Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81299
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor莊嘉揚(Jia-Yang Juang)
dc.contributor.authorYu-Chien Tsengen
dc.contributor.author曾于虔zh_TW
dc.date.accessioned2022-11-24T03:41:41Z-
dc.date.available2021-08-06
dc.date.available2022-11-24T03:41:41Z-
dc.date.copyright2021-08-06
dc.date.issued2021
dc.date.submitted2021-07-23
dc.identifier.citation[1] A. Dadrasi, 'Energy absorption of semi-spherical shells under axial loading,' Australian Journal of Basic and Applied Sciences, vol. 5, p. 2052, 2011. [2] S. Xu, Z. Yan, K. I. Jang et al., 'Materials science. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling,' Science, vol. 347, pp. 154, 2015, doi: 10.1126/science.1260960. [3] B. Li, F. Jia, Y.-P. Cao, X.-Q. Feng, and H. Gao, 'Surface wrinkling patterns on a core-shell soft sphere,' Physical Review Letters, vol. 106, p. 234301, 2011, doi: 10.1103/PhysRevLett.106.234301. [4] N. P. Bende, A. A. Evans, S. Innes-Gold et al., 'Geometrically controlled snapping transitions in shells with curved creases,' Proceedings of the National Academy of Sciences of the United States of America, vol. 112, pp. 11175, 2015, doi: 10.1073/pnas.1509228112. [5] J. Paulose and D. R. Nelson, 'Buckling pathways in spherical shells with soft spots,' Soft Matter, vol. 9, pp. 8227, 2013, doi: 10.1039/c3sm50719j. [6] X.-L. Dong, Z.-Y. Gao, and T.-X. Yu, 'Dynamic crushing of thin-walled spheres: An experimental study,' International Journal of Impact Engineering, vol. 35, pp. 717, 2008, doi: 10.1016/j.ijimpeng.2007.11.004. [7] A. Nasto, A. Ajdari, A. Lazarus, A. Vaziri, and P. M. Reis, 'Localization of deformation in thin shells under indentation,' Soft Matter, vol. 9, pp. 6796, 2013, doi: 10.1039/c3sm50279a. [8] H. H. Ruan, Z. Y. Gao, and T. X. Yu, 'Crushing of thin-walled spheres and sphere arrays,' International Journal of Mechanical Sciences, vol. 48, pp. 117, 2006, doi: 10.1016/j.ijmecsci.2005.08.006. [9] A. A. Griffith, 'VI. The phenomena of rupture and flow in solids,' Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, vol. 221, pp. 163, 1921, doi: 10.1098/rsta.1921.0006 [10] G. R. Irwin, 'Analysis of stresses and strains near the end of a crack traversing a plate,' Journal of Applied Mechanics, vol. 24, pp. 361, 1957, doi: 10.1115/1.4011547. [11] L. Náhlík, L. Šestáková, P. Hutař, and R. Bermejo, 'Prediction of crack propagation in layered ceramics with strong interfaces,' Engineering Fracture Mechanics, vol. 77, pp. 2192, 2010, doi: 10.1016/j.engfracmech.2010.02.023. [12] M. A. Meyers, J. McKittrick, and P.-Y. Chen, 'Structural biological materials: Critical mechanics-materials connections,' Science, vol. 339, p. 773, 2013, doi: 10.1126/science.1220854. [13] 曹書涵, '薄殼生物材料保護與破壞機制之探討—以鳥蛋為例,' 碩士論文, 國立台灣大學, 2020. [14] Birds of the world - Cornell lab of ornithology, Available: https://birdsoftheworld.org/bow/home [15] M. Nash, 'Non-classical problems in the theory of elastic stability,' The Aeronautical Journal, vol. 106, pp. 626, 2002, doi: 10.1017/S0001924000018297. [16] B. Budiansky, 'Theory of buckling and post-buckling behavior of elastic structures,' in Advances in applied mechanics, vol. 14: Elsevier, 1974, pp. 1. [17] J. R. Fitch, 'The buckling and post-buckling behavior of spherical caps under concentrated load,' International Journal of Solids and Structures, vol. 4, pp. 421, 1968, doi: 10.1016/0020-7683(68)90048-6. [18] B. Audoly and Y. Pomeau, Elasticity and geometry: From hair curls to the non- linear response of shells. OUP Oxford, 2010. [19] Y.-F. Jia, F.-Z. Xuan, and F.-Q. Yang, 'Numerical analysis of indentation of an elastic hemispherical shell,' Journal of Mechanics, vol. 32, pp. 245, 2016, doi: 10.1017/jmech.2015.59. [20] I. V. Andrianov, A. I. Manevich, Y. V. Mikhlin, and O. V. Gendelman, Problems of nonlinear mechanics and physics of materials. Springer, 2018. [21] E. Reissner, 'Stresses and small displacements of shallow spherical shells. I,' Journal of Mathematics and Physics, vol. 25, pp. 80, 1946, doi: 10.1002/sapm194625180. [22] A. V. Pogorelov, Bendings of surfaces and stability of shells. American Mathematical Society, 1988. [23] S. Knoche and J. Kierfeld, 'The secondary buckling transition: Wrinkling of buckled spherical shells,' The European Physical Journal E, vol. 37, p. 62, 2014, doi: 10.1140/epje/i2014-14062-9. [24] M. Taffetani, X. Jiang, D. P. Holmes, and D. Vella, 'Static bistability of spherical caps,' Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 474, p. 20170910, 2018, doi: 10.1098/rspa.2017.0910. [25] D. P. Updike, 'On the large deformation of a rigid-plastic spherical shell compressed by a rigid plate,' Journal of Engineering for Industry, vol. 94, 1972, doi: 10.1115/1.3428276. [26] J. G. De Oliveira and T. Wierzbicki, 'Crushing analysis of rotationally symmetric plastic shells,' The Journal of Strain Analysis for Engineering Design, vol. 17, pp. 229, 1982, doi: 10.1243/03093247V174229. [27] L. Pauchard, Y. Pomeau, and S. Rica, 'Deformation of elastic shells,' Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, vol. 324, pp. 411, 1997, doi: 10.1016/S1251-8069(99)80052-9. [28] N. K. Gupta and Venkatesh, 'Experimental and numerical studies of dynamic axial compression of thin walled spherical shells,' International Journal of Impact Engineering, vol. 30, pp. 1225, 2004, doi: 10.1016/j.ijimpeng.2004.03.009. [29] A. Boudaoud, P. Patrício, Y. Couder, and M. Ben Amar, 'Dynamics of singularities in a constrained elastic plate,' Nature, vol. 407, pp. 718, 2000, doi: 10.1038/35037535. [30] L. Pauchard and S. Rica, 'Contact and compression of elastic spherical shells: The physics of a 'ping-pong' ball,' Philosophical Magazine B, vol. 78, pp. 225, 1998, doi: 10.1080/014186398258285. [31] A. Vaziri and L. Mahadevan, 'Localized and extended deformations of elastic shells,' Proceedings of the National Academy of Sciences, vol. 105, pp. 7913, 2008, doi: 10.1073/pnas.0707364105. [32] A. Vaziri, 'Mechanics of highly deformed elastic shells,' Thin-Walled Structures, vol. 47, pp. 692, 2009, doi: 10.1016/j.tws.2008.11.009. [33] R. Shorter, J. D. Smith, V. A. Coveney, and J. Busfield, 'Axial compression of hollow elastic spheres,' Journal of Mechanics of Materials and Structures, vol. 5, pp. 693, 2010, doi: 10.2140/jomms.2010.5.693. [34] A. Nasto and P. M. Reis, 'Localized structures in indented shells: A numerical investigation,' Journal of Applied Mechanics, vol. 81, 2014, doi: 10.1115/1.4028804. [35] R. Kitching, R. Houlston, and W. Johnson, 'A theoretical and experimental study of hemispherical shells subjected to axial loads between flat plates,' International Journal of Mechanical Sciences, vol. 17, pp. 693, 1975, doi: 10.1016/0020-7403(75)90072-7. [36] X.-W. Zhang, C. Quan, R. Fu et al., 'Experimental study on static/dynamic local buckling of ping pong balls compressed onto a rigid plate,' presented at the Fourth International Conference on Experimental Mechanics, 2009. [37] R.-H. Bao and T.-X. Yu, 'Collision and rebound of ping pong balls on a rigid target,' Materials Design, vol. 87, pp. 278, 2015, doi: 10.1016/j.matdes.2015.08.019. [38] M. Shariati and H. R. Allahbakhsh, 'Numerical and experimental investigations on the buckling of steel semi-spherical shells under various loadings,' Thin-Walled Structures, vol. 48, pp. 620, 2010, doi: 10.1016/j.tws.2010.03.002. [39] W. Messens, K. Grijspeerdt, and L. Herman, 'Eggshell penetration by salmonella: A review,' World's Poultry Science Journal, vol. 61, pp. 71, 2005, doi: 10.1079/WPS200443. [40] K. De Reu, K. Grijspeerdt, W. Messens et al., 'Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including salmonella enteritidis,' International Journal of Food Microbiology, vol. 112, pp. 253, 2006, doi: 10.1016/j.ijfoodmicro.2006.04.011. [41] I. Gantois, R. Ducatelle, F. Pasmans et al., 'Mechanisms of egg contamination by salmonella enteritidis,' FEMS Microbiology Reviews, vol. 33, pp. 718, 2009, doi: 10.1111/j.1574-6976.2008.00161.x. [42] C. V. Paganelli, 'The physics of gas exchange across the avian eggshell,' American Zoologist, vol. 20, pp. 329, 1980, doi: 10.1093/icb/20.2.329. [43] B. E. Dunn, T. P. Fitzharris, and B. D. Barnett, 'Effects of varying chamber construction and embryo pre-incubation age on survival and growth of chick embryos in shell-less culture,' The Anatomical Record, vol. 199, pp. 33, 1981, doi: 10.1002/ar.1091990105. [44] D. S. Miller, W. B. Kinter, and D. B. Peakall, 'Enzymatic basis for DDE-induced eggshell thinning in a sensitive bird,' Nature, vol. 259, pp. 122, 1976, doi: 10.1038/259122a0. [45] J. Graveland and R. H. Drent, 'Calcium availability limits breeding success of passerines on poor soils,' Journal of Animal Ecology, vol. 66, pp. 279, 1997, doi: 10.2307/6028. [46] D. Athanasiadou, W. Jiang, D. Goldbaum et al., 'Nanostructure, osteopontin, and mechanical properties of calcitic avian eggshell,' Science Advances, vol. 4, p. 3219, 2018, doi: 10.1126/sciadv.aar3219. [47] A. H. Parsons, 'Structure of the eggshell,' Poultry Science, vol. 61, pp. 2013, 1982, doi: 10.3382/ps.0612013. [48] M. T. Hincke, Y. Nys, J. Gautron, K. Mann, A. B. Rodriguez-Navarro, and M. D. McKee, 'The eggshell: Structure, composition and mineralization,' Front Biosci, vol. 17, pp. 1266, 2012, doi: 10.2741/3985. [49] R. G. Board and S. G. Tullett, 'The pore arrangement in the emu (dromaius novæhollandiæ) eggshell as shown by plastic models,' Journal of Microscopy, vol. 103, pp. 281, 1975, doi: 10.1111/j.1365-2818.1975.tb03906.x. [50] D. Szczerbińska and M. Wiercińska, 'Ultrastructure of the eggshell of selected palaeognathae species - A comparative analysis,' Annals of Animal Science, vol. 14, pp. 167, 2014, doi: 10.2478/aoas-2013-0079. [51] C. B. Tanaka, Y. Zhou, B. Gludovatz, and J. J. Kruzic, 'Anisotropic fracture resistance of avian eggshell,' Journal of the Mechanical Behavior of Biomedical Materials, vol. 110, p. 103888, 2020, doi: 10.1016/j.jmbbm.2020.103888. [52] B. De Ketelaere, T. Govaerts, P. Coucke et al., 'Measuring the eggshell strength of 6 different genetic strains of laying hens: Techniques and comparisons,' British Poultry Science, vol. 43, pp. 238, 2002, doi: 10.1080/00071660120121454. [53] C. Perianu, B. De Ketelaere, B. Pluymers, W. Desmet, J. DeBaerdemaeker, and E. Decuypere, 'Finite element approach for simulating the dynamic mechanical behaviour of a chicken egg,' Biosystems Engineering, vol. 106, pp. 79, 2010, doi: 10.1016/j.biosystemseng.2010.03.001. [54] B. Igic, K. Braganza, M. M. Hyland et al., 'Alternative mechanisms of increased eggshell hardness of avian brood parasites relative to host species,' Journal of The Royal Society Interface, vol. 8, pp. 1654, 2011, doi: 10.1098/rsif.2011.0207. [55] E. N. Hahn, V. R. Sherman, A. Pissarenko, S. D. Rohrbach, D. J. Fernandes, and M. A. Meyers, 'Nature's technical ceramic: The avian eggshell,' Journal of The Royal Society Interface, vol. 14, p. 20160804, 2017, doi: 10.1098/rsif.2016.0804. [56] B. Kemps, B. De Ketelaere, F. Bamelis et al., 'Development of a methodology for the calculation of young's modulus of eggshell using vibration measurements,' Biosystems Engineering, vol. 89, pp. 215, 2004, doi: 10.1016/j.biosystemseng.2004.06.004. [57] J. Lin, V. M. Puri, and R. C. Anantheswaran, 'Measurement of eggshell thermal-mechanical properties,' Transactions of the ASAE, vol. 38, pp. 1769, 1995, doi: 10.13031/2013.28004. [58] L. Severa, J. Buchar, and J. Votava, 'New approach of eggshell mechanical properties determination,' Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, vol. 58, pp. 161, 2010, doi: 10.11118/actaun201058010161. [59] A. G. Sellés, J. Marcè-Nogué, B. Vila et al., 'Computational approach to evaluating the strength of eggs: Implications for laying in organic egg production,' Biosystems Engineering, vol. 186, pp. 146, 2019, doi: 10.1016/j.biosystemseng.2019.06.017. [60] D. Taylor, M. Walsh, A. Cullen, and P. O’Reilly, 'The fracture toughness of eggshell,' Acta Biomaterialia, vol. 37, pp. 21, 2016, doi: 10.1016/j.actbio.2016.04.028. [61] 楊達璋, '薄殼生物材料機械性質研究與應用,' 碩士論文, 國立台灣大學, 2017. [62] 吳尚平, '薄殼生物材料之機械性質探討與應用—以鳥類蛋殼為例,' 碩士論文, 國立台灣大學, 2018. [63] 江珮琳, '薄殼生物材料機械性質與破壞機制之探討—以蛋殼為例,' 碩士論文, 國立台灣大學, 2019. [64] 顏安, '應用有限元素法分析生物薄殼材料的力學性,' 碩士論文, 國立台灣大學, 2017. [65] 高穎全, '脆性生物材料之破裂機制模擬—以鳥類蛋殼及空心樹幹為例,' 碩士論文, 國立台灣大學, 2020. [66] G. P. Cherepanov, Mechanics of brittle fracture. McGraw-Hill International Book Co., 1979. [67] J. T. Black and R. A. Kohser, Degarmo's materials and processes in manufacturing, 9th ed. Wiley, 2003. [68] F. Erdogan, 'Fracture mechanics,' International Journal of Solids and Structures, vol. 37, pp. 171, 2000, doi: 10.1016/S0020-7683(99)00086-4. [69] J. R. Rice, 'A path independent integral and the approximate analysis of strain concentration by notches and cracks,' Journal of Applied Mechanics, vol. 35, pp. 379, 1968, doi: 10.1115/1.3601206. [70] D. S. Dugdale, 'Yielding of steel sheets containing slits,' Journal of the Mechanics and Physics of Solids, vol. 8, pp. 100, 1960, doi: 10.1016/0022-5096(60)90013-2. [71] G. I. Barenblatt, 'The mathematical theory of equilibrium cracks in brittle fracture,' Advances in Applied Mechanics, vol. 7, pp. 55, 1962, doi: 10.1016/S0065-2156(08)70121-2. [72] J. Willis, 'A comparison of the fracture criteria of griffith and barenblatt,' Journal of the Mechanics and Physics of Solids, vol. 15, pp. 151, 1967, doi: 10.1016/0022-5096(67)90029-4. [73] R. Krueger 'Virtual crack closure technique: History, approach, and applications,' Applied Mechanics Reviews, vol. 57, pp. 109, 2004, doi: 10.1115/1.1595677. [74] F. Erdogan, 'Stress distribution in bonded dissimilar materials with cracks,' Journal of Applied Mechanics, vol. 32, pp. 403, 1965, doi: 10.1115/1.3625814. [75] S. T. Raveendra and P. K. Banerjee, 'Computation of stress intensity factors for interfacial cracks,' Engineering Fracture Mechanics, vol. 40, pp. 89, 1991, doi: 10.1016/0013-7944(91)90130-S. [76] T. Ikeda, N. Miyazaki, and T. Soda, 'Mixed mode fracture criterion of interface crack between dissimilar materials,' Engineering Fracture Mechanics, vol. 59, pp. 725, 1998, doi: 10.1016/S0013-7944(97)00177-X. [77] K. Lin and J. Mar, 'Finite element analysis of stress intensity factors for cracks at a bi-material interface,' International Journal of Fracture, vol. 12, pp. 521, 1976, doi: 10.1007/BF00034638. [78] M.-Y. He and J. W. Hutchinson, 'Crack deflection at an interface between dissimilar elastic materials,' International Journal of Solids and Structures, vol. 25, pp. 1053, 1989, doi: 10.1016/0020-7683(89)90021-8. [79] T. Wang and P. Ståhle, 'Crack perpendicular to and terminating at a bi-material interface,' Acta Mechanica Sinica, vol. 14, pp. 27, 1998, doi: 10.1007/BF02486828. [80] S. Chen, T. Wang, and S. Kao-Walter, 'A crack perpendicular to the bimaterial interface in finite solid,' International Journal of Solids and Structures, vol. 40, pp. 2731, 2003, doi: 10.1016/S0020-7683(03)00087-8. [81] X.-Y. Liu, Q.-Z. Xiao, and B. L. Karihaloo, 'XFEM for direct evaluation of mixed mode sifs in homogeneous and bi-materials,' International Journal for Numerical Methods in Engineering, vol. 59, pp. 1103, 2004, doi: 10.1002/nme.906. [82] A. R. Hadjesfandiari and G. F. Dargush, 'Analysis of bi-material interface cracks with complex weighting functions and non-standard quadrature,' International Journal of Solids and Structures, vol. 48, pp. 1499, 2011, doi: 10.1016/j.ijsolstr.2011.01.036. [83] L. Bouhala, Q. Shao, Y. Koutsawa et al., 'An XFEM crack-tip enrichment for a crack terminating at a bi-material interface,' Engineering Fracture Mechanics, vol. 102, pp. 51, 2013, doi: 10.1016/j.engfracmech.2013.02.023. [84] K. Nasri, M. Abbadi, M. Zenasni, M. Ghammouri, and Z. Azari, 'Double crack growth analysis in the presence of a bi-material interface using XFEM and FEM modelling,' Engineering Fracture Mechanics, vol. 132, pp. 189, 2014, doi: 10.1016/j.engfracmech.2014.07.016. [85] E. K. Oneida, M. C. H. van der Meulen, and A. R. Ingraffea, 'Method for calculating g, gi, and gii to simulate crack growth in 2d, multiple-material structures,' Engineering Fracture Mechanics, vol. 140, pp. 106, 2015, doi: 10.1016/j.engfracmech.2015.03.033. [86] G. G. Adams, 'Critical value of the generalized stress intensity factor for a crack perpendicular to an interface,' Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 471, p. 20150571, 2015, doi: 10.1098/rspa.2015.0571. [87] M. Song, S. Y. He, K. Du et al., 'Transformation induced crack deflection in a metastable titanium alloy and implications on transformation toughening,' Acta Materialia, vol. 118, pp. 120, 2016, doi: 10.1016/j.actamat.2016.07.041. [88] X.-Q. Shen, J.-X. Liu, F. Li, and G.-J. Zhang, 'Preparation and characterization of diboride-based high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2–SiC particulate composites,' Ceramics International, vol. 45, 2019, doi: 10.1016/j.ceramint.2019.08.178. [89] K. T. Faber and A. G. Evans, 'Crack deflection processes—I. Theory,' Acta Metallurgica, vol. 31, pp. 565, 1983, doi: 10.1016/0001-6160(83)90046-9. [90] W. Lee, Y.-H. Yoo, and H. Shin, 'Reconsideration of crack deflection at planar interfaces in layered systems,' Composites Science and Technology, vol. 64, pp. 2415, 2004, doi: 10.1016/j.compscitech.2004.05.011. [91] K. Kaddouri, M. Belhouari, B. B. Bouiadjra, and B. Serier, 'Finite element analysis of crack perpendicular to bi-material interface: Case of couple ceramic–metal,' Computational Materials Science, vol. 35, pp. 53, 2006, doi: 10.1016/j.commatsci.2005.03.003. [92] J. Lei, Y.-S. Wang, and D. Gross, 'Numerical simulation of crack deflection and penetration at an interface in a bi-material under dynamic loading by time-domain boundary element method,' International Journal of Fracture, vol. 149, p. 11, 2008, doi: 10.1007/s10704-008-9215-5. [93] L. Marsavina, T. Sadowski, and M. Viteazu, 'Asymptotic stress field at the tip of an inclined crack terminating to an interface,' Budownictwo i Architektura, vol. 2, pp. 111, 2008, doi: 10.35784/bud-arch.2316. [94] W. Yang, I. H. Chen, B. Gludovatz, E. A. Zimmermann, R. O. Ritchie, and M. A. Meyers, 'Natural flexible dermal armor,' Advanced Materials, vol. 25, pp. 31, 2013, doi: 10.1002/adma.201202713. [95] X. Li, J. Wang, J. Du et al., 'Spear and shield: Survival war between mantis shrimps and abalones,' Advanced Materials Interfaces, vol. 2, p. 1500250, 2015, doi: 10.1002/admi.201500250. [96] H. Chen, C. Zhang, Q. Lu et al., 'A two-set order parameters phase-field modeling of crack deflection/penetration in a heterogeneous microstructure,' Computer Methods in Applied Mechanics and Engineering, vol. 347, pp. 1085, 2019, doi: 10.1016/j.cma.2019.01.014. [97] G. Roscioli, S. M. Taheri-Mousavi, and C. C. Tasan, 'How hair deforms steel,' Science, vol. 369, pp. 689, 2020, doi: 10.1126/science.aba9490. [98] Q. Yuan, B. Chen, B. Chen, and Z. Wang, 'New insight into the toughening mechanisms of seashell: From arch shape to multilayer structure,' Journal of Nanomaterials, vol. 2016, pp. 1, 2016, doi: 10.1155/2016/3817985. [99] K. L. Johnson, Contact mechanics. Cambridge University Press, 1985. [100] H. Hertz, 'Ueber die berührung fester elastischer körper,' Journal für die reine und angewandte Mathematik, vol. 1882, pp. 156, 1882, doi: 10.1515/crll.1882.92.156. [101] K. L. Johnson, 'One hundred years of Hertz contact,' Proceedings of the Institution of Mechanical Engineers, vol. 196, pp. 363, 1982, doi: 10.1243/pime_proc_1982_196_039_02. [102] K. Zeng, K. Breder, and D. J. Rowcliffe, 'The Hertzian stress field and formation of cone cracks—i. Theoretical approach,' Acta Metallurgica et Materialia, vol. 40, pp. 2595, 1992, doi: 10.1016/0956-7151(92)90328-C. [103] P. D. Warren, D. A. Hills, and D. N. Dai, 'Mechanics of Hertzian cracking,' Tribology International, vol. 28, pp. 357, 1995, doi: 10.1016/0301-679X(95)00021-U. [104] T. J. Lardner, J. E. Ritter, and G.-Q. Zhu, 'Spherical indentation and fracture of glass plates,' Journal of the American Ceramic Society, vol. 80, pp. 1851, 1997, doi: 10.1111/j.1151-2916.1997.tb03060.x. [105] I. M. Peterson, S. Wuttiphan, B. R. Lawn, and K. Chyung, 'Role of microstructure on contact damage and strength degradation of micaceous glass-ceramics,' Dent Mater, vol. 14, pp. 80, 1998, doi: 10.1016/s0109-5641(98)00013-x. [106] Y. Cao and G. Zhang, 'Multiple surface crack initiation and growth in glass-ceramics loaded by a sphere,' Engineering Fracture Mechanics, vol. 67, pp. 277, 2000, doi: 10.1016/S0013-7944(00)00049-7. [107] F. C. Roesler, 'Indentation hardness of glass as an energy scaling law,' Proceedings of the Physical Society. Section B, vol. 69, pp. 55, 1956, doi: 10.1088/0370-1301/69/1/307. [108] F. C. Roesler, 'Brittle fractures near equilibrium,' Proceedings of the Physical Society. Section B, vol. 69, pp. 981, 1956, doi: 10.1088/0370-1301/69/10/303. [109] T. R. Wilshaw, 'The Hertzian fracture test,' Journal of Physics D: Applied Physics, vol. 4, pp. 1567, 1971, doi: 10.1088/0022-3727/4/10/316. [110] F. C. Frank and B. R. Lawn, 'On the theory of Hertzian fracture,' Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 299, pp. 291, 1967, doi: 10.1098/rspa.1967.0137. [111] A. Selvadurai, 'Fracture evolution during indentation of a brittle elastic solid,' Mechanics of Cohesive‐frictional Materials, vol. 5, pp. 325, 2000, doi: 10.1002/(sici)1099-1484(200005)5:4<325::aid-cfm98>3.0.co;2-k. [112] C. E. Inglis, 'Stresses in a plate due to the presence of cracks and sharp corners,' SPIE Milestone Series, vol. Vol. 137, pp. 3, 1913, doi: 10.1016/S0013-7944(00)00098-9. [113] M. Liu, Y. Gan, D. A. H. Hanaor, B. Liu, and C. Chen, 'An improved semi-analytical solution for stress at round-tip notches,' Engineering Fracture Mechanics, vol. 149, pp. 134, 2015, doi: 10.1016/j.engfracmech.2015.10.004. [114] H. Moustabchir, J. Arbaoui, A. Zitouni, S. Hariri, and I. Dmytrakh, 'Numerical analysis of stress intensity factor and t-stress in pipeline of steel p264gh submitted to loading conditions,' Journal of Theoretical and Applied Mechanics, vol. 53, pp. 665, 2015, doi: 10.15632/jtam-pl.53.3.665. [115] M. Dunlap and J. E. Adaskaveg, Introduction to the scanning electron microscope: Theory, practice procedures Facility for Advance Instrumentation, 1997. [116] Scanning electron microscope, Available: https://phenom-world.com/microscopes/phenom-pro [117] A. F. Corno and P. Festa, 'Introduction to CT scan and MRI,' in Congenital heart defects: Decision making for cardiac surgery volume 3 ct-scan and mri: Steinkopff, 2009, pp. 1. [118] Bruker skyscan 1272 micro-CT, Available: http://www.blue-scientific.com/bruker-micro-ct/skyscan-1272/ [119] A. J. Wilkinson and T. B. Britton, 'Strains, planes, and ebsd in materials science,' Materials Today, vol. 15, pp. 366, 2012, doi: 10.1016/S1369-7021(12)70163-3. [120] Buehler metaserv 250, Available: https://www.bergeng.com/product/Metaserv-250.html [121] K. I. Nakamura, M. Wada, S. Kuga, and T. Okano, 'Poisson's ratio of cellulose iβ and cellulose ii,' Journal of Polymer Science Part B: Polymer Physics, vol. 42, p. 1206, 2004, doi: 10.1002/polb.10771. [122] J. O. Hallquist, 'LS-DYNA theory manual,' presented at the Livermore Software Technology Corporation, 2006. [123] J. Song, Q. Sun, Z. Yang et al., 'Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres,' Materials Science and Engineering: A, vol. 688, pp. 134, 2017, doi: 10.1016/j.msea.2017.01.105. [124] J. Song, Q. Sun, S. Luo et al., 'Compression behavior of individual thin-walled metallic hollow spheres with patterned distributions of microporosity,' Materials Science and Engineering: A, vol. 734, pp. 453, 2018, doi: 10.1016/j.msea.2018.08.016. [125] M. C. Stoddard, E. H. Yong, D. Akkaynak, C. Sheard, J. A. Tobias, and L. Mahadevan, 'Avian egg shape: Form, function, and evolution,' Science, vol. 356, pp. 1249, 2017, doi: 10.1126/science.aaj1945. [126] N. Otsu, 'A threshold selection method from gray-level histograms,' IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, pp. 62, 1979, doi: 10.1109/TSMC.1979.4310076. [127] A. G. Leacock, G. Cowan, M. Cosby, G. Volk, D. McCracken, and D. Brown, 'Structural and frictional performance of fused deposition modelled acrylonitrile butadiene styrene (P430) with a view to use as rapid tooling material in sheet metal forming,' Key Engineering Materials, vol. 639, pp. 325, 2015, doi: 10.4028/www.scientific.net/KEM.639.325. [128] S. K. Sahu, D. Mishra, R. P. Mahto et al., 'Friction stir welding of polypropylene sheet,' Engineering Science and Technology, vol. 21, pp. 245, 2018, doi: 10.1016/j.jestch.2018.03.002. [129] A. N. J. Heyn, 'The crystalline structure of calcium carbonate in the avian egg shell: An electron microscope study,' Journal of Ultrastructure Research, vol. 8, pp. 176, 1963, doi: 10.1016/S0022-5320(63)80029-5. [130] B. Sørensen and A. Horsewell, 'Crack growth along interfaces in porous ceramic layers,' Journal of the American Ceramic Society, vol. 84, pp. 2051, 2001, doi: 10.1111/j.1151-2916.2001.tb00957.x. [131] K. S. Blanks, A. Kristoffersson, E. Carlström, and W. J. Clegg, 'Crack deflection in ceramic laminates using porous interlayers,' Journal of the European Ceramic Society, vol. 18, pp. 1945, 1998, doi: 10.1016/S0955-2219(98)00134-4. [132] A. R. Boccaccini, 'Influence of stress concentrations on the mechanical property– Porosity correlation in porous materials,' Journal of Materials Science Letters, vol. 17, pp. 1273, 1998, doi: 10.1023/A:1006503524162.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81299-
dc.description.abstract薄殼結構常見於工程與生物結構中,因其能利用較少的材料構成具高強度機械性質的大空間工程結構中例如建築以及交通工具之外殼。對於延性薄殼結構,過去有許多針對其吸收衝擊能量之討論,而近年來有越來越多利用結構受負載後產生大變形的現象,發展出許多新的設計方法與應用。但這些研究較少對於彈塑性薄球殼進行討論,也沒有系統性的分析不同負載方式對於球殼挫屈形貌的影響。而在生物薄殼結構中,例如貝殼、蛋殼等等,有許多針對其勁度、破裂力的討論;但較少研究其微結構對於裂縫生長的影響。本實驗室過去的鳥類蛋殼壓縮實驗中,發現鶴鴕科鳥類蛋殼中特殊微結構以及其受壓縮破壞後裂縫偏轉情形。因此本研究以人工高分子材料薄殼以及脆性生物薄殼為例,討論其受軸向負載後之失效現象。 而材料/結構失效包含挫屈、破壞、過度振動等現象,通常被認為會對於整體結構產生不利的影響。但若能了解失效現象產生的原因並加以控制,可以發展出許多創新且多樣的應用。本研究以實驗與有限元素模擬方法,對於彈塑性及脆性薄殼受到軸向負載後,其失效現象之討論與分析。分別以乒乓球及鴯鶓蛋殼為研究對象。 過去較少研究討論以多樣幾何之壓頭對球殼施加負載,或討論殼的彈塑性材料性質對於挫屈形貌之影響。本研究中首先以乒乓球受圓形截面壓頭加載後挫屈形成之形貌為標準,比較有限元素模型與實驗結果之差異。模擬中加入幾何非線性、材料非線性及接觸行為,並藉由調整球殼與上下壓頭之摩擦係數等參數獲得與實驗有一致定量和定性結果之模型。以該模型為基礎,改變壓頭的幾何形狀與球殼的降伏強度,討論球殼挫屈形貌之形成及變化,並與文獻中彈性球殼之挫屈行為進行比較。而生物材料中有許多因應生存環境等因素演化出的特殊結構,鶴鴕科鳥類的蛋殼就是其中一種。藉由實驗室過去分析眾多鳥類蛋殼壓縮實驗之結果,得知鶴鴕科鳥蛋的破裂方式與多數鳥類不同。觀察其蛋殼微結構,發現在垂直結晶層與柵狀層中具有一層較鬆散的結構,稱之為孔洞層。文獻中有許多關於工程材料之孔隙率及裂縫生長的研究,鮮少有針對鳥類蛋殼進行裂縫生長之討論。鶴鴕科鳥蛋之孔洞層結構使裂縫產生偏轉之情形而得以快速破裂為兩辦,該現象與先前研究中殼厚相近之鴕鳥蛋的環狀破壞不同,可以加速雛鳥破殼而出的過程提高幼鳥孵化率。本研究利用有限元素模擬重現鴯鶓蛋殼壓縮試驗,代入破壞理論中能量釋放率的觀念以分析裂縫生長方向,並討論蛋殼中特殊微結構對於裂縫生長之影響。 根據實驗以及模擬的結果,本研究發現當彈塑性球殼以圓形壓頭壓縮時,由負載-位移曲線圖得知,根據壓頭壓縮深度的發展球殼在不同階段會呈現多樣之變形狀態,可分為5個階段:前2階段為彈性變形階段,後3階段為出現塑性變形之階段,且在階段V時球殼會形成挫屈角。且彈塑性球殼挫屈形貌會隨不同尺寸、幾何之壓頭以及球殼的降伏強度而產生變化。壓縮相同材料之球殼,當壓頭尺寸越大可以產生較多的挫屈角;但若大於一臨界尺寸,除了挫屈角外還會產生一壁狀之結構。以實心和空心多邊形壓頭壓縮模擬中,可以控制球殼挫屈形貌的壓頭尺寸根據其截面幾何而有所不同。因此能利用改變壓頭幾何參數,在不改變球殼材料與幾何下,對彈塑性球殼變形產生引導之作用。並由模擬中發現降伏強度對於挫屈形貌的生成與發展有顯著之影響。球殼的降伏強度需大於一臨界值,才會產生挫屈角否則挫屈形貌會皆為軸對稱圓形形貌。而在相同壓頭尺寸下,當降伏強度越高球殼可生成之挫屈角越多。綜合上述,本文提供了有助於規劃及預測球殼挫屈形貌的設計方法。 而本研究藉由壓縮鳥蛋實驗,發現鴯鶓及北方鶴鴕蛋殼具有不同於多數鳥類蛋殼之破壞方式。以SEM、EBSD和電腦斷層掃描對兩物種之蛋殼結構進行調查,可觀察到在垂直結晶層與柵狀層之間較多數物種多出一層孔洞層,且孔洞層的晶粒方向與下方之柵狀層相同,而其上方之表層結晶層結晶顆粒較小且方向無明顯一致性。對於去除頂部與底部孔洞層之鴯鶓及北方鶴鴕蛋進行壓縮,可發現其與鴕鳥相似之錐狀破壞型式,推測孔洞層為使鴯鶓及北方鶴鴕蛋殼破壞型式較特殊之因素,該破壞型態稱之為裂縫偏轉。接著以有限元素模擬並加入能量釋放率的觀點,分析鴯鶓蛋殼裂縫生長之情況。發現當鴯鶓蛋殼受壓縮產生之環狀裂縫生長至垂直結晶層與孔洞層交界面時,裂縫向下生長一小範圍並於孔洞層中偏轉的能量釋放率較不偏轉的裂縫大,且改變此小範圍之幾何亦有相同之結果。由此驗證鴯鶓蛋殼中孔洞層對於裂縫生長之影響與產生裂縫偏轉之傾向,此與實驗中所觀察到的現象相符。透過本研究對於於乒乓球與鴯鶓蛋殼之分析與討論,可對於薄殼結構的失效現象有更進一步的了解。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:41:41Z (GMT). No. of bitstreams: 1
U0001-2207202110065200.pdf: 30534906 bytes, checksum: 5b2a6acb7d57885a9427a2169cb76278 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 I 摘要 II Abstract IV 目錄 VII 圖目錄 IX 表目錄 XII 符號表 XIII Chapter 1 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.2.1 薄殼後挫屈行為(Post-buckling behavior) 3 1.2.2 鳥類蛋殼結構與破裂型態 6 1.2.3 裂縫生長與偏轉(Crack propagation and deflection) 9 1.3 論文架構 12 Chapter 2 相關理論 13 2.1 薄殼挫屈 13 2.2 赫茲錐狀破壞 15 2.3 能量釋放率(Energy release rate) 19 Chapter 3 實驗方法與儀器設備 22 3.1 實驗樣本 22 3.1.1 乒乓球樣本 22 3.1.2 鳥類蛋殼樣本 23 3.2 基本量測 24 3.3 靜態壓縮試驗 25 3.3.1 乒乓球壓縮試驗 26 3.3.2 鳥類蛋殼壓縮試驗 27 3.4 掃描式電子顯微鏡 28 3.5 電腦斷層掃描 29 3.6 背向散射電子繞射技術 30 3.7 微結構觀察之試片製備 31 Chapter 4 有限元素模擬模型之建立 32 4.1 乒乓球有限元素模型 32 4.1.1 乒乓球壓縮模型 32 4.1.2 不同幾何形狀壓頭 35 4.2 鴯鶓蛋殼有限元素模型 36 4.2.1 二維桿件模型 37 4.2.2 三維鴯鶓蛋殼模型 39 Chapter 5 結果與討論 47 5.1 乒乓球壓縮實驗與有限元素模型 47 5.1.1 挫屈形貌(Buckling pattern) 48 5.1.2 圓形截面實心壓頭 50 5.1.3 摩擦係數之調整 54 5.1.4 多邊形截面實心壓頭 55 5.1.5 各幾何截面空心壓頭 56 5.1.6 球殼材料降伏強度之影響 58 5.2 蛋殼壓縮實驗與有限元素模型 60 5.2.1 鳥類蛋殼結構 60 5.2.2 蛋殼破壞型態 63 5.2.3 應力分佈 65 5.2.4 能量釋放率 66 Chapter 6 結論與未來展望 71 6.1 結論 71 6.2 未來展望 73 參考文獻 74 著作目錄與附錄 86
dc.language.isozh-TW
dc.subject裂縫偏轉zh_TW
dc.subject挫屈zh_TW
dc.subject彈塑性材料zh_TW
dc.subject有限元素法zh_TW
dc.subject破壞zh_TW
dc.subject蛋殼zh_TW
dc.subjectelastoplastic shellen
dc.subjectcrack deflectionen
dc.subject eggshellen
dc.subjectfractureen
dc.subjectnumerical simulationen
dc.subjectbucklingen
dc.title薄殼結構承受軸向負載後失效現象之模擬分析—以乒乓球及鴯鶓蛋殼為例zh_TW
dc.titleSimulations of Failure Phenomena of Thin-Shell Structures Under Axial Load: A Case Study of Ping Pong Ball and Emu Eggshellen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡佳霖(Hsin-Tsai Liu),劉建豪(Chih-Yang Tseng),李明蒼,王建凱
dc.subject.keyword挫屈,彈塑性材料,有限元素法,破壞,蛋殼,裂縫偏轉,zh_TW
dc.subject.keywordbuckling,elastoplastic shell,numerical simulation,fracture, eggshell,crack deflection,en
dc.relation.page92
dc.identifier.doi10.6342/NTU202101654
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-07-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
U0001-2207202110065200.pdf
Access limited in NTU ip range
29.82 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved