Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81586
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶瑞(Ching-Ray Chang)
dc.contributor.authorHsin-Pan Huangen
dc.contributor.author黃心盼zh_TW
dc.date.accessioned2022-11-24T09:24:27Z-
dc.date.available2022-11-24T09:24:27Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-10-05
dc.identifier.citation[1] MacCracken, C. N., Edmonds, J. A., Kim, S. H., Sands, R. D. (1999). The economics of the Kyoto Protocol. The Energy Journal, 20(Special Issue-The Cost of the Kyoto Protocol: A Multi-Model Evaluation). [2] Matter, J. M., Stute, M., Snæbjörnsdottir, S. Ó., Oelkers, E. H., Gislason, S. R., Aradottir, E. S., . . . Gunnlaugsson, E. (2016). Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 352(6291), 1312-1314. [3] Voskian, S., Hatton, T. A. (2019). Faradaic electro-swing reactive adsorption for CO2 capture. Energy Environmental Science, 12(12), 3530-3547. doi: 10.1039/c9ee02412c [4] Tikuisis, P., Kane, D., McLellan, T., Buick, F., Fairburn, S. (1992). Rate of formation of carboxyhemoglobin in exercising humans exposed to carbon monoxide. Journal of Applied Physiology, 72(4), 1311-1319. [5] Raub, J. A., Mathieu-Nolf, M., Hampson, N. B., Thom, S. R. (2000). Carbon monoxide poisoning—a public health perspective. Toxicology, 145(1), 1-14. [6] Nandy, T., Coutu, R. A., Jr., Ababei, C. (2018). Carbon Monoxide Sensing Technologies for Next-Generation Cyber-Physical Systems. Sensors (Basel), 18(10). doi: 10.3390/s18103443 [7] Yamazoe, N., Sakai, G., Shimanoe, K. (2003). Oxide semiconductor gas sensors. Catalysis Surveys from Asia, 7(1), 63-75. [8] Huang, H.-P., Fuh, H.-R., Chang, C.-R. (2021). Enhanced Sensitivity of CO on Two-Dimensional, Strained, and Defective GaSe. Molecules, 26(4), 812. [9] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., . . . Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669. [10] Zhao, Y., Qiao, J., Yu, Z., Yu, P., Xu, K., Lau, S. P., . . . Chai, Y. (2017). High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs. Adv Mater, 29(5). doi: 10.1002/adma.201604230 [11] Song, H., Liu, J., Liu, B., Wu, J., Cheng, H.-M., Kang, F. (2018). Two-Dimensional Materials for Thermal Management Applications. Joule, 2(3), 442-463. doi: 10.1016/j.joule.2018.01.006 [12] Hancock, Y. (2011). The 2010 Nobel Prize in physics—ground-breaking experiments on graphene. Journal of Physics D: Applied Physics, 44(47). doi: 10.1088/0022-3727/44/47/473001 [13] Druffel, D. L., Woomer, A. H., Kuntz, K. L., Pawlik, J. T., Warren, S. C. (2017). Electrons on the surface of 2D materials: from layered electrides to 2D electrenes. Journal of Materials Chemistry C, 5(43), 11196-11213. doi: 10.1039/c7tc02488f [14] Wang, X., Sun, Y., Liu, K. (2019). Chemical and structural stability of 2D layered materials. 2D Materials, 6(4). doi: 10.1088/2053-1583/ab20d6 [15] Yang, S., Jiang, C., Wei, S.-h. (2017). Gas sensing in 2D materials. Applied Physics Reviews, 4(2). doi: 10.1063/1.4983310 [16] Liu, X., Ma, T., Pinna, N., Zhang, J. (2017). Two-Dimensional Nanostructured Materials for Gas Sensing. Advanced Functional Materials, 27(37). doi: 10.1002/adfm.201702168 [17] Varghese, S., Varghese, S., Swaminathan, S., Singh, K., Mittal, V. (2015). Two-Dimensional Materials for Sensing: Graphene and Beyond. Electronics, 4(3), 651-687. doi: 10.3390/electronics4030651 [18] Xu, H., Huang, H. P., Fei, H., Feng, J., Fuh, H. R., Cho, J., . . . Wu, H. C. (2019). Strategy for Fabricating Wafer-Scale Platinum Disulfide. ACS Appl Mater Interfaces, 11(8), 8202-8209. doi: 10.1021/acsami.8b19218 [19] Camargo Moreira, O. L., Cheng, W. Y., Fuh, H. R., Chien, W. C., Yan, W., Fei, H., . . . Wu, H. C. (2019). High Selectivity Gas Sensing and Charge Transfer of SnSe2. ACS Sens, 4(9), 2546-2552. doi: 10.1021/acssensors.9b01461 [20] Jiang, J., Xu, T., Lu, J., Sun, L., Ni, Z. (2019). Defect Engineering in 2D Materials: Precise Manipulation and Improved Functionalities. Research (Wash D C), 2019, 4641739. doi: 10.34133/2019/4641739 [21] Lin, Z., Carvalho, B. R., Kahn, E., Lv, R., Rao, R., Terrones, H., . . . Terrones, M. (2016). Defect engineering of two-dimensional transition metal dichalcogenides. 2D Materials, 3(2). doi: 10.1088/2053-1583/3/2/022002 [22] Sun, Y., Liu, K. (2019). Strain engineering in functional 2-dimensional materials. Journal of Applied Physics, 125(8). doi: 10.1063/1.5053795 [23] Conley, H. J., Wang, B., Ziegler, J. I., Haglund, R. F., Jr., Pantelides, S. T., Bolotin, K. I. (2013). Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett, 13(8), 3626-3630. doi: 10.1021/nl4014748 [24] Fei, R., Yang, L. (2014). Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett, 14(5), 2884-2889. doi: 10.1021/nl500935z [25] Guinea, F., Katsnelson, M. I., Geim, A. K. (2009). Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Physics, 6(1), 30-33. doi: 10.1038/nphys1420 [26] Li, H., Contryman, A. W., Qian, X., Ardakani, S. M., Gong, Y., Wang, X., . . . Zheng, X. (2015). Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat Commun, 6, 7381. doi: 10.1038/ncomms8381 [27] Kuang, Y., Lindsay, L., Huang, B. (2015). Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains. Nano Lett, 15(9), 6121-6127. doi: 10.1021/acs.nanolett.5b02403 [28] Li, H., Tsai, C., Koh, A. L., Cai, L., Contryman, A. W., Fragapane, A. H., . . . Zheng, X. (2016). Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater, 15(1), 48-53. doi: 10.1038/nmat4465 [29] Apte, A., Kochat, V., Rajak, P., Krishnamoorthy, A., Manimunda, P., Hachtel, J. A., . . . Ajayan, P. M. (2018). Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy. ACS Nano, 12(4), 3468-3476. doi: 10.1021/acsnano.8b00248 [30] Pak, S., Lee, J., Lee, Y. W., Jang, A. R., Ahn, S., Ma, K. Y., . . . Kim, J. M. (2017). Strain-Mediated Interlayer Coupling Effects on the Excitonic Behaviors in an Epitaxially Grown MoS2/WS2 van der Waals Heterobilayer. Nano Lett, 17(9), 5634-5640. doi: 10.1021/acs.nanolett.7b02513 [31] Vargas-Bernal, R. (2019). Electrical Properties of Two-Dimensional Materials Used in Gas Sensors. Sensors (Basel), 19(6). doi: 10.3390/s19061295 [32] Leenaerts, O., Partoens, B., Peeters, F. M. (2008). Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Physical Review B, 77(12). doi: 10.1103/PhysRevB.77.125416 [33] Osouleddini, N., Rastegar, S. F. (2019). DFT study of the CO2 and CH4 assisted adsorption on the surface of graphene. Journal of Electron Spectroscopy and Related Phenomena, 232, 105-110. doi: 10.1016/j.elspec.2018.11.006 [34] Xia, W., Hu, W., Li, Z., Yang, J. (2014). A first-principles study of gas adsorption on germanene. Phys Chem Chem Phys, 16(41), 22495-22498. doi: 10.1039/c4cp03292f [35] Feng, J.-w., Liu, Y.-j., Wang, H.-x., Zhao, J.-x., Cai, Q.-h., Wang, X.-z. (2014). Gas adsorption on silicene: A theoretical study. Computational Materials Science, 87, 218-226. doi: 10.1016/j.commatsci.2014.02.025 [36] Liu, N., Zhou, S. (2017). Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors. Nanotechnology, 28(17), 175708. doi: 10.1088/1361-6528/aa6614 [37] Bui, V. Q., Pham, T. T., Le, D. A., Thi, C. M., Le, H. M. (2015). A first-principles investigation of various gas (CO, H2O, NO, and O2) absorptions on a WS2 monolayer: stability and electronic properties. J Phys Condens Matter, 27(30), 305005. doi: 10.1088/0953-8984/27/30/305005 [38] Jeong, Y., Shin, J., Hong, Y., Wu, M., Hong, S., Kwon, K. C., . . . Lee, J.-H. (2019). Gas sensing characteristics of the FET-type gas sensor having inkjet-printed WS2 sensing layer. Solid-State Electronics, 153, 27-32. doi: 10.1016/j.sse.2018.12.009 [39] Ko, K. Y., Park, K., Lee, S., Kim, Y., Woo, W. J., Kim, D., . . . Kim, H. (2018). Recovery Improvement for Large-Area Tungsten Diselenide Gas Sensors. ACS Appl Mater Interfaces, 10(28), 23910-23917. doi: 10.1021/acsami.8b07034 [40] Wang, T., Zhao, R., Zhao, X., An, Y., Dai, X., Xia, C. (2016). Tunable donor and acceptor impurity states in a WSe2 monolayer by adsorption of common gas molecules. RSC Advances, 6(86), 82793-82800. doi: 10.1039/c6ra17643g [41] Shokri, A., Salami, N. (2016). Gas sensor based on MoS2 monolayer. Sensors and Actuators B: Chemical, 236, 378-385. doi: 10.1016/j.snb.2016.06.033 [42] Zhang, J., Yang, G., Tian, J., Ma, D., Wang, Y. (2018). First-principles study on the gas sensing property of the Ge, As, and Br doped PtSe2. Materials Research Express, 5(3). doi: 10.1088/2053-1591/aab4e3 [43] Yu, J., Khazaei, M., Umezawa, N., Wang, J. (2018). Evolutionary structure prediction of two-dimensional IrB14: a promising gas sensor material. Journal of Materials Chemistry C, 6(21), 5803-5811. doi: 10.1039/c8tc01354c [44] Zeng, Y., Lin, S., Gu, D., Li, X. (2018). Two-Dimensional Nanomaterials for Gas Sensing Applications: The Role of Theoretical Calculations. Nanomaterials (Basel), 8(10). doi: 10.3390/nano8100851 [45] Zhang, Y. H., Chen, Y. B., Zhou, K. G., Liu, C. H., Zeng, J., Zhang, H. L., Peng, Y. (2009). Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology, 20(18), 185504. doi: 10.1088/0957-4484/20/18/185504 [46] Sun, J., Lin, N., Ren, H., Tang, C., Yang, L., Zhao, X. (2016). Gas adsorption on MoS2/WS2 in-plane heterojunctions and the I–V response: a first principles study. RSC Advances, 6(21), 17494-17503. doi: 10.1039/c5ra24592c [47] Ao, Z. M., Li, S., Jiang, Q. (2010). Correlation of the applied electrical field and CO adsorption/desorption behavior on Al-doped graphene. Solid State Communications, 150(13-14), 680-683. doi: 10.1016/j.ssc.2009.12.016 [48] Li, W., Li, J. (2015). Piezoelectricity in two-dimensional group-III monochalcogenides. Nano Research, 8(12), 3796-3802. doi: 10.1007/s12274-015-0878-8 [49] Walubita, L., Sohoulande Djebou, D., Faruk, A., Lee, S., Dessouky, S., Hu, X. (2018). Prospective of Societal and Environmental Benefits of Piezoelectric Technology in Road Energy Harvesting. Sustainability, 10(2). doi: 10.3390/su10020383 [50] Plucinski, L., Johnson, R. L., Kowalski, B. J., Kopalko, K., Orlowski, B. A., Kovalyuk, Z. D., Lashkarev, G. V. (2003). Electronic band structure of GaSe(0001):  Angle-resolved photoemission and ab initio theory. Physical Review B, 68(12). doi: 10.1103/PhysRevB.68.125304 [51] Rybkovskiy, D. V., Arutyunyan, N. R., Orekhov, A. S., Gromchenko, I. A., Vorobiev, I. V., Osadchy, A. V., . . . Obraztsova, E. D. (2011). Size-induced effects in gallium selenide electronic structure: The influence of interlayer interactions. Physical Review B, 84(8). doi: 10.1103/PhysRevB.84.085314 [52] Ma, Y., Dai, Y., Guo, M., Yu, L., Huang, B. (2013). Tunable electronic and dielectric behavior of GaS and GaSe monolayers. Phys Chem Chem Phys, 15(19), 7098-7105. doi: 10.1039/c3cp50233c [53] Late, D. J., Liu, B., Luo, J., Yan, A., Matte, H. S., Grayson, M., . . . Dravid, V. P. (2012). GaS and GaSe ultrathin layer transistors. Adv Mater, 24(26), 3549-3554. doi: 10.1002/adma.201201361 [54] Wang, C., Yang, S.-X., Zhang, H.-R., Du, L.-N., Wang, L., Yang, F.-Y., . . . Liu, Q. (2016). Synthesis of atomically thin GaSe wrinkles for strain sensors. Frontiers of Physics, 11(2). doi: 10.1007/s11467-015-0522-9 [55] Wu, Y., Fuh, H.-R., Zhang, D., Coileáin, C. Ó., Xu, H., Cho, J., . . . Wu, H.-C. (2017). Simultaneous large continuous band gap tunability and photoluminescence enhancement in GaSe nanosheets via elastic strain engineering. Nano Energy, 32, 157-164. doi: 10.1016/j.nanoen.2016.12.034 [56] Zhou, C., Zhu, H., Wu, Y., Lin, W., Yang, W., Dong, L. (2017). Effect of external strain on the charge transfer: Adsorption of gas molecules on monolayer GaSe. Materials Chemistry and Physics, 198, 49-56. doi: 10.1016/j.matchemphys.2017.05.046 [57] Hohenberg, P., Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864. [58] Kohn, W., Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133. [59] 周健,梁奇鋒(2019)。第一性原理材料計算基礎。科學出版社。 [60] Schrödinger, E. (1926). An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28(6), 1049. [61] Born, M., Oppenheimer, R. (1927). Zur quantentheorie der molekeln. Annalen der physik, 389(20), 457-484. [62] Hartree, D. R. (2008). The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24(1), 89-110. doi: 10.1017/s0305004100011919 [63] Slater, J. C. (1928). The Self Consistent Field and the Structure of Atoms. Physical Review, 32(3), 339-348. doi: 10.1103/PhysRev.32.339 [64] Thomas, L. H. (1927). The calculation of atomic fields. Paper presented at the Mathematical Proceedings of the Cambridge Philosophical Society. [65] Fermi, E. (1928). Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Zeitschrift für Physik, 48(1-2), 73-79. [66] Rajagopal, A. K., Callaway, J. (1973). Inhomogeneous Electron Gas. Physical Review B, 7(5), 1912-1919. doi: 10.1103/PhysRevB.7.1912 [67] Kohn, W., Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A), A1133-A1138. doi: 10.1103/PhysRev.140.A1133 [68] Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B Condens Matter, 46(11), 6671-6687. doi: 10.1103/physrevb.46.6671 [69] Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865. [70] Perdew, J. P., Ernzerhof, M., Burke, K. (1996). Rationale for mixing exact exchange with density functional approximations. The Journal of chemical physics, 105(22), 9982-9985. [71] Bader, R. F. (1985). Atoms in molecules. Accounts of Chemical Research, 18(1), 9-15. [72] Henkelman, G., Arnaldsson, A., Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 36(3), 354-360. doi: 10.1016/j.commatsci.2005.04.010 [73] Sanville, E., Kenny, S. D., Smith, R., Henkelman, G. (2007). Improved grid-based algorithm for Bader charge allocation. J Comput Chem, 28(5), 899-908. doi: 10.1002/jcc.20575 [74] Tang, W., Sanville, E., Henkelman, G. (2009). A grid-based Bader analysis algorithm without lattice bias. J Phys Condens Matter, 21(8), 084204. doi: 10.1088/0953-8984/21/8/084204 [75] Becke, A. D., Edgecombe, K. E. (1990). A simple measure of electron localization in atomic and molecular systems. The Journal of chemical physics, 92(9), 5397-5403. doi: 10.1063/1.458517 [76] Kresse, G., Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter, 47(1), 558-561. doi: 10.1103/physrevb.47.558 [77] Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem, 27(15), 1787-1799. doi: 10.1002/jcc.20495 [78] Zhao, S., Xue, J., Kang, W. (2014). Gas adsorption on MoS2 monolayer from first-principles calculations. Chemical Physics Letters, 595-596, 35-42. doi: 10.1016/j.cplett.2014.01.043 [79] Ueno, K., Takeda, N., Sasaki, K., Koma, A. (1997). Investigation of the growth mechanism of layered semiconductor GaSe. Applied surface science, 113, 38-42. [80] Fan, Y., Schittkowski, T., Bauer, M., Kador, L., Allakhverdiev, K. R., Salaev, E. Y. (2002). Confocal photoluminescence studies on GaSe single crystals. Journal of luminescence, 98(1-4), 7-13. [81] Perdew, J. P., Yang, W., Burke, K., Yang, Z., Gross, E. K., Scheffler, M., . . . Gorling, A. (2017). Understanding band gaps of solids in generalized Kohn-Sham theory. Proc Natl Acad Sci U S A, 114(11), 2801-2806. doi: 10.1073/pnas.1621352114 [82] Collings, P. J. (1980). Simple measurement of the band gap in silicon and germanium. American Journal of Physics, 48(3), 197-199. doi: 10.1119/1.12172 [83] Jubu, P. R., Yam, F. K., Igba, V. M., Beh, K. P. (2020). Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data – A case study of β-Ga2O3. Journal of Solid State Chemistry, 290. doi: 10.1016/j.jssc.2020.121576 [84] Kimball, G. M., Müller, A. M., Lewis, N. S., Atwater, H. A. (2009). Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2. Applied Physics Letters, 95(11). doi: 10.1063/1.3225151 [85] Faryad, M. (2017). Study of Optical Properties of Isotropic Materials by Reflection Spectroscopic Ellipsometry. [86] Gu, L., Srot, V., Sigle, W., Koch, C., Aken, P. A. v. (2008). VEELS band gap measurements using monochromated electrons. Journal of Physics: Conference Series, 126. doi: 10.1088/1742-6596/126/1/012005 [87] González-Borrero, P. P., Sato, F., Medina, A. N., Baesso, M. L., Bento, A. C., Baldissera, G., . . . Ferreira da Silva, A. (2010). Optical band-gap determination of nanostructured WO3 film. Applied Physics Letters, 96(6). doi: 10.1063/1.3313945 [88] Yagmurcukardes, M., Senger, R. T., Peeters, F. M., Sahin, H. (2016). Mechanical properties of monolayer GaS and GaSe crystals. Physical Review B, 94(24). doi: 10.1103/PhysRevB.94.245407 [89] Cui, C., Xue, F., Hu, W.-J., Li, L.-J. (2018). Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Materials and Applications, 2(1). doi: 10.1038/s41699-018-0063-5 [90] Yue, Q., Shao, Z., Chang, S., Li, J. (2013). Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale research letters, 8(1), 1-7. [91] Esrafili, M. D. (2019). Electric field assisted activation of CO2 over P-doped graphene: A DFT study. J Mol Graph Model, 90, 192-198. doi: 10.1016/j.jmgm.2019.05.008 [92] Guo, H., Zhang, W., Lu, N., Zhuo, Z., Zeng, X. C., Wu, X., Yang, J. (2015). CO2 Capture on h-BN Sheet with High Selectivity Controlled by External Electric Field. The Journal of Physical Chemistry C, 119(12), 6912-6917. doi: 10.1021/acs.jpcc.5b00681 [93] Sun, Q., Qin, G., Ma, Y., Wang, W., Li, P., Du, A., Li, Z. (2017). Electric field controlled CO2 capture and CO2/N2 separation on MoS2 monolayers. Nanoscale, 9(1), 19-24. doi: 10.1039/c6nr07001a [94] Chen, Z. W., Yan, J. M., Zheng, W. T., Jiang, Q. (2015). Cu4 Cluster Doped Monolayer MoS2 for CO Oxidation. Sci Rep, 5, 11230. doi: 10.1038/srep11230 [95] Ma, D., Tang, Y., Yang, G., Zeng, J., He, C., Lu, Z. (2015). CO catalytic oxidation on iron-embedded monolayer MoS2. Applied surface science, 328, 71-77. doi: 10.1016/j.apsusc.2014.12.024 [96] Linghu, Y., Lu, D., Wu, C. (2021). CO oxidation over defective and nonmetal doped MoS2 monolayers. J Phys Condens Matter, 33(16). doi: 10.1088/1361-648X/abeff9 [97] Bag, A., Lee, N.-E. (2019). Gas sensing with heterostructures based on two-dimensional nanostructured materials: a review. Journal of Materials Chemistry C, 7(43), 13367-13383. doi: 10.1039/c9tc04132j [98] Schleicher, M., Fyta, M. (2019). Lateral MoS2 Heterostructure for Sensing Small Gas Molecules. ACS Applied Electronic Materials, 2(1), 74-83. doi: 10.1021/acsaelm.9b00495 [99] Bano, A., Krishna, J., Maitra, T., Gaur, N. K. (2019). CrI3-WTe2: A Novel Two-Dimensional Heterostructure as Multisensor for BrF3 and COCL2 Toxic Gases. Sci Rep, 9(1), 11194. doi: 10.1038/s41598-019-47685-5 [100] Prodan, E., Nordlander, P. (2003). On the Kohn-Sham equations with periodic background potentials. Journal of statistical physics, 111(3), 967-992. [101] Blochl, P. E. (1994). Projector augmented-wave method. Phys Rev B Condens Matter, 50(24), 17953-17979. doi: 10.1103/physrevb.50.17953 [102] Kresse, G., Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81586-
dc.description.abstract工業革命之後,隨著科技蓬勃發展,帶給人們生活許多的便利與可能性,但也導致了環境破壞的問題。其中的一個重要議題即是探捕捉及封存-二氧化碳為造成全球暖化的溫室氣體之一;另一方面,一氧化碳為具有致命毒性的氣體,但其無色無味的特性,令人體系統難以察覺。幸運的是,二維材料的高表面-體積比特性,使其成為氣體偵測的絕佳選擇。 近年來,二維材料獨特的性質,吸引學者大量投入研究。本文探討單層硒化鎵偵測一氧化碳及二氧化碳的效能,並同時考慮材料表面缺陷及應變效應對於吸附的影響。根據我們的計算結果,具有硒缺陷的硒化鎵結構相較於無缺陷結構,表現出更佳的一氧化碳及二氧化碳偵測效果。再者,當我們逐漸增加應變的大小時,會發現在缺陷結構中,這兩種氣體的吸附能也會隨之增加。 我們藉由繪製能帶圖來解釋能隙的變化,我們發現能隙大小會隨著拉應變的增加而變小,隨著壓應變的增加而增加。研究一氧化碳及二氧化碳吸附時,若硒化鎵材料表面無缺陷,當氣體吸附之後,能帶圖並沒有顯著改變;若材料表面具有缺陷,當氣體吸附之後,能帶圖會改變,此外,一氧化碳分子所貢獻的電子分佈非常靠近費米能階。此變化也可說明為何在考慮缺陷效應之後,氣體的吸附的效能會增加。 我們使用Bader電荷分析,可以計算硒化鎵材料表面及氣體分子之間的電荷轉移方向及量值。另外,繪製電荷密度差圖,可以呈現電荷的分布狀況。根據研究結果,電子從硒化鎵材料表面轉移至氣體分子。並且,電荷轉移量的大小會因缺陷效應而產生顯著增加。 最後,總結我們的計算結果,無缺陷的硒化鎵對於氣體吸附的效能較低,且外加應變時較無顯著影響;然而,當考慮有缺陷的硒化鎵,可看到材料對於氣體吸附效能的明顯提升,並且吸附能會隨著拉應變的增加而逐漸增加。我們推論,缺陷及應變效應會使得硒化鎵相較於原始結構不穩定,因而增加了吸附氣體的能力。這個發現代表著單層硒化鎵在偵測一氧化碳及二氧化碳上佔有優勢。除此之外,我們可以藉由調整應變大小來改變吸附效率,將可靈活應用於碳捕捉、運輸、釋放。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:24:27Z (GMT). No. of bitstreams: 1
U0001-2009202107365500.pdf: 3767626 bytes, checksum: a9f4760f8d290c4984b41bfd9f896934 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書....................................................................i 誌謝..............................................................................ii 中文摘要..........................................................................iii ABSTRACT..........................................................................iv CONTENTS..........................................................................vi LIST OF FIGURES...................................................................ix LIST OF TABLES...................................................................xii Chapter 1 Introduction............................................................1 1.1 The importance of gas sensing and carbon capture..............................1 1.2 The application of 2D materials in gas sensing................................3 1.3 Unique properties of gallium selenide (GaSe)..................................4 1.4 Overviews of chapters.........................................................5 Chapter 2 Theoretical background and calculation tools............................8 2.1 Introduction..................................................................8 2.2 Theoretical background........................................................9 2.2.1 Schrödinger equation in Born-Oppenheimer approximation......................9 2.2.2 Hartree-Fock Theory........................................................11 2.2.3 Density functional theory (DFT)............................................13 2.2.4 Bader charge analysis......................................................18 2.2.5 Electron localization function (ELF).......................................20 2.3 Calculation tools............................................................21 2.3.1 Vienna Ab-initio Simulation Package (VASP).................................21 Chapter 3 CO and CO2 adsorption on pristine GaSe.................................23 3.1 Introduction.................................................................23 3.2 Computational details........................................................23 3.2.1 Parameters setting in VASP................................................24 3.2.2 Calculation of adsorption energy Ead......................................24 3.2.3 Calculation of differential charge densities (DCDs) pattern...............24 3.3 Electronic structure for pristine GaSe.......................................25 3.3.1 Crystal structure of bulk and monolayer GaSe...............................25 3.3.2 Electronic structure of bulk and monolayer GaSe............................25 3.3.3 Bandgap variation on monolayer with strain effect..........................28 3.3.4 Crystal and electronic structure of monolayer GaSe supercells..............31 3.4 CO and CO2 adsorption on pristine monolayer GaSe.............................32 3.4.1 CO adsorption on pristine monolayer GaSe...................................32 3.4.2 CO2 adsorption on pristine monolayer GaSe..................................34 3.4.3 CO adsorption on pristine monolayer GaSe with strain effect................35 3.4.4 CO2 adsorption on pristine monolayer GaSe with strain effect...............36 3.4.5 Electronic structure and differential charge densities pattern.............36 3.5 Conclusion...................................................................38 Chapter 4 Influence of vacancy and strain effect on sensing ability..............40 4.1 Introduction.................................................................40 4.2 The influence of sensing ability by vacancy effect...........................40 4.2.1 CO adsorption on defective monolayer GaSe...................................40 4.2.2 CO2 adsorption on defective monolayer GaSe..................................42 4.3 The influence of sensing ability by strain effect............................44 4.3.1 CO adsorption on defective monolayer GaSe with strain effect................44 4.3.2 CO2 adsorption on defective monolayer GaSe with strain effect...............48 4.3.3 Electronic structure for CO and CO2 adsorption on defective GaSe............50 4.3.4 Comparison for CO and CO2 adsorption on defective GaSe......................51 4.3.5 Electron localization function patterns for CO adsorbed on defective GaSe...52 4.4 Comparison table.............................................................55 4.4.1 CO adsorption on monolayer GaSe.............................................55 4.4.2 CO2 adsorption on monolayer GaSe............................................57 4.5 Conclusion...................................................................59 Chapter 5 Summary and Perspective................................................61 5.1 Summary......................................................................61 5.2 The inconsistency with the experimental study................................64 5.2 Perspective and suggestions for future work..................................65 Reference.........................................................................68 Appendix..........................................................................77
dc.language.isoen
dc.subject第一原理計算zh_TW
dc.subject硒化鎵zh_TW
dc.subject碳捕捉zh_TW
dc.subject二維材料zh_TW
dc.subject缺陷效應zh_TW
dc.subject應變效應zh_TW
dc.subjectcarbon captureen
dc.subjectfirst-principles studyen
dc.subjectstrain effecten
dc.subjectvacancy effecten
dc.subjecttwo-dimensional materialsen
dc.subjectgallium selenideen
dc.title第一原理探討單層硒化鎵在缺陷效應中對碳捕捉之影響zh_TW
dc.titleFirst-Principles Study of Carbon Capture on Defective Monolayer Gallium Selenideen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.oralexamcommittee蔡政達(Hsin-Tsai Liu),謝馬利歐(Chih-Yang Tseng),關肇正,洪冠明,傅薈如
dc.subject.keyword硒化鎵,碳捕捉,二維材料,缺陷效應,應變效應,第一原理計算,zh_TW
dc.subject.keywordgallium selenide,carbon capture,two-dimensional materials,vacancy effect,strain effect,first-principles study,en
dc.relation.page81
dc.identifier.doi10.6342/NTU202103255
dc.rights.note未授權
dc.date.accepted2021-10-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
U0001-2009202107365500.pdf
  未授權公開取用
3.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved