Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81299
標題: 薄殼結構承受軸向負載後失效現象之模擬分析—以乒乓球及鴯鶓蛋殼為例
Simulations of Failure Phenomena of Thin-Shell Structures Under Axial Load: A Case Study of Ping Pong Ball and Emu Eggshell
作者: Yu-Chien Tseng
曾于虔
指導教授: 莊嘉揚(Jia-Yang Juang)
關鍵字: 挫屈,彈塑性材料,有限元素法,破壞,蛋殼,裂縫偏轉,
buckling,elastoplastic shell,numerical simulation,fracture, eggshell,crack deflection,
出版年 : 2021
學位: 碩士
摘要: 薄殼結構常見於工程與生物結構中,因其能利用較少的材料構成具高強度機械性質的大空間工程結構中例如建築以及交通工具之外殼。對於延性薄殼結構,過去有許多針對其吸收衝擊能量之討論,而近年來有越來越多利用結構受負載後產生大變形的現象,發展出許多新的設計方法與應用。但這些研究較少對於彈塑性薄球殼進行討論,也沒有系統性的分析不同負載方式對於球殼挫屈形貌的影響。而在生物薄殼結構中,例如貝殼、蛋殼等等,有許多針對其勁度、破裂力的討論;但較少研究其微結構對於裂縫生長的影響。本實驗室過去的鳥類蛋殼壓縮實驗中,發現鶴鴕科鳥類蛋殼中特殊微結構以及其受壓縮破壞後裂縫偏轉情形。因此本研究以人工高分子材料薄殼以及脆性生物薄殼為例,討論其受軸向負載後之失效現象。 而材料/結構失效包含挫屈、破壞、過度振動等現象,通常被認為會對於整體結構產生不利的影響。但若能了解失效現象產生的原因並加以控制,可以發展出許多創新且多樣的應用。本研究以實驗與有限元素模擬方法,對於彈塑性及脆性薄殼受到軸向負載後,其失效現象之討論與分析。分別以乒乓球及鴯鶓蛋殼為研究對象。 過去較少研究討論以多樣幾何之壓頭對球殼施加負載,或討論殼的彈塑性材料性質對於挫屈形貌之影響。本研究中首先以乒乓球受圓形截面壓頭加載後挫屈形成之形貌為標準,比較有限元素模型與實驗結果之差異。模擬中加入幾何非線性、材料非線性及接觸行為,並藉由調整球殼與上下壓頭之摩擦係數等參數獲得與實驗有一致定量和定性結果之模型。以該模型為基礎,改變壓頭的幾何形狀與球殼的降伏強度,討論球殼挫屈形貌之形成及變化,並與文獻中彈性球殼之挫屈行為進行比較。而生物材料中有許多因應生存環境等因素演化出的特殊結構,鶴鴕科鳥類的蛋殼就是其中一種。藉由實驗室過去分析眾多鳥類蛋殼壓縮實驗之結果,得知鶴鴕科鳥蛋的破裂方式與多數鳥類不同。觀察其蛋殼微結構,發現在垂直結晶層與柵狀層中具有一層較鬆散的結構,稱之為孔洞層。文獻中有許多關於工程材料之孔隙率及裂縫生長的研究,鮮少有針對鳥類蛋殼進行裂縫生長之討論。鶴鴕科鳥蛋之孔洞層結構使裂縫產生偏轉之情形而得以快速破裂為兩辦,該現象與先前研究中殼厚相近之鴕鳥蛋的環狀破壞不同,可以加速雛鳥破殼而出的過程提高幼鳥孵化率。本研究利用有限元素模擬重現鴯鶓蛋殼壓縮試驗,代入破壞理論中能量釋放率的觀念以分析裂縫生長方向,並討論蛋殼中特殊微結構對於裂縫生長之影響。 根據實驗以及模擬的結果,本研究發現當彈塑性球殼以圓形壓頭壓縮時,由負載-位移曲線圖得知,根據壓頭壓縮深度的發展球殼在不同階段會呈現多樣之變形狀態,可分為5個階段:前2階段為彈性變形階段,後3階段為出現塑性變形之階段,且在階段V時球殼會形成挫屈角。且彈塑性球殼挫屈形貌會隨不同尺寸、幾何之壓頭以及球殼的降伏強度而產生變化。壓縮相同材料之球殼,當壓頭尺寸越大可以產生較多的挫屈角;但若大於一臨界尺寸,除了挫屈角外還會產生一壁狀之結構。以實心和空心多邊形壓頭壓縮模擬中,可以控制球殼挫屈形貌的壓頭尺寸根據其截面幾何而有所不同。因此能利用改變壓頭幾何參數,在不改變球殼材料與幾何下,對彈塑性球殼變形產生引導之作用。並由模擬中發現降伏強度對於挫屈形貌的生成與發展有顯著之影響。球殼的降伏強度需大於一臨界值,才會產生挫屈角否則挫屈形貌會皆為軸對稱圓形形貌。而在相同壓頭尺寸下,當降伏強度越高球殼可生成之挫屈角越多。綜合上述,本文提供了有助於規劃及預測球殼挫屈形貌的設計方法。 而本研究藉由壓縮鳥蛋實驗,發現鴯鶓及北方鶴鴕蛋殼具有不同於多數鳥類蛋殼之破壞方式。以SEM、EBSD和電腦斷層掃描對兩物種之蛋殼結構進行調查,可觀察到在垂直結晶層與柵狀層之間較多數物種多出一層孔洞層,且孔洞層的晶粒方向與下方之柵狀層相同,而其上方之表層結晶層結晶顆粒較小且方向無明顯一致性。對於去除頂部與底部孔洞層之鴯鶓及北方鶴鴕蛋進行壓縮,可發現其與鴕鳥相似之錐狀破壞型式,推測孔洞層為使鴯鶓及北方鶴鴕蛋殼破壞型式較特殊之因素,該破壞型態稱之為裂縫偏轉。接著以有限元素模擬並加入能量釋放率的觀點,分析鴯鶓蛋殼裂縫生長之情況。發現當鴯鶓蛋殼受壓縮產生之環狀裂縫生長至垂直結晶層與孔洞層交界面時,裂縫向下生長一小範圍並於孔洞層中偏轉的能量釋放率較不偏轉的裂縫大,且改變此小範圍之幾何亦有相同之結果。由此驗證鴯鶓蛋殼中孔洞層對於裂縫生長之影響與產生裂縫偏轉之傾向,此與實驗中所觀察到的現象相符。透過本研究對於於乒乓球與鴯鶓蛋殼之分析與討論,可對於薄殼結構的失效現象有更進一步的了解。
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81299
DOI: 10.6342/NTU202101654
全文授權: 同意授權(限校園內公開)
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-2207202110065200.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
29.82 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved