請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79606完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張智星(Jyh-Shing Roger Jang) | |
| dc.contributor.author | Cheng-Tse Wu | en |
| dc.contributor.author | 吳承澤 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:05:02Z | - |
| dc.date.available | 2022-02-21 | |
| dc.date.available | 2022-11-23T09:05:02Z | - |
| dc.date.copyright | 2022-02-21 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-08 | |
| dc.identifier.citation | 1. Rajabi Shishvan O, Zois D, Soyata T. Machine intelligence in healthcare and medical cyber physical systems: a survey. IEEE Access 2018;6:46419-46494. [doi: 10.1109/access.2018.2866049] 2. Fan J, Kim S, Wong VW. New trends on obesity and NAFLD in Asia. J Hepatol 2017 Oct;67(4):862-873. [doi: 10.1016/j.jhep.2017.06.003] [Medline: 28642059] 3. Hsu C, Kao J. Non-alcoholic fatty liver disease: an emerging liver disease in Taiwan. J Formos Med Assoc 2012 Oct;111(10):527-535. [doi: 10.1016/j.jfma.2012.07.002] [Medline: 23089687] 4. G. Szabo, P. Mandrekar Focus on: alcohol and the liver Alcohol Res Health, 33, (2010):87-96 5. Verónica Martín-Domínguez, R. G.-C., J. Mendoza-Jiménez-Ridruejo, Luisa García-Buey, Ricardo Moreno-Otero Pathogenesis, diagnosis and treatment of non-alcoholic fatty liver disease Rev. Esp. Enferm. Dig., 105 (2013):409-420. [doi: 10.1016/j.atherosclerosis.2015.01.001] 6. J.G. Fan, S.U. Kim, V.W. Wong. New trends on obesity and NAFLD in Asia. J Hepatol, vol 67, Issue 4, Oct. 01, 2017:862-873. [doi:10.1016/j.jhep.2017.06.003] 7. M. Rinella, M. Charlton. The globalization of nonalcoholic fatty liver disease: prevalence and impact on world health. Hepatology, vol 64, Issue 1, Feb. 29, 2016: 19-22. [doi:10.1002/hep.28524] 8. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal A. J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology, vol 67, no 1, (2018):123–133. [doi:10.1002/hep.29466] 9. Birjandi M, Ayatollahi SMT, Pourahmad S, Safarpour AR. Prediction and diagnosis of non-alcoholic fatty liver disease (NAFLD) and identification of its associated factors using the classification tree method. Iran Red Crescent Med J 2016 Nov 09;18(11):e32858. [doi: 10.5812/ircmj.32858] [Medline: 28191344] 10. Jamali R, Arj A, Razavizade M, Aarabi M. Prediction of nonalcoholic fatty liver disease via a novel panel of serum adipokines. Medicine (Baltimore) 2016 Feb;95(5):e2630. [doi: 10.1097/MD.0000000000002630] [Medline: 26844476] 11. Ma H, Xu C, Shen Z, Yu C, Li Y. Application of machine learning techniques for clinical predictive modeling: a cross-sectional study on nonalcoholic fatty liver disease in China. Biomed Res Int 2018 Oct 03;2018:4304376. [doi: 10.1155/2018/4304376] [Medline: 30402478] 12. Wu C, Yeh W, Hsu W, Islam MM, Nguyen PA, Poly TN, et al. Prediction of fatty liver disease using machine learning algorithms. Computer Methods Programs Biomed 2019 Mar;170:23-29. [doi:10.1016/j.cmpb.2018.12.032] [Medline: 30712601] 13. Yip TC, Ma AJ, Wong VW, Tse Y, Chan HL, Yuen P, et al. Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (NAFLD) in the general population. Aliment Pharmacol Ther. 2017 Aug 06;46(4):447-456. [doi: 10.1111/apt.14172] [Medline: 28585725] 14. Gu S, Cheng R, Jin Y. Feature selection for high-dimensional classification using a competitive swarm optimizer. Soft Computer 22, 2018 Oct 7;22(3):811-822. [doi: 10.1007/s00500-016-2385-6] 15. Juha R. Overfitting in making comparisons between variable selection methods. J. Machine Learn Res., vol. 3, page:1371-1382, 2003 16. Islam MM, Wu CC, Poly TN, Yang HC, Li YCJ. Applications of machine learning in fatty liver disease prediction. In: Building Continents of Knowledge in Oceans of Data: The Future of Co-Created eHealth. 2006 Apr Presented at: 40th Medical Informatics in Europe Conference, MIE 2018; April 26, 2018; Gothenburg, Sweden p. 166-170 URL: https://tmu.pure.elsevier.com/en/publications/applications-of-machine-learning-in-fatty-live-disease-prediction. [doi:10.3233/978-1-61499-852-5-166] 17. Paul D, Su R, Romain M, Sébastien V, Pierre V, Isabelle G. Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier. Computer Med Imaging Graph 2017 Sep;60:42-49. [doi:10.1016/j.compmedimag.2016.12.002] [Medline: 28087102] 18. Tian Y, Zhang X, Wang C, Jin Y. An evolutionary algorithm for large-scale sparse multi-objective optimization problems. IEEE Trans. Evol. Computation 2020 Apr;24(2):380-393. [doi: 10.1109/tevc.2019.2918140] 19. Wei X, Jiang F, Wei F, Zhang J, Liao W, Cheng S. An ensemble model for diabetes diagnosis in large-scale and imbalanced dataset. 2017 Presented at: CF'17: Computing Frontiers Conference; May 15-17, 2017; Siena, Italy p. 71-78. [doi:10.1145/3075564.3075576] 20. Kim MH, Kim JH, Lee K, Gim G. The prediction of COVID-19 using LSTM algorithms. Int. J. Network Distribution Computer 2021;9(1):19. [doi: 10.2991/ijndc.k.201218.003] 21. Pal R, Sekh AA, Kar S, Prasad DK. Neural network-based country wise risk prediction of COVID-19. Appl Sci 2020 Sep 16;10(18):6448. [doi: 10.3390/app10186448] 22. Zhang N, Shen S, Zhou A, Jin Y. Application of LSTM approach for modelling stress–strain behavior of soil. Apply Soft Computing 2021 Mar;100:106959. [doi: 10.1016/j.asoc.2020.106959] 23. Sunny M, Maswood M, Alharbi A. Deep learning-based stock price prediction using LSTM and bi-directional LSTM model. 2020 Presented at: 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES); October 24-26, 2020; Giza, Egypt p. 87-92. [doi: 10.1109/niles50944.2020.9257950] 24. Wang G, Li Z, Li G, Dai G, Xiao Q, Bai L, et al. Real-time liver tracking algorithm based on LSTM and SVR networks for use in surface-guided radiation therapy. Radiat Oncol 2021 Jan 14;16(1):13. [doi:10.1186/s13014-020-01729-7] [Medline: 33446245] 25. Qiao D, Li P, Ma G, Qi X, Yan J, Ning D, et al. Realtime prediction of dynamic mooring lines responses with LSTM neural network model. Ocean Eng 2021 Jan;219:108368. [doi: 10.1016/j.oceaneng.2020.108368] 26. Davagdorj K, Yu S, Kim S, Huy P, Park J, Ryu K. Prediction of 6 months smoking cessation program among women in Korea. Int J Machine Learn Computer 2019 Jul;9(1):83-90. [doi: 10.18178/ijmlc.2019.9.1.769] 27. Park H, Batbaatar E, Li D, Ryu K. Risk factors rule mining in hypertension: Korean National Health and Nutrient Examinations Survey 2007-2014. 2016 Presented at: 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB); January 14-15, 2016; Noida, India p. 1-4. [doi: 10.1109/cibcb.2016.7758128] 28. Park KH, Ishag MIM, Rya KS, Li M, Ryu KH. Efficient ensemble methods for classification on clear cell renal cell carcinoma clinical dataset. In: Nguyen N, Hoang D, Hong TP, Pham H, Trawiński B, editors. Intelligent Information and Database Systems. ACIIDS 2018. Lecture Notes in Computer Science, vol 10752. Cham: Springer; Feb 14, 2018:235-242. [doi: 10.1007/978-3-319-75420-8_22] 29. Whitney AW. A direct method of nonparametric measurement selection. IEEE Trans Computer 1971 Sep;C-20(9):1100-1103. [doi: 10.1109/T-C.1971.223410] 30. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Computer System Sci 1997 Aug;55(1):119-139. [doi: 10.1006/jcss.1997.1504] 31. Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995 Sep;20(3):273-297. [doi: 10.1007/BF00994018] 32. Wright RE. Logistic regression. In: Grimm LG, Yarnold PR, editors. Reading and understanding multivariate statistics. Washington, DC: American Psychological Association; 1995:217-244 33. Breiman L. Random Forests. Machine Learn 2001 Oct;45:5-32. [doi: 10.1023/A:1010933404324] 34. Dereli O, Oğuz C, Gönen M. A multitask multiple kernel learning algorithm for survival analysis with application to cancer biology. 2019 Presented at: 36th International Conference on Machine Learning; 2019; Long Beach, CA p. 1576-1585 35. Bishop CM. Pattern Recognition and Machine Learning. New York, NY: Springer; Jan 2006 36. Salzberg SL. C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Mach Learn 1994 Sep;16(3):235-240. [doi: 10.1007/BF00993309] 37. Breiman L, Friedman JH, Stone CJ, Olshen RA. Classification and regression trees. United Kingdom: Hall/CRC Press; 1984 38. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computer 1997 Nov 15;9(8):1735-1780. [doi: 10.1162/neco.1997.9.8.1735] [Medline: 9377276] 39. Schuster M, Paliwal K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process 1997;45(11):2673-2681. [doi: 10.1109/78.650093] [Medline: 16112549] 40. Dyer C, Ballesteros M, Ling W, Matthews A, Noah A. Transition-based dependency parsing with stack long short-term memory, arXiv, in proceedings of ACL. arXiv. 2015. URL: https://arxiv.org/abs/1505.08075. [accessed 2015-05-29] 41. Cai L, Zhou S, Yan X, Yuan R. A stacked BiLSTM neural network based on coattention mechanism for question answering. Computer Intell Neurosci 2019 Aug 21;2019:9543490. [doi: 10.1155/2019/9543490] [Medline: 31531011] 42. Song H, Rajan D, Thiagarajan J, Spanias A. Attend and diagnose: clinical time series analysis using attention models. 2018 Presented at: Thirty-Second AAAI Conference on Artificial Intelligence; February 2-7, 2018; New Orleans, LA 43. Li S, Zeng Y, Chapman WC Jr, Erfanzadeh M, Nandy S, Mutch M, Zhu Q. Adaptive Boosting (AdaBoost)-based multiwavelength spatial frequency domain imaging and characterization for ex vivo human colorectal tissue assessment. J Biophotonics. 2020 Jun;13(6):e201960241. [doi: 10.1002/jbio.201960241][PMID: 32125775][PMCID: PMC7593835] 44. Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genomics Proteomics. 2018 Jan-Feb;15(1):41-51. [doi: 10.21873/cgp.20063] [PMID: 29275361] [PMCID: PMC5822181] 45. Stoltzfus JC. Logistic regression: a brief primer. Acad Emerg Med. 2011 Oct;18(10):1099-104. [doi: 10.1111/j.1553-2712.2011.01185.x] [PMID: 21996075] 46. Hanko M, Grendár M, Snopko P, Opšenák R, Šutovský J, Benčo M, Soršák J, Zeleňák K, Kolarovszki B. Random Forest-Based Prediction of Outcome and Mortality in Patients with Traumatic Brain Injury Undergoing Primary Decompressive Craniectomy. World Neurosurg. 2021 Apr;148:e450-e458. [doi: 10.1016/j.wneu.2021.01.002] [PMID: 33444843] 47. Zhang H, Jiang T, Shan G. Identification of Hot Spots in Protein Structures Using Gaussian Network Model and Gaussian Naive Bayes. Biomed Res Int. 2016;2016:4354901. [doi: 10.1155/2016/4354901] [PMID: 27882325] [PMCID: PMC5110947] 48. Decision Tree C4.5 (C4.5), Singh, S., and Gupta, P., “COMPARATIVE STUDY ID3, CART AND C4.5 DECISION TREE ALGORITHM: A SURVEY”, International Journal of Advanced Information Science and Technology (IJAIST), Volume. 27, Issue.27, July 2014, pp: 97-103 49. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997 Nov 15;9(8):1735-80. [doi: 10.1162/neco.1997.9.8.1735] [PMID: 9377276] 50. Said AB, Erradi A, Aly HA, Mohamed A. Predicting COVID-19 cases using bidirectional LSTM on multivariate time series. Environ Sci Pollut Res Int. 2021 Oct;28(40):56043-56052. [doi: 10.1007/s11356-021-14286-7] [PMID: 34043172] [PMCID: PMC8155803] 51. Kim DY, Lee SH, Jeong GM. Stack LSTM-Based User Identification Using Smart Shoes with Accelerometer Data. Sensors (Basel). 2021 Dec 5;21(23):8129. [doi: 10.3390/s21238129] [PMID: 34884133] [PMCID: PMC8662428] 52. Singh, J.P., Kumar, A., Rana, N.P. et al. Attention-Based LSTM Network for Rumor Veracity Estimation of Tweets. Information Systems Frontiers (2020). 12, august, 2020. [doi.org/10.1007/s10796-020-10040-5] 53. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012 Jun;55(6):2005-2023. [doi: 10.1002/hep.25762] [Medline: 22488764] 54. Marengo A, Rosso C, Bugianesi E. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med 2016;67:103-117. [doi: 10.1146/annurev-med-090514-013832] [Medline: 26473416] 55. Hancer E. Differential evolution for feature selection: a fuzzy wrapper–filter approach. Soft Computer 2018 Oct 6;23(13):5233-5248. [doi: 10.1007/s00500-018-3545-7] 56. Rioux C, Lewin A, Odejimi OA, Little TD. Reflection on modern methods: planned missing data designs for epidemiological research. Int J Epidemiol. 2020 Oct 1;49(5):1702-1711. [doi: 10.1093/ije/dyaa042][PMID: 32356879] 57. A. Jović, K. Brkić and N. Bogunović, A review of feature selection methods with applications, 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2015, pp. 1200-1205. [doi: 10.1109/MIPRO.2015.7160458] 58. MJ Health Database URL: http://www.mjhrf.org/main/page/resource/en/#resource03 [accessed 2020-02-21] 59. Rioux C, Lewin A, Odejimi OA, Little TD. Reflection on modern methods: planned missing data designs for epidemiological research. Int J Epidemiol. 2020 Oct 1;49(5):1702-1711. [doi: 10.1093/ije/dyaa042][PMID: 32356879] 60. Buuren SV, Groothuis-Oudshoorn K. MICE: multivariate imputation by chained equations in R. J Stat Soft 2011;45(3):1-68. [doi: 10.18637/jss.v045.i03] 61. Azur MJ. Stuart EA. Frangakis C. Leaf PJ. Multiple imputation by chained equations: what is it and how does it work? International journal of methods in psychiatric research, vol. 20, issue 1, Feb 24, 2011:40-49. [doi:10.1002/mpr.329] [PMid:21499542][ PMCID: PMC3074241] 62. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Tudor-Locke C, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exercise 2011 Aug;43(8):1575-1581. [doi:10.1249/MSS.0b013e31821ece12] [Medline: 21681120] 63. Ainsworth BE. The Compendium of Physical Activities Tracking Guide. 2002. URL: http://prevention.sph.sc.edu/tools/docs/ documents_compendium.pdf [accessed 2021-08-04] 64. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018 Jan;67(1):328-357. [doi: 10.1002/hep.29367] [Medline: 28714183] 65. Pan JJ, Fallon MB. Gender and racial differences in nonalcoholic fatty liver disease. World J Hepatol 2014 May 27;6(5):274-283. [doi: 10.4254/wjh.v6.i5.274] [Medline: 24868321] | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79606 | - |
| dc.description.abstract | "脂肪肝Fatty Liver Disease(FLD)是由脂肪在肝臟中堆積引起的,可能引起肝臟發炎,如果控制不好,可能會發展成為肝纖維化 (liver fibrosis)、肝硬化 (cirrhosis),甚至肝細胞癌 (hepatocellular carcinoma)。基於來自健康檢查中心的多年且大規模數據集,本文提出了脂肪肝疾病 (FLD) 預測的兩項任務,包括當前訪問預測Current-Visit Prediction (CVP)和下次訪問預測Next-Visit Prediction (NVP)。當前訪視預測可用於根據本次訪視時獲得的實驗室檢查(laboratory test)和問卷信息(questionnaire information)預測 FLD 的可能性,而下次訪視預測可用於預測 FLD 發生的可能性。下一次訪問,基於實驗室測試的軌跡和所有過去訪問的問卷信息。在實踐中,NVP 在預防醫學中更有價值,因為如果預測是肯定的,醫生可以向患者建議有效的生活方式改變,以防止下次就診時發生 FLD。據我們所知,這是基於大規模的健康檢查中心之數據集根據在NVP的機器學習的首次嘗試。此外,我們還基於 CVP/NVP 進行了特徵選擇,以在與醫生手動選擇的特徵進行比較時獲得一致的結果。這種多任務預測可以為患者和醫生提供更好和有價值的建議,以實踐預防醫學。 我們描述了機器學習模型的構建用於當前訪問預測(CVP),它可以幫助醫生獲得更多信息以進行準確診斷,以及下次訪問預測(NVP),它可以幫助醫生提供潛在的高風險患者提供有效預防 FLD 的建議。在本研究中使用的大規模高維數據集來自台灣台北市 MJ 健康研究基金會。我們在 FLD 預測中使用一次性排序和順序前向選擇 (SFS) 進行特徵選擇。對於 CVP,我們探索了多種模型,包括 k-最近鄰分類器 (KNNC)、Adaboost、支持向量機 (SVM)、邏輯回歸 (LR)、隨機森林 (RF)、高斯樸素貝葉斯 (GNB)、決策樹 C4 .5 (C4.5),以及分類和回歸樹 (CART)。對於 NVP,我們使用長短期記憶 (LSTM) 及其幾種變體作為使用各種輸入集進行預測的序列分類器。模型性能的評估基於兩個標準:測試集的準確性以及一次性排序/SFS 和領域專家選擇的特徵之間的聯合/覆蓋的交集。分別計算了男性和女性的 CVP 和 NVP 的準確度、精確度、召回率、F1 測量值和接受者操作特徵曲線下的面積。 最後在經過數據清理後,數據集包括 2009-2016 年期間男性和女性的 34,856 次和 31,394 次獨立訪問。使用KNNC、Adaboost、SVM、LR、RF、GNB、C4.5、CART對CVP的測試精度分別為84.28%、83.84%、82.22%、82.21%、76.03%、75.78%、75.53%。 NVP使用LSTM、雙向LSTM(biLSTM)、Stack-LSTM、Stack-biLSTM和Attention-LSTM的測試準確率分別為76.54%、76.66%、77.23%、76.84%和77.31%,固定間隔特徵,以及對於可變間隔特徵,分別為 79.29%、79.12%、79.32%、79.29% 和 78.36%。 本研究探索了一個用於高維的大規模 FLD 數據集。我們為 CVP 和 NVP 開發了 FLD 預測模型。我們還為當前和下次訪問預測實施了有效的特徵選擇方案,以將自動選擇的特徵與專家選擇的特徵進行比較。特別是,從預防醫學的角度來看,NVP 顯得更有價值。對於 NVP,我們建議使用更緊湊和靈活的特徵集 2(具有可變間隔)。我們還結合兩個特徵集測試了 LSTM 的幾種變體,以確定男性和女性 FLD 預測的最佳匹配。更具體地說,男性的最佳模型是使用特徵集 2 的 Stack-LSTM(準確率為 79.32%),而女性的最佳模型是使用特徵集 1 的 LSTM(準確率為 81.90%)。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:05:02Z (GMT). No. of bitstreams: 1 U0001-0702202216480800.pdf: 3162076 bytes, checksum: 18f058452e55330b276530138aa2bf97 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 ........................................................................................................... i 誌謝................................................................................................................................... ii 摘要 .................................................................................................................................iii Abstract..............................................................................................................................v Contents.........................................................................................................................viii List of Figures.................................................................................................................. xi List of Tables................................................................................................................. xvi Chapter 1. Introduction......................................................................................................1 1.1 Background............................................................................................................1 1.2 Related work........................................................................................................10 1.2.1 Literature Survey....................................................................................10 1.2.2 Automatic Feature Selection..................................................................11 1.3 Common Classifiers Used in This Study.............................................................12 1.3.1 The Description of Classifiers................................................................13 Chapter 2. Methods..........................................................................................................22 2.1 Study Design and Process....................................................................................22 2.1.1 Flowchart ...............................................................................................22 2.1.2 CVP Model ............................................................................................23 2.1.3 NVP Model ............................................................................................24 2.1.4 Feature Selection....................................................................................26 2.2 Dataset .................................................................................................................33 2.2.1 General Characteristics of the Dataset...................................................33 2.2.2 Data Size Over 8 Years..........................................................................34 2.2.3 Dataset Properties ..................................................................................34 2.2.4 BMI Progression Over 8 Years..............................................................36 2.2.5 Missing Value Imputation......................................................................37 2.2.6 Data Preprocessing.................................................................................41 2.3 Environment and Specification ...........................................................................44 Chapter 3. Results............................................................................................................45 3.1 Feature Selection with Various Methods.............................................................45 3.2 Experiment 1: CVP With Optimum Years of Training Data and Feature Selection.......................................................................................................................48 3.3 Experiment 2: Hormonal Influence in CVP ........................................................55 3.4 LSTM for NVP....................................................................................................58 Chapter 4. Discussion......................................................................................................71 4.1 Principal Findings................................................................................................71 4.2 Conclusions and Future Work.............................................................................74 Acknowledgments...........................................................................................................76 Bibliography....................................................................................................................77 Abbreviations...................................................................................................................86 Appendix .........................................................................................................................87 | |
| dc.language.iso | en | |
| dc.title | 使用大規模數據集對脂肪肝疾病的當前訪問和下次訪問預測:模型開發和性能比較 | zh_TW |
| dc.title | Current-Visit and Next-Visit Prediction for Fatty Liver Disease With a Large-Scale Dataset: Model Development and Performance Comparison | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-0385-8323 | |
| dc.contributor.oralexamcommittee | 陳朝欽(Nae-Lih Wu),賴飛羆(Chi-An Dai),朱大維(Chih-Wei Hu),朱學亭 | |
| dc.subject.keyword | 機器學習,序列前向特徵選擇,一次性排序,脂肪肝疾病,酒精性脂肪肝,非酒精性脂肪肝,長短期記憶,當前訪問預測,下次訪問預測, | zh_TW |
| dc.subject.keyword | machine learning,sequence forward selection,one-pass ranking,fatty liver diseases,alcohol fatty liver disease,nonalcoholic fatty liver disease,long short-term memory,current-visit prediction,next-visit prediction, | en |
| dc.relation.page | 90 | |
| dc.identifier.doi | 10.6342/NTU202200336 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-02-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0702202216480800.pdf | 3.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
