Sci. 103: 1528–1533. Rappas, M., Bose, D., and Zhang, X. 2007. Bacterial enhancer-binding proteins: unlocking σ54-dependent gene transcription. Cur. Opin. Struct. Biol. 17: 110-116. Rauhut, R., and Klug, G. 1999. mRNA degradation in bacteria. FEMS Microbiol. Rev. 23: 353–370. Ray, A., Schwartz, N., de Souza Santos, M., Zhang, J., Orth, K., and Salomon, D. 2017. Type VI secretion system MIX‐effectors carry both anti-bacterial and anti-eukaryotic activities. EMBO Rep. 18: 1978–1990. Rêgo, A. T., Chandran, V., and Waksman, G. 2010. Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem. Eng. J. 425: 475–488. Renzi, F., Rescalli, E., Galli, E., and Bertoni, G. 2010. Identification of genes regulated by the MvaT‐like paralogues TurA and TurB of Pseudomonas putida KT2440. Environ. Microbiol. 12: 254–263. Roest, H. P., Mulders, I. H., Spaink, H. P., Wijffelman, C. A., and Lugtenberg, B. J. 1997. A Rhizobium leguminosarum biovar trifolii locus not localized on the sym plasmid hinders effective nodulation on plants of the pea cross-inoculation group. Mol. Plant-Microbe Interact. 10: 938–941. Ross, B. D., Verster, A. J., Radey, M. C., Schmidtke, D. T., Pope, C. E., Hoffman, L. R., Hajjar, A. M., Peterson, S. B., Borenstein, E., and Mougous, J. D. 2019. Human gut bacteria contain acquired interbacterial defence systems. Nature. 575: 224-228. Russell, A. B., Hood, R. D., Bui, N. K., LeRoux, M., Vollmer, W., and Mougous, J. D. 2011. Type VI secretion delivers bacteriolytic effectors to target cells. Nature. 475: 343–347. Russell, A. B., LeRoux, M., Hathazi, K., Agnello, D. M., Ishikawa, T., Wiggins, P. A., Wai, S. N., and Mougous, J. D. 2013. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature. 496: 508–512. Russell, A. B., Singh, P., Brittnacher, M., Bui, N. K., Hood, R. D., Carl, M. A., Agnello, D. M., Schwarz, S., Goodlett, D. R., and Vollmer, W. 2012. A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe. 11: 538–549. Salmond, G. P., and Reeves, P. J. 1993. Membrance traffic wardens and protein secretion in Gram-negative bacteria. Trends Biochem. Sci. 18: 7–12. Salomon, D., Kinch, L. N., Trudgian, D. C., Guo, X., Klimko, J. A., Grishin, N. V., Mirzaei, H., and Orth, K. 2014. Marker for type VI secretion system effectors. Proc. Natl. Acad. Sci. 111: 9271–9276. Salomon, D., Klimko, J. A., Trudgian, D. C., Kinch, L. N., Grishin, N. V., Mirzaei, H., and Orth, K. 2015. Type VI secretion system toxins horizontally shared between marine bacteria. PLoS Pathog. 11: e1005128. Sana, T. G., Hachani, A., Bucior, I., Soscia, C., Garvis, S., Termine, E., Engel, J., Filloux, A., and Bleves, S. 2012. The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. J. Biol. Chem. 287: 27095-27105. Sana, T. G., Soscia, C., Tonglet, C. M., Garvis, S., and Bleves, S. 2013. Divergent control of two type VI secretion systems by RpoN in Pseudomonas aeruginosa. PloS One. 8: e76030. Sarris, P. F., Skandalis, N., Kokkinidis, M., and Panopoulos, N. J. 2010. In silico analysis reveals multiple putative type VI secretion systems and effector proteins in Pseudomonas syringae pathovars. Mol. Plant Pathol. 11: 795–804. Sato, K., Naito, M., Yukitake, H., Hirakawa, H., Shoji, M., McBride, M. J., Rhodes, R. G., and Nakayama, K. (2010). A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc. Natl. Acad. Sci. 107: 276–281. Sato, K., Yukitake, H., Narita, Y., Shoji, M., Naito, M., and Nakayama, K. 2013. Identification of Porphyromonas gingivalis proteins secreted by the Por secretion system. FEMS Microbiol. Lett. 338: 68–76. Shneider, M. M., Buth, S. A., Ho, B. T., Basler, M., Mekalanos, J. J., and Leiman, P. G. 2013. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 500: 350–353. Shrivastava, S., and Mande, S. S. 2008. Identification and functional characterization of gene components of Type VI Secretion system in bacterial genomes. PloS One. 3: e2955. Si, M., Zhao, C., Burkinshaw, B., Zhang, B., Wei, D., Wang, Y., Dong, T. G., and Shen, X. 2017. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc. Natl. Acad. Sci. 114: e2233–e2242. Siegrist, M. S., Unnikrishnan, M., McConnell, M. J., Borowsky, M., Cheng, T.-Y., Siddiqi, N., Fortune, S. M., Moody, D. B., and Rubin, E. J. 2009. Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc. Natl. Acad. Sci. 106: 18792–18797. Silverman, J. M., Agnello, D. M., Zheng, H., Andrews, B. T., Li, M., Catalano, C. E., Gonen, T., and Mougous, J. D. 2013. Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol. Cell. 51:584–593. Silverman, J. M., Austin, L. S., Hsu, F., Hicks, K. G., Hood, R. D., and Mougous, J. D. 2011. Separate inputs modulate phosphorylation‐dependent and‐independent type VI secretion activation. Mol. Microbiol. 82:1277–1290. Simeone, R., Bobard, A., Lippmann, J., Bitter, W., Majlessi, L., Brosch, R., and Enninga, J. 2012. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog. 8:e1002507. Simeone, R., Bottai, D., and Brosch, R. 2009. ESX/type VII secretion systems and their role in host–pathogen interaction. Cur. Opin. Microbiol. 12: 4–10. Simon, N. C., Aktories, K., and Barbieri, J. T. 2014. Novel bacterial ADP-ribosylating toxins: structure and function. Nat. Rev. Microbiol. 12: 599–611. Song, L., Pan, J., Yang, Y., Zhang, Z., Cui, R., Jia, S., Wang, Z., Yang, C., Xu, L., and Dong, T. G. (2021). Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties. Nat. Commun. 12: 1–12. Sørensen, A. L., Nagai, S., Houen, G., Andersen, P., and Andersen, A. B. 1995. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect. Immun. 63:1710–1717. Spínola-Amilibia, M., Davó-Siguero, I., Ruiz, F. M., Santillana, E., Medrano, F. J., and Romero, A. 2016. The structure of VgrG1 from Pseudomonas aeruginosa, the needle tip of the bacterial type VI secretion system. Acta Crystallogr., Sect. D Struct. Biol. 72: 22–33. Studier, F. W., and Moffatt, B. A. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113–130. Tampakaki, A. P., Fadouloglou, V. E., Gazi, A., Panopoulos, N., and Kokkinidis, M. 2004. Conserved features of type III secretion. Cell. Microbiol. 6: 805–816. Tang, J. Y., Bullen, N. P., Ahmad, S., and Whitney, J. C. 2018. Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J. Biol. Chem. 293: 1504–1514. Tendeng, C., Soutourina, O., Danchin, A., and Bertin, P. 2003. MvaT proteins in Pseudomonas spp.: a novel class of H-NS-like proteins. Microbiol. 149: 3047–3050. Thomas, S., Holland, I. B., and Schmitt, L. 2014. The type 1 secretion pathway—the hemolysin system and beyond. Bio………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81652-
dc.description.abstract"革蘭氏陰性細菌可以利用第六型分泌系統 (type VI secretion system, T6SS) 將效應蛋白運送到真核或原核細胞中,參與在其致病力、養分獲取或細菌間的競爭之中。實驗室之前的研究中發現,模式植物病原細菌 Pseudomonas syringae pv. tomato (Pst) DC3000具有 HSI-I和 HSI-II 兩套第六型分泌系統基因叢集 (gene cluster);此外,為了找到由特定 VgrG 攜帶的效應蛋白,搜尋到基因體序列中帶有七個 vgrG 同源基因,且從 vgrG3 啟動子的高表現量推測其可能在Pst DC3000的生理活性上具有功能。因此本研究便從第六型分泌系統的角度切入,針對 VgrG3 操作組 (operon) 上的基因進行深入的探討,以了解 VgrG3 對Pst DC3000的重要性。透過生物資訊學分析,VgrG3 座落於一由PSPTO_3482-3485四個基因所組成的操作組之中,除了 PSPTO_3482的基因產物被預測為VgrG 之外,其下游的 PSPTO_3483產物為帶有DUF4123結構域的蛋白質,PSPTO_3485推測為具有 lipase 活性的效應蛋白,而 PSPTO_3484 無特殊結構域,但根據其位於 vgrG 操作組中且位於可能為效應蛋白的 PSPTO_3485 上游,故推測其可能為 PSPTO_3485 之免疫蛋白。利用半定量反轉錄聚合酶連鎖反應確定了各基因在不同醣類培養基中培養時均會表現但表現量會有不同。透過競爭試驗發現,PSPTO_3485突變株抑制 P. savastanoi pv. phaseolicola (Psph) 1448a 及 Escherichia coli MG1655 生長的能力下降,且此現象為 contact-dependent;而缺失PSPTO_3482、PSPTO_3483 與 PSPTO_3484也同樣會影響Pst DC3000對此二菌的競爭現象。將PSPTO_3485表達在Psph 1448a 及 E. coli MG1655 細胞質中,並不會對細菌生長造成影響;但如果透過加上 signal peptide 使其表達於 E. coli BL21(DE3) 的周質時,會發現 E. coli 生長被抑制,但同時表達 PSPTO_3484和 PSPTO_3485 可以緩減 PSPTO_3485 對 E. coli BL21(DE3) 的毒性。此外,若在 Psph 1448a 中表現 PSPTO_3484 時,可以緩減 Pst DC3000 對其造成的生長抑制。本研究結果顯示 PSPTO_3485 在 Pst DC3000 與其他細菌的競爭作用上是重要的,且其作用位點應該是在目標細胞的周質中;PSPTO_3484 的出現則具有保護作用,推測其可能具有免疫蛋白的功能。但由於無法確認 PSPTO_3485 是否會分泌至胞外,故尚無法確認其為 Pst DC3000 第六型分泌系統的效應蛋白。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:25:16Z (GMT). No. of bitstreams: 1
U0001-2207202123111900.pdf: 11423032 bytes, checksum: e4cf388998de1cdf9b6befda4ac303ce (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 i 摘要 ii Abstract iv 目錄 vi 表目錄 x 圖目錄 xi 附表 xiv 附圖 xiv 壹、前人研究 1 一、蛋白質分泌系統 1 二、第六型分泌系統 7 1.緣起 7 2.組成成員 9 3.調節 12 4.功能 14 三、第六型分泌系統效應蛋白 15 1.效應蛋白與免疫蛋白 15 2.效應蛋白之分類 15 3.效應蛋白的運遞機制 20 4.Domain of unknown function 22 5.效應蛋白的鑑定 23 四、番茄細菌性斑點病 Pseudomonas syringae pv. tomato DC3000 第六型分泌系統相關研究 26 貳、研究動機與目的 29 參、材料與方法 31 一、細菌菌株與生長條件 31 二、染色體 DNA 萃取 31 三、RNA 萃取 32 四、半定量反轉錄 PCR 33 五、勝任細胞製備與電穿孔轉型作用 33 六、小量質體萃取 34 七、自 agarose gel 中純化 DNA 片段 35 八、Pst DC3000 突變株製備 35 九、PSPTO_3484、PSPTO_3485 與 PSPTO_3484-3485 質體互補株建立 37 十、生長曲線測定 37 十一、細菌競爭試驗 37 十二、細菌胞外與胞內蛋白質樣品之製備 38 十三、PSPTO_3485 對 Escherichia coli BL21 (DE3) 之生長測試 39 十五、西方墨點法 40 十六、線蟲毒殺試驗 41 肆、結果 43 一、利用生物資訊學分析 PSPTO_3482、PSPTO_3483 與 PSPTO_3485 43 二、vgrG3 操作組中各基因於不同醣類條件下之表現量 46 三、PSPTO_3485 不參與 Pst DC3000 的種內競爭 47 四、刪除 PSPTO_3485 會降低Pst DC3000對 Pseudomonas savastanoi pv. phaseolicola (Psph) 1448a 與 Escherichia coli MG1655 的競爭能力 48 五、PSPTO_3485 貢獻在 Pst DC3000 對 Psph 1448a 與 E. coli MG1655 的競爭能力為 Contact-dependent. 49 六、Psph 1448a 是否具有第六型分泌系統會對 Pst DC3000 抑制 Psph 1448a 的競爭能力造成影響 50 七、刪除 PSPTO_3482、PSPTO_3483 或 PSPTO_3484 會降低 Pst DC3000 對 Psph 1448a 與 E. coli MG1655 的競爭能力 51 八、在Psph 1448a 與 E. coli MG1655 內表達 PSPTO_3485 與 PSPTO_3484-3485 不會使生長受到影響 52 九、在周質表現 PSPTO_3485 會對 E. coli BL21 (DE3) 生長造成影響 53 十、在 Psph 1448a 和 E. coli MG1655內表達 PSPTO_3484 對與 Pst DC3000 之競爭有不同的影響 54 十一、以分泌試驗無法偵測到 PSPTO_3485 的外泌現象 55 十二、推測 Pst DC3000 對線蟲造成毒殺能力與第二套第六型分泌系統無關 56 伍、討論 58 陸、參考文獻 65 柒、表… 87 捌、圖… 95 玖、附表 120 壹拾、附圖 123
dc.language.isozh-TW
dc.subject免疫蛋白zh_TW
dc.subject第六型分泌系統zh_TW
dc.subject細菌間競爭zh_TW
dc.subjectVgrGzh_TW
dc.subject效應蛋白zh_TW
dc.subjectVgrGen
dc.subjectimmunity proteinen
dc.subjecteffectoren
dc.subjectType VI secretion system (T6SS)en
dc.subjectinterbacterial competitionen
dc.titlePseudomonas syringae pv. tomato DC3000 PSPTO_3482 基因操作組之特性分析zh_TW
dc.titleCharacterization of the PSPTO_3482 operon in Pseudomonas syringae pv. tomato DC3000en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧文玲(Hsin-Tsai Liu),賴爾珉(Chih-Yang Tseng),吳蕙芬
dc.subject.keyword第六型分泌系統,細菌間競爭,VgrG,效應蛋白,免疫蛋白,zh_TW
dc.subject.keywordType VI secretion system (T6SS),interbacterial competition,VgrG,effector,immunity protein,en
dc.relation.page123
dc.identifier.doi10.6342/NTU202101677
dc.rights.note未授權
dc.date.accepted2021-07-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
U0001-2207202123111900.pdf
  未授權公開取用
11.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved