請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81004完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡宛珊(Wan-Shan Tsai) | |
| dc.contributor.author | Yu-Ying Huang | en |
| dc.contributor.author | 黃育瑩 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:25:45Z | - |
| dc.date.available | 2021-09-11 | |
| dc.date.available | 2022-11-24T03:25:45Z | - |
| dc.date.copyright | 2021-09-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-06 | |
| dc.identifier.citation | Absi, R. (2011). An ordinary differential equation for velocity distribution and dip-phenomenon in open channel flows. Journal of Hydraulic Research, 49(1), 82-89. Bailey, S. C., Smits, A. J. (2010). Experimental investigation of the structure of large-and very-large-scale motions in turbulent pipe flow. Journal of Fluid Mechanics, 651, 339. Belin, F., Maurer, J., Tabeling, P., Willaime, H. (1996). Observation of intense filaments in fully developed turbulence. Journal de Physique II, 6(4), 573-583. Bradley, D. N., Tucker, G. E., Benson, D. A. (2010). Fractional dispersion in a sand bed river. Journal of Geophysical Research: Earth Surface, 115(F1). Carlier, J., Stanislas, M. (2005). Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. Journal of Fluid Mechanics, 535, 143-188. Chen, D., Sun, H., Zhang, Y. (2013). Fractional dispersion equation for sediment suspension. Journal of Hydrology, 491, 13-22. Chien, N., Wan, Z. (1999). Mechanics of sediment transport. Cho, M., Hwang, Y., Choi, H. (2018). Scale interactions and spectral energy transfer in turbulent channel flow. Clauser, F. H. (1954). Turbulent boundary layers in adverse pressure gradients. Journal of the Aeronautical Sciences, 21(2), 91-108. Clauser, F. H. (1956). The turbulent boundary layer. In Advances in applied mechanics (Vol. 4, pp. 1-51): Elsevier. Coleman, S. E., Nikora, V. I. (2009). Bed and flow dynamics leading to sediment-wave initiation. Water Resources Research, 45(4). doi:https://doi.org/10.1029/2007WR006741 Coles, D. (1956). The law of the wake in the turbulent boundary layer. Journal of Fluid Mechanics, 1(2), 191-226. Coles, D. (1957). Remarks on the equilibrium turbulent boundary layer. Journal of the Aeronautical Sciences, 24(7), 495-506. De Silva, C., Marusic, I., Woodcock, J., Meneveau, C. (2015). Scaling of second-and higher-order structure functions in turbulent boundary layers. Journal of Fluid Mechanics, 769, 654. Deshpande, R., Chandran, D., Monty, J. P., Marusic, I. (2020). Two-dimensional cross-spectrum of the streamwise velocity in turbulent boundary layers. Journal of Fluid Mechanics, 890. Dizaji, F. F., Marshall, J. S., Grant, J. R. (2018). A stochastic vortex structure method for interacting particles in turbulent shear flows. Physics of Fluids, 30(1), 013301. dos Santos, M. A. (2019). Analytic approaches of the anomalous diffusion: A review. Chaos, Solitons Fractals, 124, 86-96. Duan, Y., Zhang, P., Zhong, Q., Zhu, D., Li, D. (2020). Characteristics of wall-attached motions in open channel flows. Physics of Fluids, 32(5), 055110. Einstein, H. A. (1950). The bed-load function for sediment transportation in open channel flows: US Government Printing Office. Fischer, H. B., List, J. E., Koh, C. R., Imberger, J., Brooks, N. H. (1979). Mixing in inland and coastal waters: Academic press. French, R. H., French, R. H. (1985). Open-channel hydraulics: McGraw-Hill New York. Hu, R., Yang, X. I., Zheng, X. (2020). Wall-attached and wall-detached eddies in wall-bounded turbulent flows. Journal of Fluid Mechanics, 885. Hunter, J., Craig, P., Phillips, H. (1993). On the use of random walk models with spatially variable diffusivity. Journal of Computational Physics, 106(2), 366-376. Hwang, Y. (2016). Mesolayer of attached eddies in turbulent channel flow. Physical Review Fluids, 1(6), 064401. Jiménez, J., Wray, A. A., Saffman, P. G., Rogallo, R. S. (1993). The structure of intense vorticity in isotropic turbulence. Journal of Fluid Mechanics, 255, 65-90. Kambe, T., Hatakeyama, N. (2000). Statistical laws and vortex structures in fully developed turbulence. Fluid Dynamics Research, 27(4), 247. Keshavarzi, A. R., Ziaei, A. N., Homayoun, E., Shirvani, A. (2005). Fractal-Markovian scaling of turbulent bursting process in open channel flow. Chaos, Solitons Fractals, 25(2), 307-318. Kunkel, G. J., Marusic, I. (2006). Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. Lee, M., Moser, R. D. (2014). Direct numerical simulation of turbulent channel flow up to $ Re_\tau\approx 5200$. arXiv preprint arXiv:1410.7809. Liu, C. C.-H., Tsai, C. W., Huang, Y.-Y. (2021). Development of a Backward–Forward Stochastic Particle Tracking Model for Identification of Probable Sedimentation Sources in Open Channel Flow. Mathematics, 9(11), 1263. Lozano-Durán, A., Flores, O., Jiménez, J. (2012). The three-dimensional structure of momentum transfer in turbulent channels. Journal of Fluid Mechanics, 694, 100. Lozano-Durán, A., Jiménez, J. (2014). Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. Journal of Fluid Mechanics, 759, 432. Man, C., Tsai, C. W. (2007). Stochastic partial differential equation-based model for suspended sediment transport in surface water flows. Journal of engineering mechanics, 133(4), 422-430. Martin, R. L., Jerolmack, D. J., Schumer, R. (2012). The physical basis for anomalous diffusion in bed load transport. Journal of Geophysical Research: Earth Surface, 117(F1). Marusic, I. (2001). On the role of large-scale structures in wall turbulence. Physics of Fluids, 13(3), 735-743. Marusic, I., Hutchins, N., Mathis, R. (2009). High Reynolds number effects in wall turbulence. Paper presented at the Sixth International Symposium on Turbulence and Shear Flow Phenomena. Marusic, I., Kunkel, G. J. (2003). Streamwise turbulence intensity formulation for flat-plate boundary layers. Physics of Fluids, 15(8), 2461-2464. Marusic, I., Monty, J. P. (2019). Attached eddy model of wall turbulence. Annual Review of Fluid Mechanics, 51, 49-74. Marusic, I., Monty, J. P., Hultmark, M., Smits, A. J. (2013). On the logarithmic region in wall turbulence. Journal of Fluid Mechanics, 716. Nezu, I., Nakagawa, H., Jirka, G. H. (1994). Turbulence in open-channel flows. Journal of hydraulic engineering, 120(10), 1235-1237. Nikora, V., Habersack, H., Huber, T., McEwan, I. (2002). On bed particle diffusion in gravel bed flows under weak bed load transport. Water Resources Research, 38(6), 17-11-17-19. Noguchi, K., Nezu, I. (2009). Particle–turbulence interaction and local particle concentration in sediment-laden open-channel flows. Journal of Hydro-environment Research, 3(2), 54-68. Oh, J., Tsai, C. W. (2010). A stochastic jump diffusion particle‐tracking model (SJD‐PTM) for sediment transport in open channel flows. Water Resources Research, 46(10). Perry, A., Chong, M. (1982). On the mechanism of wall turbulence. Journal of Fluid Mechanics, 119, 173-217. Perry, A., Henbest, S., Chong, M. S. (1986). A theoretical and experimental study of wall turbulence. Journal of Fluid Mechanics, 165, 163-199. Perry, A., Marusic, I. (1995). A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. Phillips, C. B., Martin, R. L., Jerolmack, D. J. (2013). Impulse framework for unsteady flows reveals superdiffusive bed load transport. Geophysical Research Letters, 40(7), 1328-1333. Pope, S. (1994). Lagrangian PDF methods for turbulent flows. Annual Review of Fluid Mechanics, 26(1), 23-63. Rast, M. P., Pinton, J.-F., Mininni, P. D. (2016). Turbulent transport with intermittency: Expectation of a scalar concentration. Physical Review E, 93(4), 043120. Rijn, L. C. v. (1984). Sediment transport, part II: suspended load transport. Journal of hydraulic engineering, 110(11), 1613-1641. Rouse, H. (1937). Modern conceptions of the mechanics of fluid turbulence. Transactions of the American Society of Civil Engineers, 102(1), 463-505. Russo, F., Tudor, C. A. (2006). On bifractional Brownian motion. Stochastic Processes and their applications, 116(5), 830-856. Saletti, M., Molnar, P., Zimmermann, A., Hassan, M. A., Church, M. (2015). Temporal variability and memory in sediment transport in an experimental step‐pool channel. Water Resources Research, 51(11), 9325-9337. Schumer, R., Meerschaert, M. M., Baeumer, B. (2009). Fractional advection‐dispersion equations for modeling transport at the Earth surface. Journal of Geophysical Research: Earth Surface, 114(F4). Smits, A. J., McKeon, B. J., Marusic, I. (2011). High–Reynolds number wall turbulence. Annual Review of Fluid Mechanics, 43, 353-375. Socolofsky, S. A., Jirka, G. H. (2005). Special topics in mixing and transport processes in the environment. Engineering–Lectures. 5th Edition. Texas A M University, 1-93. Spivakovskaya, D., Heemink, A. W., Schoenmakers, J. G. (2007). Two-particle models for the estimation of the mean and standard deviation of concentrations in coastal waters. Stochastic Environmental Research and Risk Assessment, 21(3), 235-251. Sujovolsky, N. E., Mininni, P. D., Rast, M. P. (2018). Single-particle dispersion in stably stratified turbulence. Physical Review Fluids, 3(3), 034603. Tennekes, H., Lumley, J. L. (1972). A first course in turbulence H. Tennekes and J.L. Lumley. Cambridge, Mass: MIT Press. Toh, S., Itano, T. (2005). Interaction between a large-scale structure and near-wall structures in channel flow. Journal of Fluid Mechanics, 524, 249-262. Townsend, A. A. (1976). The structure of turbulent shear flow / by A.A. Townsend (2d ed. ed.). Cambridge [England] ;: Cambridge University Press. Tsai, C. W., Huang, S. H. (2019). Modeling suspended sediment transport under influence of turbulence ejection and sweep events. Water Resources Research, 55(7), 5379-5393. Tsai, C. W., Hung, S. Y., Oh, J. (2018). A stochastic framework for modeling random-sized batch arrivals of sediment particles into open channel flows. Stochastic Environmental Research and Risk Assessment, 32(7), 1939-1954. Tsai, C. W., Hung, S. Y., Wu, T.-H. (2020). Stochastic sediment transport: anomalous diffusions and random movement. Stochastic Environmental Research and Risk Assessment, 1-17. Tsai, C. W., Lin, E. Y., Hung, S. Y. (2016). Incorporating a trend analysis of large flow perturbations into stochastic modeling of particle transport in open channel flow. Journal of Hydrology, 541, 689-702. Van Kampen, N. G. (1992). Stochastic processes in physics and chemistry (Vol. 1): Elsevier. Vlad, M., Spineanu, F. (2015). Trajectory statistics and turbulence evolution. Chaos, Solitons Fractals, 81, 463-472. Wiener, N. (1923). Differential‐Space. Journal of Mathematics and Physics, 2(1-4), 131-174. Woodcock, J., Marusic, I. (2015). The statistical behaviour of attached eddies. Physics of Fluids, 27(1), 015104. Wren, D., Bennett, S., Barkdoll, B., Kuhnle, R. (2005). Distributions of velocity, turbulence, and suspended sediment over low-relief antidunes. Journal of Hydraulic Research, 43(1), 3-11. Wu, F.-C., Lin, Y.-C. (2002). Pickup probability of sediment under log-normal velocity distribution. Journal of hydraulic engineering, 128(4), 438-442. Wu, K.-T. (2020). Characterization of Turbulent Flow Statistics under the Spatial-temporal Influence of Ejection and Sweep Events in Wall-bounded Turbulent Flows. National Taiwan University. Yang, X., Marusic, I., Meneveau, C. (2016). Hierarchical random additive process and logarithmic scaling of generalized high order, two-point correlations in turbulent boundary layer flow. Physical Review Fluids, 1(2), 024402. Yoon, M., Hwang, J., Yang, J., Sung, H. J. (2020). Wall-attached structures of streamwise velocity fluctuations in an adverse-pressure-gradient turbulent boundary layer. Journal of Fluid Mechanics, 885. Yoon, M., Yang, J.-m., Hwang, J., Sung, H. J. (2019). Wall-Attached and Detached Structures in a Turbulent Boundary Layer Subjected to Adverse Pressure Gradient. Paper presented at the 15th Asian Symposium on Visualization. Zhang, Z., Chen, Q. (2007). Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmospheric environment, 41(25), 5236-5248. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81004 | - |
| dc.description.abstract | "明渠流中的泥沙懸浮顆粒傳輸廣泛應用在水利工程上,像是在觀察河川地貌變化或是水質估計等。泥沙顆粒在水中的運動除了隨著水流方向外,也會受到紊流的影響向四周不規則擴散。因此,本研究將泥沙顆粒的運動軌跡視為一隨機過程,以力學結合序率方法(Stochastic method)來模擬泥沙顆粒的運動,並利用布朗運動(Brownian motion)來描述泥沙顆粒受到紊流作用的不規則運動。 在紊流邊界層中,存在著很多不同大小速度尺度的渦流(Eddies),這些渦流會影響顆粒的運動情形,例如ejection及sweep事件的發生。其中又以與底床接觸的附著型渦流(Attached eddies)對於邊界層顆粒運動的影響更為重要,而Perry and Marusic (1995) 進一步將附著型渦流分為兩種類型,分別是直接與底床接觸的type-A渦流(type-A eddies),及存在於邊界層wake區域且無直接接觸底床但其渦流尺度受到與底床距離影響的type-B渦流(type-B eddies)。因此本研究將結合此概念與隨機擴散例子追蹤模型(Stochastic Diffusion Particle Tracking Model, SD-PTM),來模擬在紊流邊界層中泥沙顆粒受到附著型渦流影響的運動現象。 以朗之萬方程(Langevin equation)為原型推導出的SD-PTM包含兩個基本元素:描述顆粒隨著水流方項運動的平均漂移項(Mean drift term);顆粒受到紊流影響而隨機運動的紊流項(Turbulence term),本研究基於SD-PTM提出兩種模型來考慮type-A渦流及type-B渦流對於泥沙顆粒的影響。其中modified SD-PTM將紊流項分成兩項來討論,分別是type-A渦流的影響及type-B渦流的影響。另一個模型SEC-PTM(Stochastic Eddy Constrained Particle Tracking Model)結合兩種渦流各自的物理特性,將受到渦流影響的顆粒位移以圓弦長來模擬。透過顆粒路徑的統計值來分析type-A及type-B渦流對顆粒的影響,並以泥沙濃度來驗證模型的準確性。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:25:45Z (GMT). No. of bitstreams: 1 U0001-3108202119050300.pdf: 3206359 bytes, checksum: cbad0ef3094d961d0ad76b8c24bac4ea (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 # 誌謝 ii 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES xi LIST OF TABLES xv Chapter 1 Introduction 1 1.1 Background of the study 1 1.2 Research hypotheses 3 1.3 Objectives of the study 4 1.4 Framework of the study 5 1.5 Overview of the thesis 6 Chapter 2 Literature review 7 2.1 Stochastic particle tracking model 7 2.2 Study of the type-A, type-B eddy and attached eddy model 10 2.3 Anomalous diffusions of sediment particles 15 2.4 Experimental data 16 2.5 Summary 18 Chapter 3 Methodology of Stochastic Modeling and Attached Eddy Model 19 3.1 Stochastic modeling 19 3.1.1 Markov process 19 3.1.1 Wiener process 19 3.1.2 Stochastic diffusion process 20 3.2 Attached eddy model of Perry and Marusic (1995) 22 3.3 Resuspension mechanism 26 3.4 Summary 27 Chapter 4 Modeling the suspended sediment transport considering the overall contribution of attached eddies 28 4.1 Motivation 28 4.2 Methodology 29 4.2.1 Diffusion effect coefficient 29 4.2.2 Governing equation 30 4.2.3 Sediment diffusivity 31 4.3 Simulation 33 4.3.1 Ensemble Results 33 4.3.2 Model validation with sediment concentration profile 39 4.4 Influence under consideration of attached eddies 40 4.5 Contribution of type-A and type-B eddies 46 4.6 Summary 50 Chapter 5 Incorporating the circular flow motion and eddy properties into suspended sediment transport modeling 51 5.1 Motivation 51 5.2 Methodology 53 5.2.1 Eddy constrained random walk (ECRW) 53 5.2.2 Governing equation of the Stochastic Eddy Constrained Particle Tracking Model 55 5.3 Model development and results 57 5.3.1 Deciding the multiple of the circulation radius 57 5.3.2 Particle trajectory 59 5.3.3 Ensemble Results 60 5.3.4 Model validation with sediment concentration profile 65 5.3.5 Influence of the trapping time in the simulation 66 5.4 Influence of the type-A and type-B eddies in the boundary layer 68 5.5 Results comparison with modified SD-PTM 71 5.6 Application of the SEC-PTM 77 5.7 Distinguished feature of the SEC-PTM 85 5.8 Summary 86 Chapter 6 Conclusions and Recommendations 87 6.1 Summary and conclusions 87 6.2 Recommendations and future work 89 REFERENCES 91 " | |
| dc.language.iso | en | |
| dc.subject | 布朗運動 | zh_TW |
| dc.subject | 懸浮顆粒傳輸 | zh_TW |
| dc.subject | 序率模式 | zh_TW |
| dc.subject | 顆粒軌跡模型 | zh_TW |
| dc.subject | 附著型渦流 | zh_TW |
| dc.subject | Brownian motion | en |
| dc.subject | attached eddies | en |
| dc.subject | stochastic particle tracking model | en |
| dc.subject | suspended sediment transport | en |
| dc.subject | stochastic methods | en |
| dc.title | 在附著性渦流影響下紊流邊界層的懸浮載傳輸:泥沙濃度及異常擴散 | zh_TW |
| dc.title | Stochastic Sediment Transport in Turbulent Boundary Layers Under the Influence of Attached Eddies: Concentration Profile and Anomalous Diffusion | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張倉榮(Hsin-Tsai Liu),余化龍(Chih-Yang Tseng),何昊哲 | |
| dc.subject.keyword | 懸浮顆粒傳輸,序率模式,顆粒軌跡模型,附著型渦流,布朗運動, | zh_TW |
| dc.subject.keyword | attached eddies,stochastic methods,Brownian motion,suspended sediment transport,stochastic particle tracking model, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU202102912 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3108202119050300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
