Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7931
標題: 瑞曲流孤立子
A Survey on Gradient Ricci Solitons
作者: Tsung-Wei Hu
胡宗維
指導教授: 張樹城(Shu-Cheng Chang)
關鍵字: 瑞曲流,孤立子,
Ricci flow,Soliton,
出版年 : 2016
學位: 碩士
摘要: 瑞曲流(Ricci flow) 為理察• 哈密頓(Richard Hamilton) 為解決三維龐加萊猜想(Poincaré conjecture) 所發展的重要工具。瑞曲流中的孤立子(Solitons) 是在瑞曲流中的自我相似解(self-similar solution),是瑞曲流奇點的重要模型,裴瑞爾曼(Grigori Perelman) 在三維成功發展處理孤立子的技巧,進而解決龐加萊猜想。這些孤立子的分類中,有一類稱為梯度孤立子(Gradient soliton),可由梯度函數描述。
在2015 年Ovidiu Munteanu 與王嘉平共同發表的一篇論文中,展示了一種估計四維瑞曲流梯度孤立子中黎曼曲率、里奇曲率與純量曲率的方法,本論文將介紹前人在多維度梯度孤立子的一些結果,並介紹Ovidiu Munteanu 與王嘉平在四維上的估計方法。
To solve the Poincaré conjecture on 3-dimensional cases, Richard Hamilton evolved an algorithm called Ricci flow. In Ricci flow, a class of self-similar solutions called gradient solitons. Studing of such kink solution is playing an important role in solving Poincaré conjecture.
In 2015, Ovidiu Munteanu and Jiaping Wang shown an algorithm to estimate the Riemann, Ricci curvature and scalar curvature on 4-dimansional gradient solitons in Ricci flow. In this survey, I would introduce some early results in gradient solitons and explore the details in Ovidiu Munteanu and Jiaping Wang’s paper in 4-dimensional shrinking solitons.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7931
DOI: 10.6342/NTU201601353
全文授權: 同意授權(全球公開)
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf362.74 kBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved