請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81180完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林詩舜(Shih-Shun Lin) | |
| dc.contributor.author | Phuong Anh Tran | en |
| dc.contributor.author | 陳芳英 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:34:42Z | - |
| dc.date.available | 2026-08-03 | |
| dc.date.available | 2022-11-24T03:34:42Z | - |
| dc.date.copyright | 2021-08-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-05 | |
| dc.identifier.citation | Bhaumik, S. R. (2021). Fluorescence resonance energy transfer in revealing protein-protein interactions in living cells. Emerg Top Life Sci., 5, 49-59. Bologna, N. G., Iselin, R., Abriata, L. A., Sarazin, A., Pumplin, N., Jay, F., Grentzinger, T., Dal Peraro, M., Voinnet, O. (2018). Nucleo-cytosolic Shuttling of ARGONAUTE1 Prompts a Revised Model of the Plant MicroRNA Pathway. Mol Cell., 15, 709-719. Braun, P., Gingras, A. C. (2012). History of protein-protein interactions: from egg-white to complex networks. Proteomics., 12, 1478-1498. Carthew, R. W., Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136, 642-655. Castillo-González, C., Zhang, X. (2018). Transactivator: A New Face of Arabidopsis AGO1. Dev. Cell, 44, 277-279. Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. V., Carrington, J. C. (2004). Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev., 18, 1179-1186. Chen, C. C., Chao, C. H., Chen, C. C., Yeh, S. D., Tsai, H. T., Chang, C. A. (2003). Identification of Turnip mosaic virus Isolates Causing Yellow Stripe and Spot on Calla Lily. Plant Dis., 87, 901-905. Denis, S., Eric, R. W. (2005). Confocal microscopy. In Encyclopedia of Biomaterials and Biomedical Engineering, Biomaterials, Biomedical Engineering. Informa Healthcare. Derrien, B., Baumberger, N., Schepetilnikov, M., Viotti, C., De Cillia, J., Ziegler-Graff, V., Isono, E., Schumacher, K., Genschik, P. (2012). Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. . Proc Natl Acad Sci U S A., 109(39), 15942-15946. Dunckley, T., Parker, R. (1999). The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J., 18, 5411-5422. Eulalio, A., Behm-Ansmant, I., Schweizer, D., Izaurralde, E. (2007). P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol., 11, 3970-3981. Hafrén, A., Üstün, S., Hochmuth, A., Svenning, S., Johansen, T., Hofius, D. (2018). Turnip Mosaic Virus Counteracts Selective Autophagy of the Viral Silencing Suppressor HCpro. Plant Physiol., 176, 649-662. Hetzer, M. W. (2010). The nuclear envelope. Cold Spring Harb. Perspect. Biol., 2. Iki, T., Yoshikawa, M., Nishikiori, M., Jaudal, M. C., Matsumoto-Yokoyama, E., Mitsuhara, I., Meshi, T., Ishikawa, M. (2010). In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell., 282-291. Kasschau, K. D., Carrington, J. C. (1998). A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell., 95, 461-470. Klionsky, D. J., Emr, S. D. (2000). Autophagy as a regulated pathway of cellular degradation. Science, 290, 1717-1721. Krol, J., Loedige, I., Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet., 11, 597-610. Kung, Y. J., Lin, P. C., Yeh, S. D., Hong, S. F., Chua, N. H., Liu, L. Y., Lin, C. P., Huang, Y. H., Wu, H. W., Chen, C. C., Lin, S. S. (2014). Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Mol. Plant Microbe Interact., 27, 944-955. Kurihara, Y., Watanabe, Y. (2004). Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A, 101, 12753-12758. Laine, R. F., Tosheva, K. L., Gustafsson, N., Gray, R. D. M., Almada, P., Albrecht, D., Risa, G. T., Hurtig, F., Lindås, A. C., Baum, B., Mercer, J., Leterrier, C., Pereira, P. M., Culley, S., Henriques, R. (2019). NanoJ: a high-performance open-source super-resolution microscopy toolbox. J Phys D Appl Phys., 16, 17-52. Niu, Q. W., Lin, S. S., Reyes, J. L., Chen, K. C., Wu, H. W., Yeh, S. D., Chua, N. H. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol., 24, 1420-1428. Park, W., Li, J., Song, R., Messing, J., Chen, X. (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol., 12, 1484-1495. Pratt, A. J., MacRae, I. J. (2009). The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem., 17897-17901. Rao, V. S., Srinivas, K., Sujini, G. N., Kumar, G. N. (2018). Protein-protein interaction detection: methods and analysis. Int J Proteomics. Ratcliff, F. G., Harriso, B. D., Baulcombe, D. C. (1997). A similarity between viral defense and gene silencing in plants. Science, 276, 1558–1560. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., Bartel, D. P. (2002). MicroRNAs in plants. Genes Dev., 16, 1616-1626. Sanderson, M. J., Smith, I., Parker, I., Bootman, M. D. (2014). Fluorescence microscopy. Cold Spring Harb Protoc. Shang, Q. W. (2020). Identification of Cas9 gene in Lactobacillus reuteri Pg4 and investigation of the role of ATG genes in PTGS suppression through CRISPR/Cas9 knock out approach. Master Thesis, 22-24. Shiboleth, Y. M., Haronsky, E., Leibman, D., Arazi, T., Wassenegger, M., Whitham, S. A., Gaba, V., Gal-On, A. (2007). The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J. Virol., 81, 13135-13148. Sparkes, I. A., Runions, J., Kearns, A., Hawes, C. (2006). Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc., 4, 2019-2025. Teixeira, D., Sheth, U., Valencia-Sanchez, M. A., Brengues, M., Parker, R. (2005). Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA, 11, 371-382. Tishinov, K., Spang, A. (2020). Decapping complex is essential for functional P-body formation and is buffered by nuclear localization. bioRxiv, 2857-2900. Valli, A. A., Gallo, A., Rodamilans, B., López-Moya, J. J., García, J. A. (2018). The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. Mol Plant Pathol., 19, 744-763. Vazquez, F., Vaucheret, H., Rajagopalan, R., Lepers, C., Gasciolli, V., Mallory, A. C., Hilbert, J. L., Bartel, D. P., Crété, P. (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs Mol Cell., 16, 69-79. Wegel, E., Göhler, A., Lagerholm, B. C., Wainman, A., Uphoff, S., Kaufmann, R., Dobbie, I. M. (2016). Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: A practical comparison. Sci Rep., 6. Wouters, F. S., Verveer, P. J., Bastiaens, P. I. (2001). Imaging biochemistry inside cells. Trends Cell Biol., 11(5), 203-211. Wu, H. W., Lin, S. S., Chen, K. C., Yeh, S. D., Chua, N. H. (2010). Discriminating mutations of HC-Pro of zucchini yellow mosaic virus with differential effects on small RNA pathways involved in viral pathogenicity and symptom development. Mol Plant Microbe Interact., 23, 17-28. Xie, Z., Klionsky, D. J. (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol., 9, 1102-1109. Xu, J., Yang, J. Y., Niu, Q. W., Chua, N. H. (2006). Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell, 18, 3386-3398. Yang, Z., Ebright, Y. W., Yu, B., Chen, X. (2006). HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide. Nucleic Acids Res., 34, 667-675. Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., Ohsumi, Y. (2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell., 16, 2967-2983. Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R. W., Steward, R., Chen, X. (2005). Methylation as a crucial step in plant microRNA biogenesis. Science., 307, 932-935. Yu, Y., Jia, T., Chen, X. (2017). The 'how' and 'where' of plant microRNAs. New Phytol., 216, 1002-1017. Zhang, B., You, C., Zhang, Y., Zeng, L., Hu, J., Zhao, M., Chen, X. (2020). Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in Arabidopsis. Nat Plants., 6, 957-969. Zhang, X., Hu, Y., Yang, X., Tang, Y., Han, S., Kang, A., Deng, H., Chi, Y., Zhu, D., Lu, Y. (2019). FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens Bioelectron. Zheng, H., Yan, F., Lu, Y., Sun, L., Lin, L., Cai, L., Hou, M., Chen, J. (2011). Mapping the self-interacting domains of TuMV HC-Pro and the subcellular localization of the protein. Virus Genes., 1, 110-116. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81180 | - |
| dc.description.abstract | Potyvirus 的基因靜默抑制子 HC-Pro 在抑制轉錄後基因靜默作用 (PTGS) 中起著重要的作用。然而,目前對於HC-Pro如何抑制微型核酸 (miRNA) 甲基化與 ARGONAUTE 1 (AGO1) 的加载以形成 RISC複合體 (RISC)的作用途徑尚未清楚。我们先前的研究表明HC-Pro 利用自噬途徑中的相關蛋白ATG8a介導降解ARGONAUTE1 (AGO1) 蛋白並抑制HEN1甲基轉移酶活性。本研究利用蛋白的螢光共位 (colocalization) 和福斯特能量共振轉移 (FRET) 研究in vivo細胞內蛋白質與蛋白質相互作用。我們的結果顯示 HC-Pro 与 AGO1 在Suppression body (S-body) 有間接相互作用。另外HC-Pro 和 ATG8a 有colocalization現象和相互作用,再次證明ATG8a 與HC-Pro 間接誘導 AGO1 降解有關。FRET 結果也顯示HC-Pro直接物理相互作用抑制 HEN1 甲基轉移酶活性,而未甲基化的微型核酸 (unMet-miRNA) 無法加載至 RISC 复合體。除此之外,HC-Pro 與Processing body (P-body) 標記物的mRNA-去頭蓋蛋白質2 (DCP2)有colocalization現象和相互作用。實驗結果顯示HC-Pro 在細胞質形成S-body。根據PTGS 分子如AGO1、HEN1、ATG8a 和 DCP2 的焦距大小結果,我們推測S-body會吸引這些蛋白進入。了解 S-body 和 PTGS 分子之間的關係讓我们更加理解 HC-Pro 如何抑制微型核酸途徑,并確認微型核酸被甲基化與加載到 AGO1 的位置。這些研究可闡明HEN1 如何喪失甲基化活性。進一步的研究可以顯示未甲基化的微型核酸如何誘導ATG8a自噬蛋白介導 AGO1 降解。綜合來說,這項研究有助于理解 PTGS 調控與植物和病毒之間的相互作用。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:34:42Z (GMT). No. of bitstreams: 1 U0001-0308202117144900.pdf: 2185090 bytes, checksum: 61d46758d289b2470ebec4dd59d1ff99 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "Acknowledgement II 中文摘要 III Abstract IV Contents VI List of figures VIII Introduction 1 PTGS pathway and the viral suppressor HC-Pro 1 TuGR and TuGK 3 FRET application in protein-protein interaction research 3 Materials and Methods 5 Plant materials and growth conditions 5 pENTR clone construction 5 Binary vector construction 6 Transient expression by agro-infiltration 7 Confocol microscopy 7 Size measurement 8 Super-resolution images analysis 8 Fluorescence Resonance Energy Transfer (FRET) 8 Results 10 Subcellular localization of HC-Pro suppressor, and components of gene silencing and autophagy 10 Evaluation of the size of different bodies 10 Subcellular co-localization of HC-Pro and HEN1 11 Subcellular co-localization of HC-Pro and DCP2 11 Subcellular co-localization of HC-Pro and AGO1 12 Subcellular co-localization of HC-Pro and ATG8a 13 Evaluation of the physical interaction between HC-Pro and gene silencing components by FRET 14 Super-resolution images of S-body 14 Discussion 16 The S-body is an important place for HC-Pro to inhibit miRNA pathway 16 Physical interaction between HC-Pro and certain RNA silencing components 17 HC-ProK versus HC-ProR 19 Using ultra-resolution microscope to study the composition of S-body 19 The working hypotheses 20 The future perspective 22 Conclusion 24 References 25 Figures 31" | |
| dc.language.iso | en | |
| dc.subject | 轉錄後基因靜默作用 | zh_TW |
| dc.subject | 基因靜默抑制子 | zh_TW |
| dc.subject | 蛋白质-蛋白质相互作用 | zh_TW |
| dc.subject | DCP2 | en |
| dc.subject | Protein-protein interaction | en |
| dc.subject | TuMV | en |
| dc.subject | HC-Pro | en |
| dc.subject | PTGS | en |
| dc.subject | AGO1 | en |
| dc.subject | ATG8a | en |
| dc.subject | HEN1 | en |
| dc.subject | S-body | en |
| dc.title | 利用細胞生物學策略分析 HC-Pro 如何作用並干擾重要核酸靜默反應元件之研究 | zh_TW |
| dc.title | Investigation of the HC-Pro interaction and interfering with critical components of RNA silencing through cell biology approach | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳素幸(Hsin-Tsai Liu),邱子珍(Chih-Yang Tseng),陳荷明,朱士維 | |
| dc.subject.keyword | 蛋白质-蛋白质相互作用,基因靜默抑制子,轉錄後基因靜默作用, | zh_TW |
| dc.subject.keyword | Protein-protein interaction,TuMV,HC-Pro,PTGS,AGO1,ATG8a,DCP2,HEN1,S-body, | en |
| dc.relation.page | 48 | |
| dc.identifier.doi | 10.6342/NTU202102054 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-06 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物科技研究所 | zh_TW |
| dc.date.embargo-lift | 2026-08-03 | - |
| 顯示於系所單位: | 生物科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0308202117144900.pdf 未授權公開取用 | 2.13 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
