Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79606
標題: 使用大規模數據集對脂肪肝疾病的當前訪問和下次訪問預測:模型開發和性能比較
Current-Visit and Next-Visit Prediction for Fatty Liver Disease With a Large-Scale Dataset: Model Development and Performance Comparison
作者: Cheng-Tse Wu
吳承澤
指導教授: 張智星(Jyh-Shing Roger Jang)
關鍵字: 機器學習,序列前向特徵選擇,一次性排序,脂肪肝疾病,酒精性脂肪肝,非酒精性脂肪肝,長短期記憶,當前訪問預測,下次訪問預測,
machine learning,sequence forward selection,one-pass ranking,fatty liver diseases,alcohol fatty liver disease,nonalcoholic fatty liver disease,long short-term memory,current-visit prediction,next-visit prediction,
出版年 : 2022
學位: 博士
摘要: "脂肪肝Fatty Liver Disease(FLD)是由脂肪在肝臟中堆積引起的,可能引起肝臟發炎,如果控制不好,可能會發展成為肝纖維化 (liver fibrosis)、肝硬化 (cirrhosis),甚至肝細胞癌 (hepatocellular carcinoma)。基於來自健康檢查中心的多年且大規模數據集,本文提出了脂肪肝疾病 (FLD) 預測的兩項任務,包括當前訪問預測Current-Visit Prediction (CVP)和下次訪問預測Next-Visit Prediction (NVP)。當前訪視預測可用於根據本次訪視時獲得的實驗室檢查(laboratory test)和問卷信息(questionnaire information)預測 FLD 的可能性,而下次訪視預測可用於預測 FLD 發生的可能性。下一次訪問,基於實驗室測試的軌跡和所有過去訪問的問卷信息。在實踐中,NVP 在預防醫學中更有價值,因為如果預測是肯定的,醫生可以向患者建議有效的生活方式改變,以防止下次就診時發生 FLD。據我們所知,這是基於大規模的健康檢查中心之數據集根據在NVP的機器學習的首次嘗試。此外,我們還基於 CVP/NVP 進行了特徵選擇,以在與醫生手動選擇的特徵進行比較時獲得一致的結果。這種多任務預測可以為患者和醫生提供更好和有價值的建議,以實踐預防醫學。 我們描述了機器學習模型的構建用於當前訪問預測(CVP),它可以幫助醫生獲得更多信息以進行準確診斷,以及下次訪問預測(NVP),它可以幫助醫生提供潛在的高風險患者提供有效預防 FLD 的建議。在本研究中使用的大規模高維數據集來自台灣台北市 MJ 健康研究基金會。我們在 FLD 預測中使用一次性排序和順序前向選擇 (SFS) 進行特徵選擇。對於 CVP,我們探索了多種模型,包括 k-最近鄰分類器 (KNNC)、Adaboost、支持向量機 (SVM)、邏輯回歸 (LR)、隨機森林 (RF)、高斯樸素貝葉斯 (GNB)、決策樹 C4 .5 (C4.5),以及分類和回歸樹 (CART)。對於 NVP,我們使用長短期記憶 (LSTM) 及其幾種變體作為使用各種輸入集進行預測的序列分類器。模型性能的評估基於兩個標準:測試集的準確性以及一次性排序/SFS 和領域專家選擇的特徵之間的聯合/覆蓋的交集。分別計算了男性和女性的 CVP 和 NVP 的準確度、精確度、召回率、F1 測量值和接受者操作特徵曲線下的面積。 最後在經過數據清理後,數據集包括 2009-2016 年期間男性和女性的 34,856 次和 31,394 次獨立訪問。使用KNNC、Adaboost、SVM、LR、RF、GNB、C4.5、CART對CVP的測試精度分別為84.28%、83.84%、82.22%、82.21%、76.03%、75.78%、75.53%。 NVP使用LSTM、雙向LSTM(biLSTM)、Stack-LSTM、Stack-biLSTM和Attention-LSTM的測試準確率分別為76.54%、76.66%、77.23%、76.84%和77.31%,固定間隔特徵,以及對於可變間隔特徵,分別為 79.29%、79.12%、79.32%、79.29% 和 78.36%。 本研究探索了一個用於高維的大規模 FLD 數據集。我們為 CVP 和 NVP 開發了 FLD 預測模型。我們還為當前和下次訪問預測實施了有效的特徵選擇方案,以將自動選擇的特徵與專家選擇的特徵進行比較。特別是,從預防醫學的角度來看,NVP 顯得更有價值。對於 NVP,我們建議使用更緊湊和靈活的特徵集 2(具有可變間隔)。我們還結合兩個特徵集測試了 LSTM 的幾種變體,以確定男性和女性 FLD 預測的最佳匹配。更具體地說,男性的最佳模型是使用特徵集 2 的 Stack-LSTM(準確率為 79.32%),而女性的最佳模型是使用特徵集 1 的 LSTM(準確率為 81.90%)。"
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79606
DOI: 10.6342/NTU202200336
全文授權: 同意授權(全球公開)
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-0702202216480800.pdf3.09 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved