請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80264完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭如忠(Ru-Jong Jeng) | - |
| dc.contributor.author | Shih-Hao Wang | en |
| dc.contributor.author | 王士豪 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:03:29Z | - |
| dc.date.available | 2022-02-21 | - |
| dc.date.available | 2022-11-24T03:03:29Z | - |
| dc.date.copyright | 2022-02-21 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-01-21 | - |
| dc.identifier.citation | 1. https://www.co2.earth/2008-to-2015-co2now. 2. Wang, L.; Chen, W.; Zhang, D.; Du, Y.; Amal, R.; Qiao, S.; Wu, J.; Yin, Z. Surface Strategies for Catalytic CO2 Reduction: from Two-Dimensional Materials to Nanoclusters to Single Atoms. Chem. Soc. Rev. 2019, 48, 5310. 3. Cao, C.; Liu, H.; Hou, Z.; Mehmood, F.; Liao, J.; Feng, W. A Review of CO2 Storage in View of Safety and Cost-Effectiveness. Energies 2020, 13, 600. 4. Singh, G.; Lee, J.; Karakoti, A.; Bahadur, R.; Yi, J.; Zhao, D.; AlBahily, K.; Vinu, A. Emerging Trends in Porous Materials for CO2 Capture and Conversion. Chem. Soc. Rev. 2020, 49, 4360-4404. 5. Wang, J.; Huang, L.; Yang, R.; Zhang, Z.; Wu, J.; Gao, Y.; Wang, Q.; Hare, D.; Zhong, Z. Recent Advances in Solid Sorbents for CO2 Capture and New Development Trends. Energy Environ. Sci. 2014, 7, 3478-3518. 6. Xie, S.; Zhang, Q.; Liu, G.; Wang, Y. Photocatalytic and Photoelectrocatalyticreduction of CO2 using Heterogeneous Catalysts with Controlled Nanostructures. Chem. Commun. 2016, 52, 35. 7. Wu, J.; Huang, Y.; Ye, W.; Li, Y. CO2 Reduction: From the Electrochemical to Photochemical Approach. Adv. Sci. 2017, 4, 1700194. 8. Gong, E.; Ali, S.; Hiragond, B. C.; Sim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S. Solar Fuel: Research and Development Strategies to Accelerate Photocatalytic CO2 Conversion into Hydrocarbon Fuel. Energy Environ. Sci. 2022, DOI: 10.1039/d1ee02714j. 9. Das, S.; Ramierz, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Core–Shell Structured Catalysts for Thermocatalytic, Photocatalytic, and Electrocatalytic Conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937-3004. 10. Kho, E. T.; Tan, T. H.; Lovell, E.; Wong, R. J.; Scott, J.; Amal, R. A Review on Photo-Thermal Catalytic Conversion of Carbon Dioxide. Green Energy Environment 2017, 2, 204-217. 11. Wang, G.; Chen, J.; Ding, Y.; Cai, P.; Yi, L.; Li, Y.; Tu, C.; Hou, Y.; Wen, Z.; Dai, L. Electrocatalysis for CO2 Conversion: from Fundamentals to Value-Added Products. Chem. Soc. Rev. 2021, 50, 4993-5061. 12. Su, T.; Shao, Q.; Qin, Z.; Guo, Z.; Wu, Z. Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catal. 2018, 8, 2253–2276. 13. Olivo, A.; Ghedini, E.; Signoretto, M.; Compagnoni, M.; Rossetti, I. Liquid vs. Gas Phase CO2 Photoreduction Process: Which Is the Effect of the Reaction Medium? Energies 2017, 10, 1394. 14. Ran, J.; Jaroniec, M.; Qiao, S. Cocatalysts in Semiconductor-Based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities. Adv. Mater. 2018, 1704649. 15. Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem. Rev. 2019, 119, 3962–4179. 16. Pellegrin, Y.; Odobel, F. Sacrificial Electron Donor Reagents for Solar Fuel Production. C. R. Chimie. 2017, 20, 283-295. 17. Wang, F. Artificial Photosynthetic Systems for CO2 Reduction: Progress on Higher Efficiency with Cobalt Complexes as Catalysts. ChemSusChem. 2017, 10, 4393 – 4402. 18. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 Reduction by TiO2 and Related Titanium Containing Solids. Energy Environ. Sci. 2012, 5, 9217-9233. 19. Rej, S.; Bisetto, M.; Naldoni, A.; Fornaiero, P. Well-Defined Cu2O Photocatalysts for Solar Fuel and Chemicals. J. Mater. Chem. A, 2021, 9, 5915-5951. 20. Wang, M.; Shen, M.; Jin, X.; Tian, J.; Zhou, Y.; Shao, Y.; Zhang, L.; Li, Y.; Shi, J. Mild Generation of Surface Oxygen Vacancies on CeO2 for Improved CO2 Photoreduction Activity. Nanoscale 2020, 12, 12374-12382. 21. Tan, J. Z. Y.; Gavrielides, S.; Belekoukia, M.; Thompson, W. A.; Negahdar, L.; Xia, F.; Maroto-Valer, M. M.; Beale, A. M. Synthesis of TiO2−x/W18O49 Hollow Double-Shell and Core–Shell Microspheres for CO2 Photoreduction under Visible Light. Chem. Commun. 2020, 56, 12150-12153. 22. Huang, H.; Yu, K.; Zhang, N.; Xu, J.; Yu, X.; Liu, H.; Cao, H.; Lu, J.; Cao, R. Localized Surface Plasmon Resonance Enhanced Visible-Light-Driven CO2 Photoreduction in Cu Nanoparticle Loaded ZnInS Solid Solutions. Nanoscale 2020, 12, 15169-15174. 23. Vu, N.; Kaliaguine, S.; Do, T. Synthesis of the g-C3N4/CdS Nanocomposite with a Chemically Bonded Interface for Enhanced Sunlight-Driven CO2 Photoreduction. ACS Appl. Energy Mater. 2020, 3, 6422–6433. 24. Zhang, X.; Kim, D.; Lee, L. Y. S.; Copper-Doped ZnS with Internal Phase Junctions for Highly Selective CO Production from CO2 Photoreduction. ACS Appl. Energy Mater. 2021, 4, 3, 2586–2592. 25. AlOtaibi, B.; Fan, S.; Wang, D.; Ye, J.; Mi, Z. Wafer-Level Artificial Photosynthesis for CO2 Reduction into CH4 and CO Using GaN Nanowires. ACS Catal. 2015, 5, 5342–5348. 26. Niu, P.; Pan, Z.; Wang, S.; Wang, X. Tuning Crystallinity and Surface Hydrophobicity of a Cobalt Phosphide Cocatalyst to Boost CO2 Photoreduction Performance. ChemsusChem. 2021, 14, 1302-1307. 27. Halmann, M. Photoelectrochemical Reduction of Aqueous Carbon Dioxide on P-Type Gallium Phosphide in Liquid Junction Solar Cells. Nature 1978, 275, 115. 28. Schanze, K. S.; Kamat, P. V.; Yang, P.; Bisquert, J. Progress in Perovskite Photocatalysis. ACS Energy Lett. 2020, 5, 2602–2604. 29. Huang, H.; Pradhan, B.; Hofkens, J.; Roeffaers, M. B. J.; Steele, J. A. Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Lett. 2020, 5, 1107–1123. 30. Darkwah, W. K.; Teye, G. K.; Ao, Y. Graphene Nanocrystals in CO2 Photoreduction with H2O for Fuel Production. Nanoscale Adv. 2020, 2, 991-1006. 31. Li, X.; Wei, Y.; Ma, C.; Jiang, H.; Gao, M.; Zhang, S.; Liu, W.; Huo, P.; Wang, H.; Wang, L. Multichannel Electron Transmission and Fluorescence Resonance Energy Transfer in In2S3/Au/rGO Composite for CO2 Photoreduction. ACS Appl. Mater. Interfaces 2021, 13, 11755–11764. 32. Sun, S.; Watanabe, M.; Wang, P.; Ishihara, T. Synergistic Enhancement of H2 and CH4 Evolution by CO2 Photoreduction in Water with Reduced Graphene Oxide–Bismuth Monoxide Quantum Dot Catalyst. ACS Appl. Energy Mater. 2019, 2, 2104–2112. 33. Zhao, H.; Liu, L.; Andlno, J. M.; Li, Y. Bicrystalline TiO2 with Controllable Anatase–Brookite Phase Content for Enhanced CO2 Photoreduction to Fuels. J. Mater. Chem. A. 2013, 1, 8209. 34. Ren, X.; Gao, M.; Zhang, Y.; Zhang, Z.; Cao, X.; Wang, B.; Wang, X. Photocatalytic Reduction of CO2 on BiOX: Effect of Halogen Element Type and Surface Oxygen Vacancy Mediated Mechanism. Applied Catalysis B: Environmental 2020, 274, 119063. 35. Liu, Y.; Shen, D.; Zhang, Q.; Lin, Y.; Peng, F. Enhanced Photocatalytic CO2 Reduction in H2O Vapor by Atomically Thin Bi2WO6 Nanosheets with Hydrophobic and Nonpolar Surface. Applied Catalysis B: Environmental 2021, 283, 119630. 36. Shown, I.; Samireddi, S.; Chang, Y.; Putikam, R.; Chang, P.; Sabbah, A.; Fu, F.; Chen, W.; Wu, C.; Yu, T.; Chung, P.; Lin, M. C.; Chen, L.; Chen, K. Carbon-Doped SnS2 Nanostructure as a High-Efficiency Solar Fuel Catalyst under Visible Light. Nature Communications 2018, 9, 169. 37. Li, X.; Sun, Y.; Xu, J.; Shao, Y.; Wu, J.; Xu, X.; Pan, Y.; Ju, H.; Zhu, J.; Xie, Y. Selective Visible-Light-Driven Photocatalytic CO2 Reduction to CH4 Mediated by Atomically Thin CuIn5S8 Layers. Nature energy 2019, 4, 690-699. 38. Xu, Y.; Duchesne, P. N.; Wang, L.; Tavasoli, A.; Jelle, A. A.; Xia, M.; Liao, J.; Kuang, D.; Ozin, G. A. High-Performance Light-Driven Heterogeneous CO2 Catalysis with Near-Unity Selectivity on Metal Phosphides. Nature Communications 2020, 11, 5149. 39. Bi, Q.; Wang, J.; Lv, J.; Wang, J.; Zhang, W.; Lu, T. Selective Photocatalytic CO2 Reduction in Water by Electrostatic Assembly of CdS Nanocrystals with a Dinuclear Cobalt Catalyst. ACS Catal. 2018, 8, 11815–11821. 40. Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, C. Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts. J. Phys. Chem. Lett. 2010, 1, 48–53. 41. Chen, Y.; Chen, K.; Fu, J.; Yamaguchi, A.; Li, H.; Pan, H.; Hu, J.; Miyauchi, M. Liu, M. Recent Advances in the Utilization of Copper Sulfide Compounds for Electrochemical CO2 Reduction. Nano Materials Science 2020, 2, 235-247. 42. Huang, J.; Gatty, M. G.; Xu, B.; Pati, P. B.; Etman, A. S.; Tian, L.; Sun, J.; Hammarstrom, L.; Tian, H. Covalently Linking CuInS2 Quantum Dots with a Re Catalyst by Click Reaction for Photocatalytic CO2 Reduction. Dalton Trans. 2018, 47, 10775-10783. 43. Su, B.; Huang, L.; Xiong, Z.; Yang, Y.; Hou, Y.; Ding, Z.; Wang, S. Branch-Like ZnS–DETA/CdS Hierarchical Heterostructures as an Efficient Photocatalyst for Visible Light CO2 Reduction. J. Mater. Chem. A. 2019, 7, 26877-26883. 44. Wang, C.; Thompson, R. L.; Ohodnicki, P.; Baltrus, J.; Matranga, C. Size-Dependent Photocatalytic Reduction of CO2 with PbS Quantum Dot Sensitized TiO2 Heterostructured Photocatalysts. J. Mater. Chem. 2011, 21, 13452-13457. 45. Wang, Z.; Chen, Y.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. Step-Scheme CdS/TiO2 Nanocomposite hollow Microsphere with Enhanced Photocatalytic CO2 Reduction Activity. Journal of Materials Science Technology 2020, 56, 143-150. 46. Hou, J.; Cao, S.; Wu, Y.; Gao, Z.; Liang, F.; Sun, Y.; Lin, Z.; Sun, L. Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO2 Reduction. Chemistry – A European Journal 2017, 23, 9481-9485. 47. Xu, Y.; Yang, M.; Chen, B.; Wang, X.; Chen, H.; Kuang, D.; Su, C. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663. 48. Johansson, P. G.; Kopecky, A.; Galoppini, E.; Meyer, G. J. Distance Dependent Electron Transfer at TiO2 Interfaces Sensitized with Phenylene Ethynylene Bridged Ru(II)-Isothiocyanate Compounds. J. Am. Chem. Soc. 2013, 135, 8331–8341. 49. Maeda, K.; Kuriki, R.; Zhang, M.; Wang, X.; Ishitani, O. The Effect of the Pore-Wall Structure of Carbon Nitride on Photocatalytic CO2 Reduction under Visible Light. J. Mater. Chem. A. 2014, 2, 15146–15151. 50. Maeda, K.; Sekizawa, K.; Ishitani, O. A Polymeric-Semiconductor-Metal-Complex Hybrid Photocatalyst for Visible-Light CO2 Reduction, Chem. Commun. 2013, 49, 10127-10129. 51. Kuriki, R.; Ishitani, O.; Maeda, K. Unique Solvent Effects on Visible-Light CO2 Reduction over Ruthenium(II)-Complex/Carbon Nitride Hybrid Photocatalysts. ACS Appl. Mater. Interfaces 2016, 8, 6011–6018. 52. Rao, H.; Schmidt, L. C.; Bonin, J.; Robert, M. Visible-Light-Driven Methane Formation from CO2 with a Molecular Iron Catalyst. Nature 2017, 548, 74-77. 53. Won, D. I.; Lee, J. S.; Ba, Q.; Cho, Y. J.; Cheong, H. Y.; Choi, S.; Kim, C. H.; Son, H. J.; Pac, C.; Kang, S. O. Development of a Lower Energy Photosensitizer for Photocatalytic CO2 Reduction: Modification of Porphyrin Dye in Hybrid Catalyst System. ACS Catal. 2018, 8, 1018−1030. 54. GaO, X.; Guo, B.; Guo, C.; Meng, Q.; Liang, J.; Liu, J. Zirconium-Based Metal–Organic Framework for Efficient Photocatalytic Reduction of CO2 to CO: The Influence of Doped Metal Ions. ACS Appl. Mater. Interfaces 2020, 12, 24059–24065. 55. Hsu, H.; Shown, I.; Wei, H.; Chang, Y.; Du, H.; Lin, Y.; Tseng, C.; Wang, C.; Chen, L.; Lin, Y.; Chen, K. Graphene Oxide as a Promising Photocatalyst for CO2 to Methanol Conversion. Nanoscale 2013, 5, 262-268. 56. Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M. A Noble Metal-Free Reduced Graphene Oxide–CdS Nanorod Composite for the Enhanced Visible-Light Photocatalytic Reduction of CO2 to Solar Fuel. J. Mater. Chem. A. 2014, 2, 3407. 57. Cho, K. M.; Kim, K. H.; Park, K.; Kim, C.; Kim, S.; Al-saggarf, A.; Gereige, I.; Jung, H. Amine-Functionalized Graphene/CdS Composite for Photocatalytic Reduction of CO2. ACS Catal. 2017, 7, 7064–7069. 58. Sun, S.; Watanabe, M.; Wang, P.; Ishihara, T. Synergistic Enhancement of H2 and CH4 Evolution by CO2 Photoreduction in Water with Reduced Graphene Oxide–Bismuth Monoxide Quantum Dot Catalyst. ACS Appl. Energy Mater. 2019, 2, 2104–2112. 59. Lu, Q.; Eid, K.; Li, W.; Abdullah, A. M.; Xu, G.; Varma, R. S. Engineering Graphitic Carbon Nitride (g-C3N4) for Catalytic Reduction of CO2 to Fuels and Chemicals: Strategy and Mechanism. Green Chem. 2021, 23, 5394. 60. Tu, W.; Wu, Y.; Wang, J.; Zhang, B.; Zhou, T.; Yin, S.; Wu, S.; Li, C.; Huang, Y.; Zhou, Y.; Zou, Z.; Robertson, J.; Kraft, M.; Xu, R. Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H2 Evolution and CO2 Reduction. ACS Sustainable Chem. Eng. 2017, 5, 7260−7268. 61. Wang, S.; Zhan, J.; Chen, K.; Ali, A.; Zeng, L.; Zhao, H.; Hu, W.; Zhu, L.; Xu, X. Potassium-Doped g-C3N4 Achieving Efficient Visible-Light-Driven CO2 Reduction. ACS Sustainable Chem. Eng. 2020, 8, 8214–8222. 62. Xing, C.; Wu, Z.; Jiang, D.; Chen, M. Hydrothermal Synthesis of In2S3/g-C3N4 Heterojunctions with Enhanced Photocatalytic Activity. Journal of Colloid and Interface Science, 2014, 433, 9-15. 63. Chen, Y.; Ji, G.; Guo, S.; Yu, B.; Zhao, Y.; Wu, Y.; Zhang, H.; Liu, Z.; Han, B.; Liu, Z. Visible-Light-Driven Conversion of CO2 from Air to CO Using an Ionic Liquid and a Conjugated Polymer. Green Chem. 2017, 19, 5777. 64. Yang, C.; Huang, W.; Silva, L. C. D.; Zhang, K. A. I.; Wang, X. Functional Conjugated Polymers for CO2 Reduction Using Visible Light. Chem. Eur. J. 2018, 24, 17454 – 17458. 65. Guo, S.; Zhang, H.; Chen, Y.; Liu, Z.; Yu, B.; Zhao, Y.; Yang, Z.; Han, B.; Liu, Z. Visible-Light-Driven Photoreduction of CO2 to CH4 over N,O,P- Containing Covalent Organic Polymer Submicrospheres. ACS Catal. 2018, 8, 4576−4581. 66. Dai, C.; Zhong, L.; Gong, X.; Zeng, L.; Xue, C.; Li, S.; Liu, B. Triphenylamine Based Conjugated Microporous Polymers for Selective Photoreduction of CO2 to CO under Visible Light. Green Chem. 2019, 21, 6606. 67. Yu, X.; Yang, Z.; Qiu, B.; Guo, S.; Yang, P.; Yu, B.; Zhang, H.; Zhao, Y.; Yang, X.; Han, B.; Liu, Z. Eosin Y-Functionalized Conjugated Organic Polymers for Visible-Light-Driven CO2 Reduction with H2O to CO with High Efficiency. Angew. Chem. Int. Ed. 2019, 58, 632 –636. 68. Yu, Z.; Yan, K.; Ullah, W.; Chen, H.; Li, C. Conjugated Polymers for Photon-to-Electron and Photon-to-Fuel Conversions. ACS Appl. Polym. Mater. 2021, 3, 60−92. 69. Fu, Z.; Wang, X.; Gardner, A. M.; Wang, X.; Chong, S. Y.; Nero, G.; Cowan, A. J.; Liu, L.; Li, X.; Vogel, A.; Clowes, R.; Bilton, M.; Chen, L.; Sprick, R. S.; Cooper, A. I., A Stable Covalent Organic Framework for Photocatalytic Carbon Dioxide Reduction. Chem. Sci. 2020, 11, 543. 70. Lei, K.; Wang, D.; Ye, L.; Kou, M.; Deng, Y.; Ma, Z.; Wang, L.; Kong, Y. A Metal-Free Donor–Acceptor Covalent Organic Framework Photocatalyst for Visible-Light-Driven Reduction of CO2 with H2O. ChemSusChem. 2020, 7, 1725-1729. 71. Cui, J.; Wang, L.; Feng, L.; Meng, B.; Zhou, Z.; Su, Z.; Wang, K.; Liu, S. A Metal-Free Covalent Organic Framework as a Photocatalyst for CO2 Reduction at Low CO2 Concentration in a Gas–Solid System. J. Mater. Chem. A, 2021, 9, 24895-24902. 72. https://en.wikipedia.org/wiki/Quantum_efficiency. 73. Ali, S.; Flores, M. C.; Razzzaq, A.; Sorcar, S.; Hiragond, C. B.; Kim, H. R.; Park, Y. H.; Hwang, Y.; Kim, H. S.; Kim, H.; Gong, E. H.; Lee, J.; Kim, D.; In, S. Gas Phase Photocatalytic CO2 Reduction A Brief Overview for Benchmarking. Catalysts 2019, 9, 727. 74. https://en.wikipedia.org/wiki/Turnover_number. 75. Kozuch, S.; Martin, J. M. L. Turning Over Definitions in Catalytic Cycles. ACS Catal. 2012, 2, 2787 – 2794. 76. Barhoum A.; Bechelany, M. Salam, A.; Makhlouf, H. (2019) A Broad Family of Carbon Nanomaterials: Classification, Properties, Synthesis, and Emerging Applications. In: Barhoum A., Bechelany M., Makhlouf A. (eds) Handbook of Nanofibers. Springer, Cham. 77. https://www.texaspowerfulsmart.com/alkali-metal/fullerene-chemistry-and-electrochemistry.html. 78. He, Z.; Xiao, B.; Liu, F.; Wu, H.; Yang, Y.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Single-Junction Polymer Solar Cells with High efficiency and photovoltage. Nature Photonics 2015, 9, 174-179. 79. Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Aggregation and Morphology Control Enables Multiple Cases of High-Efficiency Polymer Solar Cells. Nature Commun. 2014, 5, 5293. 80. Tembo, M.; Munyati, M. O.; Hatwaambo, S.; Maaza, M. Efficiency Enhancement in P3HT:PCBM Blends Using Squarylium III dye. African Journal of Pure and Applied Chemistry 2015, 9, 50-57. 81. Chen, Z.; Mou, K.; Yao, S.; Liu, L.; Highly Selective Electrochemical Reduction of CO2 to Formate on Metal-Free Nitrogen-Doped PC61BM. J. Mater. Chem. A. 2018, 6, 11236-11243. 82. https://en.wikipedia.org/wiki/Grignard_reagent. 83. https://en.wikipedia.org/wiki/Stille_reaction. 84. https://en.wikipedia.org/wiki/Vilsmeier%E2%80%93Haack_reaction. 85. https://en.wikipedia.org/wiki/Prato_reaction. 86. Maggini, M.; Scorrano, G.; Prato, M. Addition of Azomethine Ylides to C60: Synthesis, Characterization, and Functionalization of Fullerene Pyrrolidines. J. Am. Chem. Soc. 1993, 115, 9798–9799. 87. Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Porsch, M.; Daub, J. Efficient Two Layer Leds on a Polymer Blend Basis. Adv. Mater. 1995, 7, 551-554. 88. Bard, A. J.; Faulkner, L. R.; (2001) Electrochemical Methods: Fundamentals and Applications Wiley, New York. 89. Gottesman, R.; Varo, P.; Gouda, L.; Jimenez-Tejada, J. A. Hu, J.; Tirosh, S.; Zaban, A.; Bisquert, J. Dynamic Phenomena at Perovskite/Electron-Selective Contact Interface as Interpretedfrom Photovoltage Decays. Chem. 2016, 1, 776-789. 90. Ebadi, F.; Aryanpour, M.; Mohammadpour, R.; Taghavinia, N. Coupled Ionic-Electronic Equivalent Circuit to Describe Asymmetric Rise and Decay of Photovoltage Profle in Perovskite Solar Cells. Scientific Report 2019, 9, 11962. 91. Lemaire, A.; Perona, A.; Caussanel, M.; Duval, H.; Dollet, A. Open-Circuit Voltage Decay: Moving to a Flexible Method of Characterization. IET Circuits Devices Syst. 2020, 14, 947-955 92. Zaban, A.; Greenshtein, M.; Bisquert, J. Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements. ChemPhysChem. 2003, 4, 859. 93. Spadavecchia, F.; Ardizzone, S.; Cappelletti, G.; Falciola, L.; Ceotto, M.; Lotti, D. Investigation and Optimization of Photocurrent Transient Measurements on Nano-TiO2. J. Appl. Electrochem. 2013, 43, 217-225. 94. Bhosale, S. V.; Kobaisi, M. A.; Jadhav, R. W.; Morajkar, P. P.; Jones, L. A.; George, S. Naphthalene Diimides: Perspectives and Promise. Chem. Soc. Rev. 2021, 50, 9845-9998. 95. Doria, F.; Folini, M.; Grande, V.; Cimino-Reale, G.; Zaffaroni, N.; Freccero, M. Naphthalene Diimides as Red Fluorescent PH Sensors for Functional Cell Imaging. Org. Biomol. Chem. 2015, 13, 570-576. 96. Goto, K.; Asada, M.; Nakamura, T.; Tani, F. Switching Photomechanical Response by a Structural Phase Transition in a Naphthalene Diimide Derivative. ChemPhotoChem, 2019, 4, 218-223. 97. Fan, B.; Zhong, W.; Ying, L.; Zhang, D.; Li, M.; Lin, Y.; Xia, R.; Liu, F.; Yip, H.; Li, N.; Ma, Y.; Brabec, C. J.; Huang, F.; Cao, Y. Surpassing the 10% Efficiency Milestone for 1-cm2 All-Polymer Solar Cells. Nature Comm. 2019, 10, 4100. 98. Royuela, S.; Martinez-Perinan, E.; Arrieta, M. P.; Martinez, J. I.; Ramos, M. M.; Zamore, F. Oxygen Reduction Using a Metal-Free Naphthalene Diimide-Based Covalent Organic Framework Electrocatalyst. Chem. Commun. 2020, 56, 1267-1270. 99. Rundel, K.; Maniam, S.; Deshmukh, K.; Gann, E.; Prasad, S. K. K.; Hodgkiss, J. M.; Langford, S. J.; McNeill C. R. Naphthalene Diimide-Based Small Molecular Acceptors for Organic Solar Cells. J. Mater. Chem. A. 2017, 5, 12266-12277. 100. Liu, Q.; Surendran, A.; Feron, K.; Manzhos, S.; Jiao, X.; McNeill, C. R.; Bottle, S. E.; Bell, J.; Leong, W. L.; Sonar, P. Diketopyrrolopyrrole Based Organic Semiconductors with Different Numbers of Thiophene Units: Symmetry Tuning Effect on Electronic Devices. New J. Chem. 2018, 42, 4017-4028. 101. https://en.wikipedia.org/wiki/Gabriel_synthesis. 102. https://en.wikipedia.org/wiki/Bragg%27s_law. 103. https://en.wikipedia.org/wiki/Scherrer_equation. 104. Bai, Y.; Hippalgaonkar, K.; Sprick, R. S. Organic Materials as Photocatalysts for Water Splitting. J. Mater. Chem. A. 2021, 9, 16222–16232. 105. Sprick, R. S.; Chen, Z.; Cowan, A. J.; Bai, Y.; Aitchison, C. M.; Fang, Y.; Zwijnenburg, M. A.; Cooper, A. I.; Wang, X. Water Oxidation with Cobalt-Loaded Linear Conjugated Polymer Photocatalysts. Angew. Chem. 2020, 132, 18854-18859. 106. Freudenberg, J.; Jansch, D.; Hinkel, F.; Bunz, U. H. F. Immobilization Strategies for Organic Semiconducting Conjugated Polymers. Chem. Rev. 2018, 118, 5598−5689. 107. Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem. Rev. 2015, 115, 12666−12731. 108. Liu, G.; Xie, S.; Zhang, Q.; Tian, Z.; Wang, Y. Carbon Dioxide-Enhanced Photosynthesis of Methane and Hydrogen from Carbon Dioxide and Water over Pt-Promoted Polyaniline–TiO2 Nanocomposites. Chem. Commun. 2015, 51, 13654. 109. Dai, W.; Xu, H.; Yu, J.; Hu, X.; Luo, X.; Tu, X.; Yang, L. Photocatalytic Reduction of CO2 into Methanol and Ethanol over Conducting Polymers Modified Bi2WO6 Microspheres under Visible Light. Applied Surface Science 2015, 356, 173-180. 110. Fan, B.; Zhong, W.; Ying, L.; Zhang, D.; Li, M.; Lin, Y.; Xia, R.; Liu, F.; Yip, H.; Li, N.; Ma, Y.; Brabec, C. J.; Huang, F.; Cao, Y. Surpassing the 10% Efficiency Milestone for 1-cm2 All-Polymer Solar Cells. Nature Commun. 2019, 10, 4100. 111. Li, Z.; Ying, L.; Zhu, P.; Zhong, W.; Li, N.; Liu, F.; Huang, F.; Cao, Y. A Generic Green Solvent Concept Boosting the Power Conversion Efficiency of All-Polymer Solar Cells to 11 %. Energy Environ. Sci. 2019, 12, 157. 112. Hayashi, S. Highly Crystalline and Efficient Red-Emissive π-Conjugated Polymer Film: Tuning of Macrostructure for Light-Emitting Properties. Mater. Adv. 2020, 1, 632-638. 113. Frisch, M. J., GAUSSIAN16. Revision A. 03. Gaussian Inc., Wallingford. 2016. 114. Stefan, G.; Antony, J.; Ehrlich, S.; Krieg, H.; A Consistent and Accurate ab Initio Parametrization of Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. The Journal of Chemical Physics 2010, 132, 154104. 115. Tersa, F. B.; Cao, X.; Dukor, R. K.; Nafie, L. A., Absolute Configuration Determination of Chiral Molecules in the Solution State Using Vibrational Circular Dichroism. Chirality 2003, 15, 743-758. 116. Takeshi, Y.; Tew, D. P.; Handy, N. C., A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP), Chemical Physics Letters 2004, 393, 51-57. 117. So, H.; Head-Gordon, M. Time-Dependent Density Functional Theory within the Tamm-Dancoff Approximation. Chemical Physics Letters 1999, 314, 291-299. 118. Barman, S.; Singh, A.; Rahimi, F. A.; Maji, T. K. Metal-Free Catalysis: A Redox-Active Donor–Acceptor Conjugated Microporous Polymer for Selective Visible-Light-Driven CO2 Reduction to CH4. J. Am. Chem. Soc. 2021, 143, 16284-16292. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80264 | - |
| dc.description.abstract | "本論文主要設計及合成一系列富勒烯衍生物、共軛小分子和高分子,作為光驅動二氧化碳還原反應之催化劑,並探討分子結構於材料性質、催化活性和催化穩定性之影響。 第一部分,首先以普拉托反應將4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazol le (DTBT)化學接枝至富勒烯吡咯烷上,形成二元體 (dyad)分子,簡稱為DTBT-C60,促使其吸收光譜紅位移,並探討其光學性質和光電化學性質的變化。紫外光-可見光光譜顯示長波長之吸收峰確實因DTBT分子的存在,而增加了400-520 nm區間的吸收範圍,吸收光譜的改善有助於DTBT-C60更好的利用太陽光產生更多的激子,PL以及TRPL的量測結果顯示,引入DTBT能更有效地拆解激子以及減少電荷再結合的機率,DTBT-C60的光電化學性質則分別利用光電壓衰退 (photovoltage decaying measurement)、電化學阻抗分析 (electrochemical impedance spectroscopy)以及光電流響應 (photocurrent response)實驗進行分析。DTBT-C60催化之反應系統在AM1.5G的光譜之太陽模擬光源照射反應24小時後,產出一氧化碳為唯一產物,其產率為144 μmol·gcat-1。同位素的實驗證實水可以有效地作為電子的來源與DTBT-C60反應,且不需要任何犧牲劑添加,更重要地,DTBT-C60維持了非常持久的催化活性,可超越一個禮拜之久。 第二部分,使用萘雙亞醯胺作為電子授體單元,分別與thiophene、thienothiophene、bithiophene 和terthiophene,進行Stille coupling反應,合成一系列的有機共軛小分子,分別簡稱為NDI-2T、NDI-TT、NDI-4T和NDI-6T,並探討其結構上電子供體的能力對於它們的光電性質之影響,其中,由於導入較強推電子能力之電子供體,NDI-6T擁有最紅位移的吸收光譜、最長的激子壽命以及較佳的電子電洞拆解能力,將NDI-4T作為有機催化劑應用於光催化二氧化碳還原反應,可產出168 μmol·gcat-1的一氧化碳產率,相較NDI-TT (111.9 μmol·gcat-1)、 NDI-2T (88.4 μmol·gcat-1)和NDI-6T (40.5 μmol·gcat-1)高出許多,除了NDI-6T外,其一氧化碳產率的趨勢隨著噻吩數量的增加而有所提升。然而,電子供體的推電子能力提升,能有效的縮短能隙,卻同時上移氧化能階,NDI-6T的氧化能階與水的氧化能階相同,降低NDI-6T陽離子氧化水以還原成中性態的驅動力,相對地,NDI-4T具有適當的氧化及還原電位、較低的電荷轉移電阻以及優異的光電流強度,因此,表現出最高的催化活性,而且,反應過程僅需使用水作為電子供體,不需要共催化劑及犧牲劑的加入,此部分之研究不只能展示有機共軛小分子作為催化劑之潛力,也探討了共軛小分子電子供體能力對於二氧化碳還原效率之影響。 第三部分,在共軛高分子的主鏈導入電子授體之萘雙亞醯胺單體,並分別與弱的推電子單元之biphenyl單體或拉電子單元之DTBT單體,利用Stille反應進行聚合形成兩個共軛高分子 (PNDI-BP和PNDI-DTBT),合成之單體及共軛高分子均有使用核磁共振光譜儀進行結構鑑定,並以凝膠滲透層析測得分子量,並與市售之共軛高分子PNDI-2T針對它們的光學、電化學及結晶性質進行比較,紫外光可見光光譜顯示PNDI-DTBT擁有最寬廣的吸收光譜以及較強的吸收係數,吸收光譜的改善能使PNDI-DTBT更好的利用太陽光產出更多激子,XRD的分析顯示PNDI-2T表現出最好的結晶度,且具有明顯的π-π stacking的訊號。三個高分子催化劑進行二氧化碳光催化還原反應都能在少量水作為電子供體下產出一氧化碳,更重要的是PNDI-BP不只擁有了最高的一氧化碳產率90.0 μmol·gcat-1,也能夠產出甲烷作為產物,產率為1.7 μmol·gcat-1。TRPL及開環電壓衰退之分析,發現萘雙亞醯胺與非共平面的雙苯環單體共聚合之PNDI-BP,可有效地延長電子存活的時間及抑制電荷載子的再結合,電化學阻抗分析以及光電流響應實驗指出PNDI-BP具有最低的電荷傳遞電阻以及較佳的光電流強度,因此,可大幅的提升催化活性以及增加還原反應的產物量,PNDI-BP展現了非常好的可回收性以及卓越的長時間催化穩定性,可穩定產出產物至兩周之久。 綜合以上實驗,我們對於富勒烯衍生物、萘雙亞醯胺之小分子及高分子的結構設計有更進一步的認識與了解,這將有助於未來設計高催化效率及高穩定性的有機催化劑。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:03:29Z (GMT). No. of bitstreams: 1
U0001-1901202215290000.pdf: 16692818 bytes, checksum: 6cf55d6ff3b314f579e6ad4adeb5c5f8 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | "目錄 誌謝 ii 摘要 vii Abstract v 目錄 xi 圖目錄 xi 表目錄 xxii 第一章 緒論 1 1-1 前言 1 1-2 二氧化碳還原的分類及基礎原理 3 1-2-1二氧化碳還原之分類 3 1-2-2光催化二氧化碳還原之反應機制 4 1-2-3光催化二氧化碳還原之可能反應途徑 7 1-2-4光催化二氧化碳還原之反應系統 9 1-2-5共催化劑及犧牲劑之應用 10 1-3 光催化劑 12 1-3-1無機材料作為光催化劑 12 1-3-1-1鈣鈦礦材料作為光催化劑 17 1-3-1-2金屬有機框架材料作為光催化劑 19 1-3-1-3 石墨衍生物材料作為光催化劑 21 1-3-2 有機材料作為光催化劑 24 1-3-2-1 有機孔洞高分子材料作為光催化劑 25 1-3-2-2 共軛有機框架材料作為光催化劑 26 1-4 研究動機 27 1-4-1 材料合成路徑 28 第二章 實驗 30 2-1 實驗所需化學試劑列表 30 2-2 實驗設備及儀器 32 2-3 材料合成 36 2-3-1 碳六十衍生物之合成 36 2-3-2 萘雙亞醯胺之有機共軛小分子及高分子之合成 45 2-4 氣相層析儀之定性與定量分析 57 2-5 光催化二氧化碳還原實驗方法 58 2-5-1 光催化二氧化碳還原實驗樣品製備 58 2-5-2 光催化二氧化碳還原實驗架設 58 2-5-3 光催化二氧化碳還原之產率計算 59 2-5-3-1 化學產率 59 2-5-3-2 量子產率 60 2-5-3-3 反轉換率及反轉頻率 61 第三章 結果與討論 62 3-1 碳六十發色團二元體作為有機催化劑於二氧化碳光催化還原之應用 62 3-1-1碳六十發色團二元體之研究動機 62 3-1-2碳六十發色團二元體之合成 64 3-1-2-1合成反應 64 3-1-2-2碳六十衍生物合成討論 66 3-1-3碳六十衍生物之結構鑑定 68 3-1-3-1 1H NMR結構鑑定 68 3-1-3-2 MALDI-TOF結構鑑定 71 3-1-4碳六十衍生物之光學性質分析 72 3-1-5碳六十衍生物之能階分析 73 3-1-6碳六十衍生物作為催化劑於光驅動二氧化碳還原之效率探討 76 3-1-7碳六十衍生物之二氧化碳吸附探討 79 3-1-8碳六十衍生物之光電化學性質探討 80 3-1-8-1光致發光光譜儀以及時間解析光致發光光譜儀 (PL, TRPL) 80 3-1-8-2光電壓衰退量測 (Photovoltage decaying measurement) 82 3-1-8-3電化學阻抗分析 (Electrochemical impedance spectroscopy) 85 3-1-8-4瞬態光電流響應 (Transient photocurrent responses) 87 3-1-9光催化二氧化碳還原反應之機制探討及同位素之實驗 88 3-1-10分子理論模擬 91 3-1-11碳六十衍生物於光驅動二氧化碳還原之長效催化活性分析 94 3-1-12結論 96 3-2 奈雙亞醯胺有機共軛小分子作為有機催化劑應用於光催化二氧化碳還原反應 97 3-2-1奈雙亞醯胺共軛小分子之研究動機 97 3-2-2有機共軛小分子之合成 97 3-2-2-1合成反應 98 3-2-2-2有機共軛小分子合成討論 98 3-2-3有機共軛小分子之1H NMR結構鑑定 100 3-2-4有機共軛小分子之光學性質分析 104 3-2-5有機共軛小分子之能階分析 106 3-2-6有機共軛小分子之X光繞射圖譜分析 108 3-2-7有機共軛小分子之時間解析光致發光光譜儀 109 3-2-8分子模擬 110 3-2-9有機共軛小分子作為催化劑於光驅動二氧化碳還原之效率探討 112 3-2-10有機共軛小分子之二氧化碳吸附之探討 114 3-2-11有機共軛小分子之光電性質分析 114 3-2-11-1光電壓衰退量測 (Photovoltage decaying measurement) 114 3-2-11-2電化學阻抗分析 (Electrochemical impedance spectroscopy) 115 3-2-11-3瞬態光電流響應 (Transient photocurrent responses) 116 3-2-12光催化二氧化碳還原反應同位素之實驗 116 3-2-13 NDI-4T之長效催化活性分析 118 3-2-14結論 120 3-3 奈雙亞醯胺共軛高分子作為有機催化劑應用於光催化二氧化碳還原反應 121 3-3-1萘雙亞醯胺共軛高分子之研究動機 121 3-3-2萘雙亞醯胺共軛高分子之合成 122 3-3-2-1高分子合成討論 122 3-3-3單體與高分子的結構鑑定 124 3-3-3-1單體結構鑑定 124 3-3-3-2高分子結構鑑定 126 3-3-4 共軛高分子的分子量性質 127 3-3-5 共軛高分子之光學性質分析 128 3-3-5-1共軛高分子溶液態吸收光譜分析 128 3-3-5-2共軛高分子薄膜態吸收光譜分析 130 3-3-6 共軛高分子能階分析 131 3-3-7 共軛高分子X光繞射圖譜分析 134 3-3-8 分子理論模擬 135 3-3-8-1幾何優化與構型 135 3-3-8-2基態與激發態電子雲分布 139 3-3-9 共軛高分子之二氧化碳吸附探討 141 3-3-10 共軛高分子作為催化劑於光驅動二氧化碳還原之效率探討 142 3-3-11 共軛高分子之光電化學性質探討 144 3-3-11-1光致發光光譜儀以及時間解析光致發光光譜儀 (PL, TRPL) 144 3-3-11-2光電壓衰退量測 (Photovoltage decaying measurement) 147 3-3-11-3電化學阻抗分析 (Electrochemical impedance spectroscopy) 148 3-3-11-4瞬態光電流響應 (Transient photocurrent responses) 149 3-3-12光催化二氧化碳還原反應同位素之實驗 150 3-3-13共軛高分子於光驅動二氧化碳還原之長效催化活性分析 152 3-3-14結論 157 第四章 總結及未來展望 158 第五章 參考文獻 161 附錄 170 相關研究成果 197 " | - |
| dc.language.iso | zh-TW | - |
| dc.subject | 共軛高分子 | zh_TW |
| dc.subject | 光催化劑 | zh_TW |
| dc.subject | 光反應 | zh_TW |
| dc.subject | 二氧化碳還原 | zh_TW |
| dc.subject | 富勒烯衍生物 | zh_TW |
| dc.subject | 有機共軛小分子 | zh_TW |
| dc.subject | photoreaction | en |
| dc.subject | CO2 reduction | en |
| dc.subject | fullerene derivatives | en |
| dc.subject | fulleropyrrolidine | en |
| dc.subject | conjugated small molecules | en |
| dc.subject | conjugated polymers | en |
| dc.subject | photo-catalysts | en |
| dc.title | 光驅動二氧化碳還原反應之有機催化劑研發 | zh_TW |
| dc.title | Development of Organocatalysts for Light-driven CO2 Reduction Reaction | en |
| dc.date.schoolyear | 110-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.author-orcid | 0000-0002-6083-5822 | - |
| dc.contributor.advisor-orcid | 鄭如忠(0000-0002-0913-4975) | - |
| dc.contributor.coadvisor | 王立義(Leeyih Wang) | - |
| dc.contributor.coadvisor-orcid | 王立義(0000-0002-6368-0141) | - |
| dc.contributor.oralexamcommittee | 黃慶怡(Ying-Chun Tsai),賴育英(TUNG-LIANG LIAO),陳志堅(Leonard Chan Kwok Kou),鍾博文(SHOU-CHENG TSENG),(Shou-jen Tseng),(Shou-jen Tseng),(Shou-jen Tseng) | - |
| dc.subject.keyword | 二氧化碳還原,富勒烯衍生物,有機共軛小分子,共軛高分子,光催化劑,光反應, | zh_TW |
| dc.subject.keyword | CO2 reduction,fullerene derivatives,fulleropyrrolidine,conjugated small molecules,conjugated polymers,photo-catalysts,photoreaction, | en |
| dc.relation.page | 199 | - |
| dc.identifier.doi | 10.6342/NTU202200103 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-01-21 | - |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1901202215290000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 16.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
