請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80968完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅翊禎(Yi-Chen Lo) | |
| dc.contributor.author | Chia-Yu Lin | en |
| dc.contributor.author | 林家羽 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:24:06Z | - |
| dc.date.available | 2021-11-08 | |
| dc.date.available | 2022-11-24T03:24:06Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-10 | |
| dc.identifier.citation | 賴宜姍. 探討酵母菌中β-葡萄糖苷酶之特性及受質水解特異性. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 臺灣. 2020. 李雅雯. 利用液相層析串聯高解析質譜法建立人參皂苷及皂苷元分析平台. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 臺灣. 2021. 林欣誼. 以酵母菌發酵提高苦瓜甲醇萃取物中功效性成分3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al之探討. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 臺北, 臺灣. 2019. Bai, Y.; Zhao, L.; Qu, C.; Meng, X.; Zhang, H., Microwave degradation of floatation-enriched ginsenoside extract from Panax quinquefolium L. leaf. J Agric Food Chem 2009, 57 (21), 10252-60. Celik, E.; Calik, P., Production of recombinant proteins by yeast cells. Biotechnol Adv 2012, 30 (5), 1108-18. Chang, K. H.; Jo, M. N.; Kim, K. T.; Paik, H. D., Purification and characterization of a ginsenoside Rb(1)-hydrolyzing beta-glucosidase from Aspergillus niger KCCM 11239. Int J Mol Sci 2012, 13 (9), 12140-52. Chen, R. J.; Chung, T. Y.; Li, F. Y.; Lin, N. H.; Tzen, J. T., Effect of sugar positions in ginsenosides and their inhibitory potency on Na+/K+-ATPase activity. Acta Pharmacol Sin 2009, 30 (1), 61-9. da Silva, T. M.; Pessela, B. C.; da Silva, J. C. R.; Lima, M. S.; Jorge, J. A.; Guisan, J. M.; Polizeli, M. d. L. T. M., Immobilization and high stability of an extracellular β-glucosidase from Aspergillus japonicus by ionic interactions. Journal of Molecular Catalysis B: Enzymatic 2014, 104, 95-100. de Groot, N. S.; Ventura, S., Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett 2006, 580 (27), 6471-6. Francis, D. M.; Page, R., Strategies to optimize protein expression in E. coli. Curr Protoc Protein Sci 2010, Chapter 5, Unit 5 24 1-29. Gong, G.; Zheng, Z.; Liu, H.; Wang, L.; Diao, J.; Wang, P.; Zhao, G., Purification and characterization of a beta-glucosidase from aspergillus niger and its application in the hydrolysis of geniposide to genipin. J Microbiol Biotechnol 2014, 24 (6), 788-94. Hao, S.; Liu, Y.; Qin, Y.; Zhao, L.; Zhang, J.; Wu, T.; Sun, B.; Wang, C., Expression of a highly active β-glucosidase from Aspergillus niger AS3.4523 in Escherichia coli and its application in gardenia blue preparation. Annals of Microbiology 2020, 70 (1). Hsu, B. Y.; Chen, C. H.; Lu, T. J.; Hwang, L. S., Bioconversion of Ginsenosides in the American Ginseng (西洋參 Xī Yáng Shēn) Extraction Residue by Fermentation with Lingzhi (靈芝 Líng Zhī, Ganoderma Lucidum). Journal of Traditional and Complementary Medicine 2013, 3 (2), 95-101. Kim, A. D.; Kang, K. A.; Kim, H. S.; Kim, D. H.; Choi, Y. H.; Lee, S. J.; Kim, H. S.; Hyun, J. W., A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis 2013a, 4, e750. Kim, J. K.; Cui, C. H.; Yoon, M. H.; Kim, S. C.; Im, W. T., Bioconversion of major ginsenosides Rg1 to minor ginsenoside F1 using novel recombinant ginsenoside hydrolyzing glycosidase cloned from Sanguibacter keddieii and enzyme characterization. J Biotechnol 2012, 161 (3), 294-301. Kim, Y. E.; Hipp, M. S.; Bracher, A.; Hayer-Hartl, M.; Hartl, F. U., Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 2013b, 82, 323-55. Kim, Y. J.; Choi, W. I.; Jeon, B. N.; Choi, K. C.; Kim, K.; Kim, T. J.; Ham, J.; Jang, H. J.; Kang, K. S.; Ko, H., Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-beta1-induced epithelial-mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance. Toxicology 2014, 322, 23-33. Lee, J. W.; Choi, B. R.; Kim, Y. C.; Choi, D. J.; Lee, Y. S.; Kim, G. S.; Baek, N. I.; Kim, S. Y.; Lee, D. Y., Comprehensive Profiling and Quantification of Ginsenosides in the Root, Stem, Leaf, and Berry of Panax ginseng by UPLC-QTOF/MS. Molecules 2017, 22 (12). Li, W.; Fitzloff, J. F., Hplc Analysis of Ginsenosides in the Roots of Asian Ginseng (Panax Ginseng) and North American Ginseng (Panax Quinquefolius) with in-Line Photodiode Array and Evaporative Light Scattering Detection. Journal of Liquid Chromatography Related Technologies 2006, 25 (1), 29-41. Li, W.; Liu, Y.; Zhang, J. W.; Ai, C. Z.; Xiang, N.; Liu, H. X.; Yang, L., Anti-androgen-independent prostate cancer effects of ginsenoside metabolites in vitro: mechanism and possible structure-activity relationship investigation. Arch Pharm Res 2009, 32 (1), 49-57. Li, Z.; Ji, G. E., Ginseng fermented by mycotoxin non-producing Aspergillus niger: ginsenoside analysis and anti-proliferative effects. Food Sci Biotechnol 2017, 26 (4), 987-991. Liu, X. Y.; Hwang, E.; Park, B.; Ngo, H. T. T.; Xiao, Y. K.; Yi, T. H., Ginsenoside C-Mx Isolated from Notoginseng Stem-leaf Ginsenosides Attenuates Ultraviolet B-mediated Photoaging in Human Dermal Fibroblasts. Photochem Photobiol 2018, 94 (5), 1040-1048. Liu, X. Y.; Xiao, Y. K.; Hwang, E.; Haeng, J. J.; Yi, T. H., Antiphotoaging and Antimelanogenesis Properties of Ginsenoside C-Y, a Ginsenoside Rb2 Metabolite from American Ginseng PDD-ginsenoside. Photochem Photobiol 2019, 95 (6), 1412-1423. Liu, Z.; Xia, J.; Wang, C. Z.; Zhang, J. Q.; Ruan, C. C.; Sun, G. Z.; Yuan, C. S., Remarkable Impact of Acidic Ginsenosides and Organic Acids on Ginsenoside Transformation from Fresh Ginseng to Red Ginseng. J Agric Food Chem 2016, 64 (26), 5389-99. Niu, D.; Tian, X.; McHunu, N. P.; Jia, C.; Singh, S.; Liu, X.; Prior, B. A.; Lu, F., Biochemical characterization of three Aspergillus niger β-galactosidases. Electronic Journal of Biotechnology 2017, 27, 37-43. Park, E. H.; Kim, Y. J.; Yamabe, N.; Park, S. H.; Kim, H. K.; Jang, H. J.; Kim, J. H.; Cheon, G. J.; Ham, J.; Kang, K. S., Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell. J Ginseng Res 2014, 38 (1), 22-7. Pel, H. J.; de Winde, J. H.; Archer, D. B.; Dyer, P. S.; Hofmann, G.; Schaap, P. J.; Turner, G.; de Vries, R. P.; Albang, R.; Albermann, K.; Andersen, M. R.; Bendtsen, J. D.; Benen, J. A.; van den Berg, M.; Breestraat, S.; Caddick, M. X.; Contreras, R.; Cornell, M.; Coutinho, P. M.; Danchin, E. G.; Debets, A. J.; Dekker, P.; van Dijck, P. W.; van Dijk, A.; Dijkhuizen, L.; Driessen, A. J.; d'Enfert, C.; Geysens, S.; Goosen, C.; Groot, G. S.; de Groot, P. W.; Guillemette, T.; Henrissat, B.; Herweijer, M.; van den Hombergh, J. P.; van den Hondel, C. A.; van der Heijden, R. T.; van der Kaaij, R. M.; Klis, F. M.; Kools, H. J.; Kubicek, C. P.; van Kuyk, P. A.; Lauber, J.; Lu, X.; van der Maarel, M. J.; Meulenberg, R.; Menke, H.; Mortimer, M. A.; Nielsen, J.; Oliver, S. G.; Olsthoorn, M.; Pal, K.; van Peij, N. N.; Ram, A. F.; Rinas, U.; Roubos, J. A.; Sagt, C. M.; Schmoll, M.; Sun, J.; Ussery, D.; Varga, J.; Vervecken, W.; van de Vondervoort, P. J.; Wedler, H.; Wosten, H. A.; Zeng, A. P.; van Ooyen, A. J.; Visser, J.; Stam, H., Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 2007, 25 (2), 221-31. Qi, W.; He, Z., Enzymatic hydrolysis of protein: Mechanism and kinetic model. Frontiers of Chemistry in China 2006, 1 (3), 308-314. Qu, C.; Bai, Y.; Jin, X.; Wang, Y.; Zhang, K.; You, J.; Zhang, H., Study on ginsenosides in different parts and ages of Panax quinquefolius L. Food Chemistry 2009, 115 (1), 340-346. Quan, K.; Liu, Q.; Wan, J. Y.; Zhao, Y. J.; Guo, R. Z.; Alolga, R. N.; Li, P.; Qi, L. W., Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells. Sci Rep 2015, 5, 8598. Ruan, C. C.; Zhang, H.; Zhang, L. X.; Liu, Z.; Sun, G. Z.; Lei, J.; Qin, Y. X.; Zheng, Y. N.; Li, X.; Pan, H. Y., Biotransformation of ginsenoside Rf to Rh1 by recombinant beta-glucosidase. Molecules 2009, 14 (6), 2043-8. Shin, K. C.; Kim, T. H.; Choi, J. H.; Oh, D. K., Complete Biotransformation of Protopanaxadiol-Type Ginsenosides to 20- O-beta-Glucopyranosyl-20( S)-protopanaxadiol Using a Novel and Thermostable beta-Glucosidase. J Agric Food Chem 2018, 66 (11), 2822-2829. Wang, L.; Yang, X.; Yu, X.; Yao, Y.; Ren, G., Evaluation of antibacterial and anti-inflammatory activities of less polar ginsenosides produced from polar ginsenosides by heat-transformation. J Agric Food Chem 2013, 61 (50), 12274-82. Xu, X. F.; Gao, Y.; Xu, S. Y.; Liu, H.; Xue, X.; Zhang, Y.; Zhang, H.; Liu, M. N.; Xiong, H.; Lin, R. C.; Li, X. R., Remarkable impact of steam temperature on ginsenosides transformation from fresh ginseng to red ginseng. J Ginseng Res 2018, 42 (3), 277-287. Yan, X., Short-Chain Polysaccharide Analysis in Ethanol-Water Solutions. J AOAC Int 2017, 100 (4), 1134-1136. Yang, W.; Qiao, X.; Li, K.; Fan, J.; Bo, T.; Guo, D. A.; Ye, M., Identification and differentiation of Panax ginseng, Panax quinquefolium, and Panax notoginseng by monitoring multiple diagnostic chemical markers. Acta Pharm Sin B 2016, 6 (6), 568-575. Yang, W. Z.; Hu, Y.; Wu, W. Y.; Ye, M.; Guo, D. A., Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. Phytochemistry 2014, 106, 7-24. Yang, X.; Zhang, Y., Effect of temperature and sorbitol in improving the solubility of carboxylesterases protein CpCE-1 from Cydia pomonella and biochemical characterization. Appl Microbiol Biotechnol 2013, 97 (24), 10423-33. Yoshida, E.; Hidaka, M.; Fushinobu, S.; Koyanagi, T.; Minami, H.; Tamaki, H.; Kitaoka, M.; Katayama, T.; Kumagai, H., Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 beta-glucosidase from Kluyveromyces marxianus. Biochem J 2010, 431 (1), 39-49. Yu, S.; Zhou, X.; Li, F.; Xu, C.; Zheng, F.; Li, J.; Zhao, H.; Dai, Y.; Liu, S.; Feng, Y., Microbial transformation of ginsenoside Rb1, Re and Rg1 and its contribution to the improved anti-inflammatory activity of ginseng. Sci Rep 2017, 7 (1), 138. Zhang, R.; Huang, X. M.; Yan, H. J.; Liu, X. Y.; Zhou, Q.; Luo, Z. Y.; Tan, X. N.; Zhang, B. L., Highly Selective Production of Compound K from Ginsenoside Rd by Hydrolyzing Glucose at C-3 Glycoside Using beta-Glucosidase of Bifidobacterium breve ATCC 15700. J Microbiol Biotechnol 2019, 29 (3), 410-418. Zhu, Y.; Zhu, H.; Qiu, M.; Zhu, T.; Ni, J., Investigation on the mechanisms for biotransformation of saponins to diosgenin. World J Microbiol Biotechnol 2014, 30 (1), 143-52. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80968 | - |
| dc.description.abstract | "微生物之β-葡萄糖苷酶在不同受質之水解特異性,常應用於改善食品的風味或是提升食品中的活性成分。實驗室先前利用Kluyveromyces marxianus之 β-葡萄糖苷酶 (Bgl1)轉換苦瓜皂苷及羅漢果皂苷,發現其對於結構具有受質水解特異性,對於O-linked醣基及β-1,6特定鍵結可進行水解。人參皂苷的結構與苦瓜皂苷及羅漢果皂苷相似,因此,本研究將進一步探討Bgl1對人參皂苷之水解特性。Bgl1在30℃下,轉換原人參三醇型皂苷 (protopanaxatriol-type),反應0.5小時,Re及Rg1濃度分別由548 ppb及80 ppb顯著降低至212 ppb及52 ppb,20(S)-Rg2及20(S)-Rh1濃度分別由170 ppb及57 ppb顯著上升至1131 ppb及212 ppb,顯示Bgl1具有能力水解人參皂苷結構中O-linked醣基;在原人參二醇型皂苷 (protopanaxadiol-type)中,Bgl1反應1小時內,Rb1濃度由2116 ppb顯著降低至13 ppb,Rd濃度由1182 ppb顯著上升至3082 ppb後,再下降至2805 ppb,並產生具有高生理活性之Compound K,顯示Bgl1可依序水解Rb1結構中β-1,6鍵結及O-linked醣基。此外,Bgl1也可水解Rc、Rb2及Rb3結構中O-linked醣基,生成稀有人參皂Compound Mc、Compound Y及Compound Mx,但皆無法水解β-1,2鍵結之葡萄糖醣基,顯示Bgl1對於四環三萜之人參皂苷具有受質水解特異性。許多文獻指出不同來源之微生物β-葡萄糖苷酶,具有不同之水解特性。本研究希望深入探討同為真菌類之Aspergillus niger,其β-葡萄糖苷酶與K. marxianus之Bgl1水解位點差異性,利用異源蛋白表現系統,使E. coli大量表現A. niger重組β-葡萄糖苷酶,然而,發現蛋白最終會以包涵體(inclusion bodies)形式生成,而未能取得水溶性蛋白,因此,無法進一步進行試驗,未來期望可藉由改變蛋白表現系統之宿主或是與其他方法繼續探討其受質水解特異性。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:24:06Z (GMT). No. of bitstreams: 1 U0001-0709202118551400.pdf: 4694665 bytes, checksum: 7fda9dd94cff74fc749987c77779f526 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 目錄 第一章、前言 1 第二章、文獻回顧 2 第一節、人參 2 第二節、人參皂苷 2 一、人參皂苷結構 2 二、人參皂苷結構與生理活性之相關性 6 三、人參皂苷分析 8 第三節、人參皂苷轉換 10 一、熱加工法 10 二、化學法 10 三、生物轉換法 11 第四節、β-葡萄糖苷酶 12 一、酵母菌K. marxianus中的β-葡萄糖苷酶 12 二、黑麴菌A. niger中的β-葡萄糖苷酶 13 第三章、研究目的與實驗架構 15 第四章、材料與方法 17 第一節、實驗材料 17 一、人參樣品 17 二、菌株 17 三、質體 17 四、引子 17 五、藥品與試劑 20 六、溶劑配置 22 第二節、儀器設備 22 一、實驗耗材 22 二、一般儀器設備 23 三、套裝軟體 24 第三節、實驗方法 25 一、人參皂苷品管樣品製備 25 二、K. marxianus之Bgl1蛋白轉換人參萃取液 26 三、K. marxianus之Bgl1蛋白轉換單一人參皂苷 30 四、A.niger轉換人參皂苷及β-葡萄糖苷酶蛋白表現 35 第五章、結果與討論 39 第一節、人參皂苷萃取及分析平台之建立 39 一、品管樣品之分析條件 39 二、品管樣品之製備 40 第二節、探討K. marxianus之β-葡萄糖苷酶於人參皂苷上之水解特性 46 一、人參萃取液製備之確立 46 二、Bgl1蛋白於人參萃取液之轉換現象 46 三、Bgl1蛋白轉換單一人參皂苷 66 第三節、探討A. niger醣苷水解酶在人參皂苷之轉換特性及蛋白表現 74 一、A. niger於人參萃取物培養液之轉換能力 74 二、異源蛋白表現系統生成A. niger之β-葡萄糖苷酶 76 第六章、結論與展望 82 第七章、參考文獻 83 第八章、附錄 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 受質水解特異性 | zh_TW |
| dc.subject | β-葡萄糖苷酶 | zh_TW |
| dc.subject | O-linked醣基 | zh_TW |
| dc.subject | 人參皂苷 | zh_TW |
| dc.subject | ginsenosides | en |
| dc.subject | substrate specificity | en |
| dc.subject | β-O-glycosidic bond | en |
| dc.subject | β-glucosidases | en |
| dc.title | 探討真菌中β-葡萄糖苷酶於人參皂苷之受質特異性 | zh_TW |
| dc.title | Substrate specificity of fungus β-glucosidases on ginsenosides | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 潘敏雄(Hsin-Tsai Liu),呂廷璋(Chih-Yang Tseng),謝榮峯,陳宏彰,邱群惠 | |
| dc.subject.keyword | β-葡萄糖苷酶,受質水解特異性,O-linked醣基,人參皂苷, | zh_TW |
| dc.subject.keyword | β-glucosidases,substrate specificity,β-O-glycosidic bond,ginsenosides, | en |
| dc.relation.page | 104 | |
| dc.identifier.doi | 10.6342/NTU202103039 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-10 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0709202118551400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
