Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79876
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝志昇(Chih-Sheng Hsieh)
dc.contributor.authorCheng-En Lien
dc.contributor.author李承恩zh_TW
dc.date.accessioned2022-11-23T09:14:54Z-
dc.date.available2021-08-10
dc.date.available2022-11-23T09:14:54Z-
dc.date.copyright2021-08-10
dc.date.issued2021
dc.date.submitted2021-07-31
dc.identifier.citationAgha, Leila, and David Molitor.2018. “The Local Influence of Pioneer Investigators on Technology Adoption: Evidence from New Cancer Drugs.”The Review of Economics and Statistics100(1): 29–44.https://doi.org/10.1162/REST_a_00670. Bellemare, Marc F, Jeffrey R Bloem, and Noah Wexler. 2020. “The paper of how: Estimating treatment effects using the frontdoor criterion.” Working Paper, University of Minnesota. http://marcfbellemare.com/wordpress/wp-content/uploads/2020/09/BellemareBloemWexlerFDCSeptember2020.pdf. Carman, Ashley. 2018. “Why do you leave restaurant reviews?.” The Verge, April. https://www.theverge.com/2018/4/10/17215784/whyd-you-push-that-button-yelp-tripadvisor-reviews-restaurant. Casaló, Luis V, Carlos Flavián, and Sergio Ibáñez Sánchez. 2020. “Influencers on Instagram: Antecedents and consequences of opinion leadership.” Journal of Business Research 117: 510–519. https://doi.org/10.1016/j.jbusres.2018.07.005. Chernozhukov, Victor, Hiroyuki Kasahara, and Paul Schrimpf.2021. “Causal impact of masks, policies, behavior on early covid-19 pandemic in the U.S..” Journal of Econometrics 220(1): 23–62. https://doi.org/10.1016/j.jeconom.2020.09.003. Dai, Weijia, Ginger Z Jin, Jungmin Lee, and Michael Luca. 2012. “Aggregation of consumer ratings: an application to Yelp. com.” Working Paper, National Bureau of Economic Research. https://doi.org/10.3386/w18567. Donaker, Geoff, Hyunjin Kim, and Michael Luca. 2019. “Designing Better Online Review Systems.” Harvard Business Review 97(6): 122–129. https://hbr.org/2019/11/designing-better-online-review-systems. Eggers, Andrew C, Guadalupe Tuñón, and Allan Dafoe. 2021. “Placebo Tests for Causal Inference.” Working Paper, University of Chicago, IL. https://pelg.ucsd.edu/Eggers%5F2021.pdf. Eslami, Motahhare, Kristen Vaccaro, Min Kyung Lee, Amit Elazari Bar On, Eric Gilbert, and Karrie Karahalios. 2019.User Attitudes towards Algorithmic Opacity and Transparency in Online Reviewing Platforms. p. 1–14, New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3290605.3300724. Godes, David, and Dina Mayzlin. 2009. “FirmCreated Word-of-Mouth Communication: Evidence from a Field Test.”Marketing Science28(4): 721–739. https://doi.org/10.1287%2Fmksc.1080.0444. Greenland, Sander, Judea Pearl, and James M. Robins.1999. “Causal Diagrams for Epidemiologic Research.”Epidemiology10(1): 37–48. http://www.jstor.org/stable/3702180. Hernán, Miguel A., and James M. Robins. 2020. Causal Inference: What If. Boca Raton: Chapman Hall/CRC. https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/. Hernán, Miguel A. 2021. “Causal Diagrams: Draw Your Assumptions Before Your Conclusions.” April. https://www.edx.org/course/causal-diagrams-draw-your-assumptions-before-your. Hernández Díaz, Sonia, Enrique F. Schisterman, and Miguel A. Hernán. 2006. “The Birth Weight “Paradox” Uncovered?.” American Journal of Epidemiology 164(11): 1115–1120. https://doi.org/10.1093/aje/kwj275. Hünermund, Paul. 2021. “Causal Inference is More than Fitting the Data Well.” causalscience.org, February. https://causalscience.org/blog/causal-inference-is-more-than-fitting-the-data-well. Hünermund, Paul, and Elias Bareinboim. 2021. “Causal Inference and Data Fusion in Econometrics.” Working Paper, Copenhagen Business School, Copenhagen. https://arxiv.org/abs/1912.09104. Imai, Kosuke. 2019. “Causal Directed Acyclic Graphs.” Harvard University, MA. https://imai.fas.harvard.edu/teaching/files/DAG.pdf. Imbens, Guido W. 2020. “Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics.” Journal of Economic Literature 58(4):1129–79. https://doi.org/10.1257/jel.20191597. Loeper, Antoine, Jakub Steiner, and Colin Stewart.2014. “Influential Opinion Leaders.” TheEconomic Journal124(581), p. 1147–1167. https://doi.org/10.1111/ecoj.12100. López, Claudia, and Rosta Farzan. 2014. “Analysis of Local Online Review Systems as Digital Word-of-Mouth.” In Proceedings of the 23rd International Conference on World Wide Web.WWW ’14 Companion, p. 457–462, New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2567948.2576933. Luca, Michael. 2011. “Reviews, Reputation, and Revenue: The Case of Yelp.com.” Working Papers 12016, Harvard Business School. https://doi.org/10.2139/ssrn.1928601. Luca, Michael, and Georgios Zervas. 2016. “Fake it Till You Make it: Reputation, Competition, and Yelp Review Fraud.” Management Science 62(12): 3412–3427. https://doi.org/10.1287/mnsc.2015.2304. Malinsky, Daniel, Ilya Shpitser, and Thomas Richardson. 2019. “A Potential Outcomes Calculus for Identifying Conditional Path Specific Effects.” Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS). http://proceedings.mlr.press/v89/malinsky19b/malinsky19b.pdf. Mazumdar, Pramit, Bidyut Kr. Patra, and Korra Sathya Babu. 2020. “Cold-start Point-of-interest Recommendation through Crowdsourcing.” ACM Transactions on the Web 14(4), p. 1–36.https://doi.org/10.1145/3407182. Meuter, Matthew L., Deborah BrownMccabe, and James M.Curran. 2013. “Electronic Word-of-Mouth Versus Interpersonal Word-of-Mouth: Are All Forms of Word-of-Mouth Equally Influential?” Services Marketing Quarterly 34(3), p. 240–256. https://doi.org/10.1080/15332969.2013.798201. Nguyen, Peter, Xin (Shane) Wang, Xi Li, and June Cotte. 2021. “Reviewing Experts’ Restraint from Extremes and Its Impact on Service Providers.” JournalofConsumerResearch 47(5): 654–674. https://doi.org/10.1093/jcr/ucaa037. Pearl, Judea.1995. “Causal Diagrams for Empirical Research.” Biometrika 82(4), p. 669. https://doi.org/10.2307/2337329. Rayana, Shebuti, and Leman Akoglu. 2015. Collective Opinion Spam Detection: Bridging Review Networks and Metadata. p. 985–994, New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2783258.2783370. Scheines, Richard. 1997. “An Introduction to Causal Inference.” Causality in Crisis?, V. McKimand S. Turner (eds.): 180–200. https://doi.org/10.1184/R1/6490904.v1. Schölkopf, Bernhard. 2019. “Causality for Machine Learning.” CoRRabs/1911.10500. http://arxiv.org/abs/1911.10500. Shalizi, Cosma Rohilla. 2019. “Identifying Causal Effects from Observations.” In Advanced data analysis from an elementary point of view.: Cambridge University Press: 433–453. https://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf. Spirtes, Peter, Clark Glymour, and Richard Scheines. 2001. Causation, Prediction, and Search.: The MIT Press. https://doi.org/10.7551/mitpress/1754.001.0001. Wang, Zongshui, Haiyan Liu, Wei Liu, and Shouyang Wang. 2020. “Understanding the power of opinion leaders’ influence on the diffusion process of popular mobile games: Travel Frog on Sina Weibo.” Computers in Human Behavior 109, p. 106354. https://doi.org/10.1016/j.chb.2020.106354. Xiang, Zheng, Qianzhou Du, Yufeng Ma, and Weiguo Fan. 2017. “A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism.” Tourism Management 58, p. 51–65. https://doi.org/10.1016/j.tourman.2016.10.001. Yao, Yao, Ivelin Angelov, Jack Rasmus Vorrath, Mooyoung Lee, and Daniel W Engels. 2018.“Yelp’s Review Filtering Algorithm.”SMU Data Science Review 1(3), p. 3. https://scholar.smu.edu/datasciencereview/vol1/iss3/3. Zhao, Huan, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee. 2017. “Meta Graph Based Recommendation Fusion over Heterogeneous Information Networks.” In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’17, p. 635–644, New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3097983.3098063. Zhao, Yiyi, Gang Kou, Yi Peng, and Yang Chen. 2018. “Understanding influence power of opinion leaders in ecommerce networks: An opinion dynamics theory perspective.” Information Sciences 426: 131–147. https://doi.org/10.1016/j.ins.2017.10.031. Zhu, Ling, Guopeng Yin, and Wei He. 2014. “Is This Opinion Leader’s Review Useful? Peripheral Cues for Online Review Helpfulness.” Journal of Electronic Commerce Research 15(4):267–280. https://www.proquest.com/scholarly-journals/is-this-opinion-leaders-review-useful-peripheral/docview/1629950700/se-2?accountid=201395.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79876-
dc.description.abstractYelp 作為世界用戶數量數一數二的用戶評論網,社群中的意見領袖對於公司行號、用戶及平台本身應該有所助益。本研究藉該評論網之公開資料集,分析其菁英會員在評論網路中,對於餐廳、一般用戶及平台的影響,並提供洞見。本研究提供兩種菁英會員影響他人的可能機制:口耳相傳與評論廣播。實證結果顯示菁英會員在兩個機制中皆不影響其他用戶的評分,且菁英會員可能促進其他用戶撰寫評論。對餐廳來說,招攬菁英會員撰寫評論無助於增加餐廳評分,但可能可以提昇名氣。對 Yelp 來說,引進菁英會員制度不會影響其他人的評分,並可能促進社群活躍程度。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T09:14:54Z (GMT). No. of bitstreams: 1
U0001-3107202115445300.pdf: 3530522 bytes, checksum: 18674df4cbe2f7ce154313274e82c815 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents1 Introduction 1 1.1 What is Yelp? 1 1.2 Who are opinion leaders? 2 1.3 Power of opinion leaders 2 1.4 What can opinion leaders possibly affect? 3 2 Literature Review 5 2.1 Social network and opinion leaders on Yelp 5 2.2 Marketing campaign 6 2.3 Causal graph 6 3 Data 8 3.1 Scope of data 8 3.2 Structure and sampling of the data 8 3.3 Data analyzing tools 10 3.4 User behavior and restaurant performance 11 4 Analysis 13 4.1 Explore the elite effects 13 4.1.1 Decomposing the star rating 13 4.1.2 Why is review solicitation futile? 14 4.1.3 Rating behavior of users 14 4.2 Channels: word-of-mouth and broadcasting 16 4.2.1 Word-of-mouth 16 4.2.2 Broadcasting 20 5 Conclusion 26 References 28 A Concept Details: Causal Graph 32 A.1 Causal diagram with Directed Acyclic Graph 32 A.2 Confounding and selection bias 33 A.3 D-separation 34 A.4 Identification strategies 35 B Data Details 39 C Additional Results 42
dc.language.isoen
dc.subject口耳相傳zh_TW
dc.subject社會網路zh_TW
dc.subject意見領袖zh_TW
dc.subject因果圖模型zh_TW
dc.subject有向無環圖zh_TW
dc.subjectsocial networken
dc.subjectword-of-mouth (WOM)en
dc.subjectdirected acyclic graphen
dc.subjectcausal graphen
dc.subjectopinion leaderen
dc.title意見領袖在評論網的功用:以Yelp社交網路為例zh_TW
dc.titleAre Opinion Leaders Satisfied? Social Network on Yelpen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林明仁(Hsin-Tsai Liu),李宗穎(Chih-Yang Tseng)
dc.subject.keyword社會網路,意見領袖,因果圖模型,有向無環圖,口耳相傳,zh_TW
dc.subject.keywordsocial network,opinion leader,causal graph,directed acyclic graph,word-of-mouth (WOM),en
dc.relation.page44
dc.identifier.doi10.6342/NTU202101964
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-03
dc.contributor.author-college社會科學院zh_TW
dc.contributor.author-dept經濟學研究所zh_TW
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
U0001-3107202115445300.pdf3.45 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved