請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79467完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊宏(Chun-Hung Lin) | |
| dc.contributor.author | Bolor Buyanbadrakh | en |
| dc.contributor.author | 柏樂 | zh_TW |
| dc.date.accessioned | 2022-11-23T09:01:15Z | - |
| dc.date.available | 2021-11-05 | |
| dc.date.available | 2022-11-23T09:01:15Z | - |
| dc.date.copyright | 2021-11-05 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-22 | |
| dc.identifier.citation | 1. Young, K.D., The selective value of bacterial shape. Microbiol Mol Biol Rev, 2006. 70(3): p. 660-703. 2. Typas, A., et al., From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol, 2011. 10(2): p. 123-36. 3. Silhavy, T.J., D. Kahne, and S. Walker, The bacterial cell envelope. Cold Spring Harb Perspect Biol, 2010. 2(5): p. a000414. 4. Schneider, T. and H.G. Sahl, An oldie but a goodie - cell wall biosynthesis as antibiotic target pathway. Int J Med Microbiol, 2010. 300(2-3): p. 161-9. 5. Castanheira, M., et al., Variations in the Occurrence of Resistance Phenotypes and Carbapenemase Genes Among Enterobacteriaceae Isolates in 20 Years of the SENTRY Antimicrobial Surveillance Program. Open Forum Infect Dis, 2019. 6(Suppl 1): p. S23-S33. 6. Gales, A.C., et al., Antimicrobial Susceptibility of Acinetobacter calcoaceticus-Acinetobacter baumannii Complex and Stenotrophomonas maltophilia Clinical Isolates: Results From the SENTRY Antimicrobial Surveillance Program (1997-2016). Open Forum Infect Dis, 2019. 6(Suppl 1): p. S34-S46. 7. Antibiotic resistance threats in the United States, 2019. 2019. 8. Cassini, A., et al., Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. The Lancet Infectious Diseases, 2019. 19(1): p. 56-66. 9. Tommasi, R., et al., ESKAPEing the labyrinth of antibacterial discovery. Nature Reviews Drug Discovery, 2015. 14(8): p. 529-542. 10. Drown, B.S. and P.J. Hergenrother, Going on offense against the gram-negative defense. Proc Natl Acad Sci U S A, 2018. 115(26): p. 6530-6532. 11. Silver, L.L., Challenges of antibacterial discovery. Clin Microbiol Rev, 2011. 24(1): p. 71-109. 12. Freire-Moran, L., et al., Critical shortage of new antibiotics in development against multidrug-resistant bacteria-Time to react is now. Drug Resist Updat, 2011. 14(2): p. 118-24. 13. Shore, C.K. and A. Coukell, Roadmap for antibiotic discovery. Nat Microbiol, 2016. 1(6): p. 16083. 14. Butler, M.S., M.A. Blaskovich, and M.A. Cooper, Antibiotics in the clinical pipeline at the end of 2015. J Antibiot (Tokyo), 2017. 70(1): p. 3-24. 15. Zoffmann, S., et al., Machine learning-powered antibiotics phenotypic drug discovery. Scientific Reports, 2019. 9(1): p. 5013. 16. Ribeiro da Cunha, B., L.P. Fonseca, and C.R.C. Calado, Antibiotic Discovery: Where Have We Come from, Where Do We Go? Antibiotics (Basel), 2019. 8(2). 17. Wiuff, C., et al., Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations. Antimicrob Agents Chemother, 2005. 49(4): p. 1483-94. 18. Sanchez-Romero, M.A. and J. Casadesus, Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proc Natl Acad Sci U S A, 2014. 111(1): p. 355-60. 19. Dorr, T., Understanding tolerance to cell wall-active antibiotics. Ann N Y Acad Sci, 2020. 20. Mueller, E.A. and P.A. Levin, Bacterial Cell Wall Quality Control during Environmental Stress. mBio, 2020. 11(5). 21. Sham, L.T., et al., Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science, 2014. 345(6193): p. 220-2. 22. Mohammadi, T., et al., Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J, 2011. 30(8): p. 1425-32. 23. Egan, A.J.F., J. Errington, and W. Vollmer, Regulation of peptidoglycan synthesis and remodelling. Nat Rev Microbiol, 2020. 18(8): p. 446-460. 24. Suginaka, H., P.M. Blumberg, and J.L. Strominger, Multiple penicillin-binding components in Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Escherichia coli. J Biol Chem, 1972. 247(17): p. 5279-88. 25. Zapun, A., C. Contreras-Martel, and T. Vernet, Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev, 2008. 32(2): p. 361-85. 26. Kocaoglu, O. and E.E. Carlson, Profiling of beta-lactam selectivity for penicillin-binding proteins in Escherichia coli strain DC2. Antimicrob Agents Chemother, 2015. 59(5): p. 2785-90. 27. Yousif, S.Y., J.K. Broome-Smith, and B.G. Spratt, Lysis of Escherichia coli by beta-lactam antibiotics: deletion analysis of the role of penicillin-binding proteins 1A and 1B. J Gen Microbiol, 1985. 131(10): p. 2839-45. 28. Paradis-Bleau, C., et al., Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell, 2010. 143(7): p. 1110-20. 29. Typas, A., et al., Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell, 2010. 143(7): p. 1097-109. 30. Banzhaf, M., et al., Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multi-enzyme complexes in Escherichia coli. EMBO J, 2020. 39(5): p. e102246. 31. Spratt, B.G. and V. Jobanputra, Mutants of Escherichia coli which lack a component of penicillin-binding protein 1 are viable. FEBS Lett, 1977. 79(2): p. 374-8. 32. Born, P., E. Breukink, and W. Vollmer, In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli. J Biol Chem, 2006. 281(37): p. 26985-93. 33. Tamaki, S., S. Nakajima, and M. Matsuhashi, Thermosensitive mutation in Escherichia coli simultaneously causing defects in penicillin-binding protein-1Bs and in enzyme activity for peptidoglycan synthesis in vitro. Proc Natl Acad Sci U S A, 1977. 74(12): p. 5472-6. 34. Nakagawa, J. and M. Matsuhashi, Molecular divergence of a major peptidoglycan synthetase with transglycosylase-transpeptidase activities in Escherichia coli --- penicillin-binding protein 1Bs. Biochem Biophys Res Commun, 1982. 105(4): p. 1546-53. 35. Ranjit, D.K., M.A. Jorgenson, and K.D. Young, PBP1B Glycosyltransferase and Transpeptidase Activities Play Different Essential Roles during the De Novo Regeneration of Rod Morphology in Escherichia coli. J Bacteriol, 2017. 199(7). 36. Pazos, M., et al., Z-ring membrane anchors associate with cell wall synthases to initiate bacterial cell division. Nature Communications, 2018. 9(1): p. 5090. 37. Banzhaf, M., et al., Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Mol Microbiol, 2012. 85(1): p. 179-94. 38. Bertsche, U., et al., Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli. Mol Microbiol, 2006. 61(3): p. 675-90. 39. Cho, H., et al., Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat Microbiol, 2016. 1: p. 16172. 40. Vigouroux, A., et al., Class-A penicillin binding proteins do not contribute to cell shape but repair cell-wall defects. Elife, 2020. 9. 41. Kato, J., H. Suzuki, and Y. Hirota, Dispensability of either penicillin-binding protein-1a or -1b involved in the essential process for cell elongation in Escherichia coli. Mol Gen Genet, 1985. 200(2): p. 272-7. 42. Mueller, E.A., et al., Plasticity of Escherichia coli cell wall metabolism promotes fitness and antibiotic resistance across environmental conditions. Elife, 2019. 8. 43. Egan, A.J., et al., Activities and regulation of peptidoglycan synthases. Philos Trans R Soc Lond B Biol Sci, 2015. 370(1679). 44. Goffin, C. and J.M. Ghuysen, Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev, 1998. 62(4): p. 1079-93. 45. Ozbaykal, G., et al., The transpeptidase PBP2 governs initial localization and activity of the major cell-wall synthesis machinery in E. coli. Elife, 2020. 9. 46. Spratt, B.G., Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci U S A, 1975. 72(8): p. 2999-3003. 47. Wang, L., et al., FtsI and FtsW are localized to the septum in Escherichia coli. J Bacteriol, 1998. 180(11): p. 2810-6. 48. Mercer, K.L. and D.S. Weiss, The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J Bacteriol, 2002. 184(4): p. 904-12. 49. Rohs, P.D.A., et al., A central role for PBP2 in the activation of peptidoglycan polymerization by the bacterial cell elongation machinery. PLoS Genet, 2018. 14(10): p. e1007726. 50. Taguchi, A., et al., FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. Nat Microbiol, 2019. 4(4): p. 587-594. 51. van Teeffelen, S., et al., The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci U S A, 2011. 108(38): p. 15822-7. 52. Dominguez-Escobar, J., et al., Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science, 2011. 333(6039): p. 225-8. 53. Bratton, B.P., et al., MreB polymers and curvature localization are enhanced by RodZ and predict E. coli's cylindrical uniformity. Nat Commun, 2018. 9(1): p. 2797. 54. Alyahya, S.A., et al., RodZ, a component of the bacterial core morphogenic apparatus. Proc Natl Acad Sci U S A, 2009. 106(4): p. 1239-44. 55. Bendezu, F.O., et al., RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli. EMBO J, 2009. 28(3): p. 193-204. 56. Morgenstein, R.M., et al., RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis. Proc Natl Acad Sci U S A, 2015. 112(40): p. 12510-5. 57. Wachi, M., et al., Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J Bacteriol, 1987. 169(11): p. 4935-40. 58. Daniel, R.A. and J. Errington, Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell, 2003. 113(6): p. 767-76. 59. Bork, P., C. Sander, and A. Valencia, An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci U S A, 1992. 89(16): p. 7290-4. 60. Wang, S., et al., Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall. Proc Natl Acad Sci U S A, 2012. 109(10): p. E595-604. 61. Kruse, T., J. Bork-Jensen, and K. Gerdes, The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol Microbiol, 2005. 55(1): p. 78-89. 62. Trip, E.N. and D.J. Scheffers, A 1 MDa protein complex containing critical components of the Escherichia coli divisome. Sci Rep, 2015. 5: p. 18190. 63. Vaughan, S., et al., Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J Mol Evol, 2004. 58(1): p. 19-29. 64. Condon, S.G.F., et al., The FtsLB subcomplex of the bacterial divisome is a tetramer with an uninterrupted FtsL helix linking the transmembrane and periplasmic regions. J Biol Chem, 2018. 293(5): p. 1623-1641. 65. Mukherjee, A. and J. Lutkenhaus, Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol, 1994. 176(9): p. 2754-8. 66. Du, S. and J. Lutkenhaus, Assembly and activation of the Escherichia coli divisome. Mol Microbiol, 2017. 105(2): p. 177-187. 67. Scheffers, D.J. and M.G. Pinho, Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev, 2005. 69(4): p. 585-607. 68. Reed, P., et al., Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance. PLoS Pathog, 2015. 11(5): p. e1004891. 69. Kocaoglu, O., et al., Profiling of beta-lactam selectivity for penicillin-binding proteins in Streptococcus pneumoniae D39. Antimicrob Agents Chemother, 2015. 59(6): p. 3548-55. 70. Pinho, M.G., M. Kjos, and J.W. Veening, How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat Rev Microbiol, 2013. 11(9): p. 601-14. 71. Vermassen, A., et al., Cell Wall Hydrolases in Bacteria: Insight on the Diversity of Cell Wall Amidases, Glycosidases and Peptidases Toward Peptidoglycan. Front Microbiol, 2019. 10: p. 331. 72. Straume, D., et al., Class A PBPs: It is time to rethink traditional paradigms. Mol Microbiol, 2021. 73. Typas, A. and V. Sourjik, Bacterial protein networks: properties and functions. Nat Rev Microbiol, 2015. 13(9): p. 559-72. 74. Orchard, S., et al., The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res, 2014. 42(Database issue): p. D358-63. 75. Szwedziak, P. and J. Löwe, Do the divisome and elongasome share a common evolutionary past? Curr Opin Microbiol, 2013. 16(6): p. 745-51. 76. van der Ploeg, R., et al., Colocalization and interaction between elongasome and divisome during a preparative cell division phase in Escherichia coli. Mol Microbiol, 2013. 87(5): p. 1074-87. 77. Satta, G., et al., Target for bacteriostatic and bactericidal activities of beta-lactam antibiotics against Escherichia coli resides in different penicillin-binding proteins. Antimicrob Agents Chemother, 1995. 39(4): p. 812-8. 78. Tamaki, S., H. Matsuzawa, and M. Matsuhashi, Cluster of mrdA and mrdB genes responsible for the rod shape and mecillinam sensitivity of Escherichia coli. J Bacteriol, 1980. 141(1): p. 52-7. 79. Eberhardt, C., L. Kuerschner, and D.S. Weiss, Probing the catalytic activity of a cell division-specific transpeptidase in vivo with beta-lactams. J Bacteriol, 2003. 185(13): p. 3726-34. 80. Nishino, T. and S. Nakazawa, Morphological changes in Staphylococcus aureus and Escherichia coli exposed to cephalexin. Jpn J Microbiol, 1972. 16(2): p. 83-94. 81. Greenwood, D. and F. O'Grady, Lysis enhancement: a novel form of interaction between beta-lactam antibiotics. J Med Microbiol, 1975. 8(1): p. 205-8. 82. Tomasz, A., The role of autolysins in cell death. Ann N Y Acad Sci, 1974. 235(0): p. 439-47. 83. Rogers, H.J., Killing of Staphylococci by Penicillins. Nature, 1967. 213(5071): p. 31-33. 84. Cho, H., T. Uehara, and T.G. Bernhardt, Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell, 2014. 159(6): p. 1300-11. 85. Dwyer, D.J., M.A. Kohanski, and J.J. Collins, Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol, 2009. 12(5): p. 482-9. 86. Shin, J.H., et al., A multifaceted cellular damage repair and prevention pathway promotes high-level tolerance to beta-lactam antibiotics. EMBO Rep, 2021. 22(2): p. e51790. 87. Miller, C., et al., SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science, 2004. 305(5690): p. 1629-31. 88. Mickiewicz, K.M., et al., Possible role of L-form switching in recurrent urinary tract infection. Nature Communications, 2019. 10(1): p. 4379. 89. Geiger, T., et al., Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J Bacteriol, 2014. 196(4): p. 894-902. 90. Delhaye, A., J.F. Collet, and G. Laloux, A Fly on the Wall: How Stress Response Systems Can Sense and Respond to Damage to Peptidoglycan. Front Cell Infect Microbiol, 2019. 9: p. 380. 91. Laubacher, M.E. and S.E. Ades, The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J Bacteriol, 2008. 190(6): p. 2065-74. 92. Arends, S.J.R. and D.S. Weiss, Inhibiting cell division in Escherichia coli has little if any effect on gene expression. Journal of bacteriology, 2004. 186(3): p. 880-884. 93. Cho, S.H., et al., Detecting envelope stress by monitoring β-barrel assembly. Cell, 2014. 159(7): p. 1652-64. 94. Sailer, F.C., B.M. Meberg, and K.D. Young, beta-Lactam induction of colanic acid gene expression in Escherichia coli. FEMS Microbiol Lett, 2003. 226(2): p. 245-9. 95. Snider, J., et al., Detecting interactions with membrane proteins using a membrane two-hybrid assay in yeast. Nat Protoc, 2010. 5(7): p. 1281-93. 96. Drewes, G. and T. Bouwmeester, Global approaches to protein-protein interactions. Curr Opin Cell Biol, 2003. 15(2): p. 199-205. 97. Braun, P., et al., An experimentally derived confidence score for binary protein-protein interactions. Nat Methods, 2009. 6(1): p. 91-7. 98. von Mering, C., et al., Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 2002. 417(6887): p. 399-403. 99. Keilhauer, E.C., M.Y. Hein, and M. Mann, Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS). Mol Cell Proteomics, 2015. 14(1): p. 120-35. 100. Li, X., W. Wang, and J. Chen, From pathways to networks: connecting dots by establishing protein-protein interaction networks in signaling pathways using affinity purification and mass spectrometry. Proteomics, 2015. 15(2-3): p. 188-202. 101. Varjosalo, M., et al., Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nat Methods, 2013. 10(4): p. 307-14. 102. Aebersold, R. and M. Mann, Mass-spectrometric exploration of proteome structure and function. Nature, 2016. 537(7620): p. 347-55. 103. Klykov, O., et al., Efficient and robust proteome-wide approaches for cross-linking mass spectrometry. Nat Protoc, 2018. 13(12): p. 2964-2990. 104. Harper, J.W. and E.J. Bennett, Proteome complexity and the forces that drive proteome imbalance. Nature, 2016. 537(7620): p. 328-38. 105. Morris, J.H., et al., Affinity purification-mass spectrometry and network analysis to understand protein-protein interactions. Nat Protoc, 2014. 9(11): p. 2539-54. 106. Gavin, A.C., K. Maeda, and S. Kuhner, Recent advances in charting protein-protein interaction: mass spectrometry-based approaches. Curr Opin Biotechnol, 2011. 22(1): p. 42-9. 107. Butland, G., et al., Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature, 2005. 433(7025): p. 531-7. 108. Arifuzzaman, M., et al., Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res, 2006. 16(5): p. 686-91. 109. Babu, M., et al., Global landscape of cell envelope protein complexes in Escherichia coli. Nat Biotechnol, 2018. 36(1): p. 103-112. 110. Liu, X., et al., Combined proximity labeling and affinity purification−mass spectrometry workflow for mapping and visualizing protein interaction networks. Nature Protocols, 2020. 15(10): p. 3182-3211. 111. Carlson, M.L., et al., Profiling the Escherichia coli membrane protein interactome captured in Peptidisc libraries. Elife, 2019. 8. 112. Datsenko, K.A. and B.L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A, 2000. 97(12): p. 6640-5. 113. Casadaban, M.J. and S.N. Cohen, Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol, 1980. 138(2): p. 179-207. 114. Ouzounov, N., et al., MreB Orientation Correlates with Cell Diameter in Escherichia coli. Biophys J, 2016. 111(5): p. 1035-43. 115. Pettersen, E.F., et al., UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem, 2004. 25(13): p. 1605-12. 116. Waterhouse, A., et al., SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018. 46(W1): p. W296-W303. 117. Minasov, G., Wawrzak, Z., Shuvalova, L., Kiryukhina, O., Dubrovska, I., Grimshaw, S., Kwon, K., Anderson, W.F., , 2.6 Angstrom Resolution Crystal Structure of Penicillin-Binding Protein 1A from Haemophilus influenza. 2016, Center for Structural Genomics of Infectious Diseases (CSGID). 118. Contreras-Martel, C., et al., Molecular architecture of the PBP2-MreC core bacterial cell wall synthesis complex. Nat Commun, 2017. 8(1): p. 776. 119. van den Ent, F., et al., Bacterial actin MreB assembles in complex with cell shape protein RodZ. EMBO J, 2010. 29(6): p. 1081-90. 120. Oliva, M.A., D. Trambaiolo, and J. Lowe, Structural insights into the conformational variability of FtsZ. J Mol Biol, 2007. 373(5): p. 1229-42. 121. Reinert, Z.E., G.A. Lengyel, and W.S. Horne, Protein-like tertiary folding behavior from heterogeneous backbones. J Am Chem Soc, 2013. 135(34): p. 12528-31. 122. Sung, M.T., et al., Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc Natl Acad Sci U S A, 2009. 106(22): p. 8824-9. 123. Lee, S.C., et al., A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc, 2016. 11(7): p. 1149-62. 124. Lee, H.L., et al., Quantitative Proteomics Analysis Reveals the Min System of Escherichia coli Modulates Reversible Protein Association with the Inner Membrane. Mol Cell Proteomics, 2016. 15(5): p. 1572-83. 125. Schindelin, J., et al., Fiji: an open-source platform for biological-image analysis. Nat Methods, 2012. 9(7): p. 676-82. 126. Cox, J. and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol, 2008. 26(12): p. 1367-72. 127. Loos, M.S., et al., Structural Basis of the Subcellular Topology Landscape of Escherichia coli. Front Microbiol, 2019. 10: p. 1670. 128. Cox, J., et al., Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics, 2014. 13(9): p. 2513-26. 129. Tyanova, S., et al., The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods, 2016. 13(9): p. 731-40. 130. Revelle, W., psych: Procedures for Psychological, Psychometric, and Personality Research. https://CRAN.R-project.org/package=psych., 2020(R package version 2.0.12). 131. Team, R., RStudio: Integrated Development for R. RStudio, PBC, Boston, MA http://www.rstudio.com/. 2020. 132. Ritchie, M.E., et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 2015. 43(7): p. e47. 133. Shannon, P., et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003. 13(11): p. 2498-504. 134. Bindea, G., et al., ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 2009. 25(8): p. 1091-3. 135. Hubel, P., et al., A protein-interaction network of interferon-stimulated genes extends the innate immune system landscape. Nat Immunol, 2019. 20(4): p. 493-502. 136. Szklarczyk, D., et al., STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 2019. 47(D1): p. D607-d613. 137. Hein, M.Y., et al., A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell, 2015. 163(3): p. 712-23. 138. Broome-Smith, J.K., et al., The nucleotide sequences of the ponA and ponB genes encoding penicillin-binding protein 1A and 1B of Escherichia coli K12. Eur J Biochem, 1985. 147(2): p. 437-46. 139. Kato, J., H. Suzuki, and Y. Hirota, Overlapping of the coding regions for alpha and gamma components of penicillin-binding protein 1 b in Escherichia coli. Mol Gen Genet, 1984. 196(3): p. 449-57. 140. Suzuki, H., et al., Conversion of the alpha component of penicillin-binding protein 1b to the beta component in Escherichia coli. J Bacteriol, 1987. 169(2): p. 891-3. 141. Moore, D.A., et al., Probing for Binding Regions of the FtsZ Protein Surface through Site-Directed Insertions: Discovery of Fully Functional FtsZ-Fluorescent Proteins. J Bacteriol, 2017. 199(1). 142. Nagasawa, H., et al., Determination of the cleavage site involved in C-terminal processing of penicillin-binding protein 3 of Escherichia coli. J Bacteriol, 1989. 171(11): p. 5890-3. 143. Hermanson, G.T., Chapter 5 - Homobifunctional Crosslinkers, in Bioconjugate Techniques (Third Edition), G.T. Hermanson, Editor. 2013, Academic Press: Boston. p. 275-298. 144. Knowles, T.J., et al., Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc, 2009. 131(22): p. 7484-5. 145. Swainsbury, D.J., et al., Bacterial reaction centers purified with styrene maleic acid copolymer retain native membrane functional properties and display enhanced stability. Angew Chem Int Ed Engl, 2014. 53(44): p. 11803-7. 146. Voskoboynikova, N., et al., Characterization of an archaeal photoreceptor/transducer complex from Natronomonas pharaonis assembled within styrene–maleic acid lipid particles. RSC Advances, 2017. 7(81): p. 51324-51334. 147. Orwick-Rydmark, M., et al., Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer Lipodisq particles for functional and biophysical studies. Nano Lett, 2012. 12(9): p. 4687-92. 148. Jamshad, M., et al., Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins. Nano Res, 2015. 8(3): p. 774-789. 149. Lee, T.K., et al., A dynamically assembled cell wall synthesis machinery buffers cell growth. Proceedings of the National Academy of Sciences, 2014. 111(12): p. 4554-4559. 150. Weiss, D.S., Bacterial cell division and the septal ring. Molecular Microbiology, 2004. 54(3): p. 588-597. 151. Vaara, M., Agents that increase the permeability of the outer membrane. Microbiol Rev, 1992. 56(3): p. 395-411. 152. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9. 153. Stautz, J., et al., Molecular Mechanisms for Bacterial Potassium Homeostasis. Journal of Molecular Biology, 2021. 433(16): p. 166968. 154. Kieser, K.J., et al., Phosphorylation of the Peptidoglycan Synthase PonA1 Governs the Rate of Polar Elongation in Mycobacteria. PLoS Pathog, 2015. 11(6): p. e1005010. 155. Auer, G.K., et al., Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness. Cell Syst, 2016. 2(6): p. 402-11. 156. Leclercq, S., et al., Interplay between Penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis. Sci Rep, 2017. 7: p. 43306. 157. Kato, A., et al., Transcription of emrKY is regulated by the EvgA-EvgS two-component system in Escherichia coli K-12. Biosci Biotechnol Biochem, 2000. 64(6): p. 1203-9. 158. Itou, J., Y. Eguchi, and R. Utsumi, Molecular mechanism of transcriptional cascade initiated by the EvgS/EvgA system in Escherichia coli K-12. Biosci Biotechnol Biochem, 2009. 73(4): p. 870-8. 159. Ahmed, A., et al., Human Antimicrobial Peptides as Therapeutics for Viral Infections. Viruses, 2019. 11(8). 160. Contreras-Martel, C., et al., Molecular architecture of the PBP2–MreC core bacterial cell wall synthesis complex. Nature Communications, 2017. 8(1): p. 776. 161. Chai, Q., et al., Organization of ribosomes and nucleoids in Escherichia coli cells during growth and in quiescence. J Biol Chem, 2014. 289(16): p. 11342-11352. 162. Cranford-Smith, T. and D. Huber, The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria. FEMS Microbiol Lett, 2018. 365(11). 163. Yang, Z., et al., Membrane protein stability can be compromised by detergent interactions with the extramembranous soluble domains. Protein Sci, 2014. 23(6): p. 769-89. 164. Kroeck, K.G., et al., Native Cell Membrane Nanoparticles System for Membrane Protein-Protein Interaction Analysis. J Vis Exp, 2020(161). 165. Yeung, Y.G. and E.R. Stanley, Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr Protoc Protein Sci, 2010. Chapter 16: p. Unit 16 12. 166. Jamshad, M., et al., G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. Biosci Rep, 2015. 35(2). 167. Unger, L., et al., Biological insights from SMA-extracted proteins. Biochemical Society Transactions, 2021. 49(3): p. 1349-1359. 168. Matzinger, M. and K. Mechtler, Cleavable Cross-Linkers and Mass Spectrometry for the Ultimate Task of Profiling Protein-Protein Interaction Networks in Vivo. J Proteome Res, 2021. 20(1): p. 78-93. 169. Yu, C. and L. Huang, Cross-Linking Mass Spectrometry: An Emerging Technology for Interactomics and Structural Biology. Anal Chem, 2018. 90(1): p. 144-165. 170. Gunawardena, H.P., lt;em gt;Denovo lt;/em gt; Identification of Cross-linked Peptides via Isotope Coded Linkage Tags. bioRxiv, 2020: p. 2020.04.12.037614. 171. Barysz, H.M. and J. Malmstrom, Development of Large-scale Cross-linking Mass Spectrometry. Mol Cell Proteomics, 2018. 17(6): p. 1055-1066. 172. Henderson, T.A., P.M. Dombrosky, and K.D. Young, Artifactual processing of penicillin-binding proteins 7 and 1b by the OmpT protease of Escherichia coli. J Bacteriol, 1994. 176(1): p. 256-9. 173. Trinkle-Mulcahy, L., et al., Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. Journal of Cell Biology, 2008. 183(2): p. 223-239. 174. Dunham, W.H., M. Mullin, and A.-C. Gingras, Affinity-purification coupled to mass spectrometry: Basic principles and strategies. PROTEOMICS, 2012. 12(10): p. 1576-1590. 175. Hubner, N.C., et al., Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. Journal of Cell Biology, 2010. 189(4): p. 739-754. 176. Nesvizhskii, A.I., Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments. PROTEOMICS, 2012. 12(10): p. 1639-1655. 177. Sardiu, M.E., et al., Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. Proceedings of the National Academy of Sciences, 2008. 105(5): p. 1454. 178. Skarra, D.V., et al., Label-free quantitative proteomics and SAINT analysis enable interactome mapping for the human Ser/Thr protein phosphatase 5. PROTEOMICS, 2011. 11(8): p. 1508-1516. 179. Mellacheruvu, D., et al., The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods, 2013. 10(8): p. 730-6. 180. Prigent-Combaret, C., et al., Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol, 2000. 2(4): p. 450-64. 181. Danese, P.N., L.A. Pratt, and R. Kolter, Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol, 2000. 182(12): p. 3593-6. 182. Deter, H.S., T. Hossain, and N.C. Butzin, Antibiotic tolerance is associated with a broad and complex transcriptional response in E. coli. Sci Rep, 2021. 11(1): p. 6112. 183. Danese, P.N. and T.J. Silhavy, Targeting and assembly of periplasmic and outer-membrane proteins in Escherichia coli. Annu Rev Genet, 1998. 32: p. 59-94. 184. Govindarajan, S. and O. Amster-Choder, The bacterial Sec system is required for the organization and function of the MreB cytoskeleton. PLoS Genet, 2017. 13(9): p. e1007017. 185. Kusters, I. and A.J. Driessen, SecA, a remarkable nanomachine. Cell Mol Life Sci, 2011. 68(12): p. 2053-66. 186. Nevo-Dinur, K., S. Govindarajan, and O. Amster-Choder, Subcellular localization of RNA and proteins in prokaryotes. Trends Genet, 2012. 28(7): p. 314-22. 187. Liu, J., et al., The Tat system and its dependent cell division proteins are critical for virulence of extra-intestinal pathogenic Escherichia coli. Virulence, 2020. 11(1): p. 1279-1292. 188. Lee, T.K., et al., Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells. Nat Commun, 2016. 7: p. 13170. 189. Oliver, S., Guilt-by-association goes global. Nature, 2000. 403(6770): p. 601-602. 190. Meiresonne, N.Y., et al., Superfolder mTurquoise2ox optimized for the bacterial periplasm allows high efficiency in vivo FRET of cell division antibiotic targets. Molecular Microbiology, 2019. 111(4): p. 1025-1038. 191. Veyron-Churlet, R. and C. Locht, In Vivo Meth……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79467 | - |
| dc.description.abstract | "肽聚醣 (peptidoglycan, PG) 細胞壁是所有細菌中必不可少的重要組成部分,其合成是通過動態或是瞬時的多蛋白複合物進行的。革蘭氏陰性菌之大腸桿菌(Escherichia coli)具有獨特的 PG 合成複合物,包括延長體、分裂體和兩種 A 類的青黴素結合蛋白(penicillin binding proteins, PBPs)。這些生化實體催化基本相同的反應,近期的研究已經確定它們的特殊功能,主要是基於波動的環境條件下,對其突變表型的分析。儘管 PG 合成複合物重要的動態特性已被廣泛接受,但尚未有系統地研究複合物與主成分之間的相互作用。在這裡,我們開發了一種強親和力的富集質譜實驗平台,將複合物保留在其天然的膜結合環境中,且 PG 合成複合物 PBP1a、PBP1b、PBP2、MreB和 FtsZ 分別與弱/瞬態夥伴進行結合。為了將複合物保留在其天然條件下,我們設計大腸桿菌菌株,透過內源性表達之誘餌蛋白和親和標籤相融合。將化學交聯劑應用於活細菌樣品和蛋白質之間的交聯作用,並使用苯乙烯馬來酸 (SMA) 在膜結合的天然環境中提取蛋白質複合物。純化的複合物用於質譜分析以進行蛋白質鑑定。我們在上述五種誘餌蛋白的相互作用組中鑑定了 971 個獨特的結合夥伴。豐富的功能性分析允許識別其不同功能間的關聯性。用定量數據集探索其誘餌蛋白的相對特異性,並確定其潛在的誘餌特異性蛋白之相互作用物。此處介紹的主要 PG 合成和調節蛋白間的相互作用組,並針對功能冗餘蛋白提供獨特的見解,作為其保守且實質重要的細菌系統中不同的相互作用組模塊的藍圖。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T09:01:15Z (GMT). No. of bitstreams: 1 U0001-1210202106160200.pdf: 14716330 bytes, checksum: eea1d4218687b65fe5cb490fe250462b (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "Acknowledgement i 摘要 iv Abstract v Table of Contents vii List of Figures x List of Tables xii Abbreviations xiii 1. Introduction 1 1.1. Bacterial cell wall and its importance to drug development 1 1.2. Bacterial cell wall synthesis and cell wall synthesizing complexes 2 1.3. Importance of functional redundancy in bacterial cell wall synthesis 7 1.4. Applications of affinity enrichment mass spectrometry-based proteomics for interactome studies 10 2. Thesis rationale and aim 13 3. Materials and Methods 14 3.1. Bacterial strain construction 14 3.1.1. Strain construction overview 15 3.1.2. Bacterial strains, plasmids and standard growth conditions 16 3.1.3. Polymerase chain reaction (PCR) 17 3.1.4. Agarose gel electrophoresis and DNA extraction from agarose gel 22 3.1.5. Preparation of electro-competent cell and storage 23 3.1.6. Electroporation and cell recovery 23 3.1.7. Antibiotic resistant cassette removal 23 3.1.8. DNA sequencing 24 3.1.9. Automated growth analysis 24 3.1.10. Microscopic observation of bacterial cell morphology 224 3.2. In vivo protein cross-linking 25 3.2.1. Counting of surface lysine of protein 25 3.2.2. Protein cross-linking 25 3.3. E. coli membrane protein solubilization 26 3.3.1. Preparation of styrene maleic acid (SMA) co-polymer from styrene maleic anhydride co-polymer 26 3.3.2. Total membrane isolation 26 3.3.3. Solubilization of membrane protein using Styrene Maleic Acid (SMA) 27 3.3.4. Transmission electron microscopy negative staining analysis of SMALP 27 3.4. Analysis of protein sample 28 3.4.1. Estimation of protein quantity of SMALP samples 28 3.4.2. Western blotting analysis 28 3.5. Affinity enrichment mass spectrometry analysis 29 3.5.1. Experimental design 29 3.5.2. Poly-histidine tagged protein complex enrichment 30 3.5.3. Mass spectrometry (MS) front-end sample preparation 31 3.5.4. Mass spectrometry data acquisition 32 3.5.5. MS raw data processing and quality check 32 3.6. Bioinformatic analysis 33 3.6.1. Data pre-processing on Perseus software platform 33 3.6.2. Data quality check and statistical analysis 34 3.6.3. Functional enrichment analysis 35 3.6.4. Subcellular topology annotation of proteins 35 3.6.5. Protein-protein interaction network construction 36 3.6.6. Statistical analysis to identify bait specific binding partners 36 4. Results 37 4.1. Experimental platform to enrich protein complexes in near native membrane bound environment 37 4.1.1. Results of non-invasive bacterial gene engineering 37 4.1.2. In vivo protein cross-linking: assessment of cross-linker accessibility 40 4.1.3. Obtaining hydrolyzed SMA and membrane protein solubilization in SMALP 43 4.1.4. Mass spectrometry proteomics data analysis 46 4.1.5. Identifying of protein binding partners of bait proteins by statistical analysis 49 4.1.6. Functional annotation and enrichment analysis 53 4.1.7. The identification of the functional differentiation based on the differential enrichment profile 58 4.1.8. Validation of interactome with protein-protein interaction database 62 4.2. Exploring protein specificity with quantitative AE - MS 68 5. Discussion 78 5.1. Affinity enrichment mass spectrometry experimental platform 78 5.2. Exploring associated biological functions in interactome 80 5.3. Statistical methods 83 6. Conclusions and Future Directions 85 6.1. Summary 85 6.2. Future directions 86 References 87 Supplementary 97 " | |
| dc.language.iso | en | |
| dc.title | 透過親和力富集質譜平台比較大腸桿菌中肽聚醣合成複合物的相互作用組分析 | zh_TW |
| dc.title | Comparative interactome analysis of the peptidoglycan synthesizing complexes in Escherichia coli | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 梁素雲(Suh-Yuen Liang),馬徹(Che Ma) | |
| dc.contributor.oralexamcommittee | 呂桐睿(Hsin-Tsai Liu),安形高志(Chih-Yang Tseng),邱繼輝 | |
| dc.subject.keyword | 肽聚醣合成,相互作用組,親和力富集質譜, | zh_TW |
| dc.subject.keyword | Peptidoglycan synthesis,interactome,affinity enrichment mass spectrometry, | en |
| dc.relation.page | 122 | |
| dc.identifier.doi | 10.6342/NTU202103656 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-22 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1210202106160200.pdf | 14.37 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
