Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79546
Title: Q-學習法輔助自適應模糊控制在載具跟隨系統之應用
Application of Q-learning Assisted Self-tuning Fuzzy Controller on Vehicle-Follower
Authors: Ya-Ling Wen
温雅翎
Advisor: 王立昇(Li-Sheng Wang)
Keyword: 跟隨系統,模糊控制,Q-學習法,Q-學習輔助模糊控制,自適應性,
vehicle-following system,fuzzy control,Q-learning,Q-learning assisted fuzzy control,self-tuning,
Publication Year : 2021
Degree: 碩士
Abstract: 本研究利用三種不同控制方法設計在未知環境下的載具跟隨系統,分別為模糊控制、Q-學習法以及Q-學習輔助模糊控制。在研究中,無人差速輪載具經由實驗空間上方的網路攝影機作為感測器,取得前方引導載具位置資訊及自身的位姿資訊,並使用上述三種演算法進行追蹤引導載具,保持安全距離與貼合引導載具路徑之任務。在使用模糊控制的跟隨系統時,須預先藉由專家經驗得出完整的模糊規則,但當複雜環境改變時,所採用之規則庫可能必須調整,然傳統的模糊控制並未提供調整策略,使其缺乏自適應性;在另一方面,Q-學習法能透過不斷與環境互動進行學習,具有自適應的能力,但因須先進行行為探索,使其應用效率低,且因離散化而產生震盪問題;為解決前兩種控制方法的不足,整合的Q-學習輔助模糊控制則,不但在動態環境下具有學習與適應環境的能力,並可透過模糊規則提高Q-學習法的學習速度。依據模擬和實驗結果,本文所發展之三種控制方法皆能實現任務目標,而經由結果比較可得,Q-學習輔助模糊控制確實能結合兩者優點,在實際導航上具有較高的應用價值。
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79546
DOI: 10.6342/NTU202103301
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:應用力學研究所

Files in This Item:
File SizeFormat 
U0001-2209202123350200.pdf5.46 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved