Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8077
Title: Peres位元亂數產生演算法及其串流版本之分析
Analysis of Peres' algorithm and its streaming versions for random number generation
Authors: Zhao Ging Randy Lim
林昭京
Advisor: 姚怡慶(Yi-Ching Yao)
Co-Advisor: 廖振鐸(Chen-Tuo Liao)
Keyword: 資訊熵,演算法分析,Elias提取器,Peres提取器,馮·諾伊曼提取器,超可加性,串流演算法,狀態樹,
entropy,analysis of algorithms,Elias' extractor,Peres' extractor,von Neu­mann's extractor,superadditivity,streaming algorithm,status tree,
Publication Year : 2020
Degree: 博士
Abstract: 對於利用投擲p-­偏銅板來產生獨立無偏的位元亂數,馮·諾伊曼(1951)提出了簡單的演算法,雖然這個演算法並非有效率地用上p-­偏銅板所蘊含的資訊熵,然而Peres(1992)提出可疊代使用上述演算法,並證明了這樣的疊代演算法的亂數產生效率無限趨近於p-­偏銅板的資訊熵上界。確切來說,Peres證明了b(n,p)/n均勻(於p ∈ (0,1))收斂到h(p),其中b(n,p)為Peres演算法應用於n次p-­偏銅板投擲結果(X_1,...,X_n)所產生的獨立無偏位元亂數個數的期望值,而h(p) = −p log p−(1−p)log(1−p)是單次p-­偏銅板投擲的資訊熵。我們考慮了b(n,p)的二階行為,即nh(p)−b(n,p)於n趨近於無窮大時的漸近行為。在p=1/2下,我們得到了 lim_{n→∞} log[n−b(n,1/2)]/log n = log[(1+√5)/2]這樣的結果。我們也扼要地討論了當nh(p)−b(n,p)在n趨近於無窮大時關於其行為的一些待解決問題。Peres演算法在原來被提出時並非為串流演算法(streaming algorithm),亦即(X_1,...,X_n)所產生的亂數一般上並不一定會全被排在由X_{n+1}所產生的亂數之前。我們介紹了Peres演算法的二元樹表示,也進一步介紹了一類由二元樹上節點的排序所決定的Peres演算法的串流版本。在一般二元樹節點的排序下,Peres演算法的串流版本並不會產生無偏的位元亂數列,然而在特定的排序下,我們證明了這樣的串流版本所產生的位元亂數列是無偏的。
von Neumann (1951) introduced a simple algorithm for generating independent and unbiased random bits by tossing a coin of unknown bias p. While his algorithm fails to attain the entropy bound, Peres (1992) showed that the entropy bound can be attained asymptotically by iterating von Neumann's algorithm. Specifically, Peres showed that lim_{n→∞} b(n,p)/n = h(p) uniformly in p ∈ (0,1), where b(n,p) denotes the expected number of unbiased output bits generated when Peres' algorithm is applied to an input sequence (X_1,...,X_n) with X_i being the outcome of the ith coin toss, and h(p) = −p log p−(1−p)log(1−p) (the Shannon entropy of each X_i). We consider the (second­ order) behavior of nh(p)−b(n,p) as n→∞. For p=1/2, it is shown that lim_{n→∞} log[n−b(n,1/2)]/log n = log[(1+√5)/2]. Some open problems on the asymptotic behavior of nh(p)−b(n,p) are briefly discussed. The original Peres' algorithm is not streaming in the sense that some of the out­put bits generated from (X_1,...,X_n) (the first n coin tosses) may be placed after the output bits induced by X_{n+1}. We introduce a binary tree representation of Peres' algorithm, based on which we further introduce a class of streaming versions of Peres' algorithm in terms of orderings of the nodes of the binary tree. We show by example that in general a streaming version of Peres' algorithm fails to generate unbiased output bits. However, based on a special node ordering, the corresponding streaming version of Peres' algorithm is shown to be unbiased.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8077
DOI: 10.6342/NTU202004447
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat 
U0001-2212202018315700.pdf23.16 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved