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Fef

To solve the Poincaré conjecture on 3-dimensional cases, Richard Hamilton evolved an
algorithm called Ricci flow. In Ricci flow, a class of self-similar solutions called gradient
solitons. Studing of such kink solution is playing an important role in solving Poincaré
conjecture.

In 2015, Ovidiu Munteanu and Jiaping Wang shown an algorithm to estimate the
Riemann, Ricci curvature and scalar curvature on 4-dimansional gradient solitons in Ricci
flow. In this survey, I would introduce some early results in gradient solitons and explore
the details in Ovidiu Munteanu and Jiaping Wang’s paper in 4-dimensional shrinking soli-

tons.
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1 Introduction

Let (M, g) be a complete manifold and consider the metric g evolving by time variable ¢

. The Ricci flow is a geometry flow defined by the equation
019i5(t) = —2Ryj,

where R;; is Ricci curvature tensor and g;; is metric tensor depending on ¢. A solution of

Ricci flow called Ricci soliton if there is a vector filed X (¢) satisfied
Rij + Lxgij = 11935,

where L is Lie derivative and u is a constant. Moreover, if there exist a function f such

that V f = X then we can define gradient Ricci solitons as follow:

Definition 1.1. (M, g, f) is called gradient Ricci soliton if R;; + V.,V ,;f = pgi; . such

soliton is called shrinking, steady and expanding if 1 > 0, = 0 and p < 0 respectly.

Without loss of generally, we can rescale metric g and customarily let u = 1/2, 4 =0
and ;1 = 1/2 in each case. In this survey we would concern mainly on shrinking cases.
Those solitons take an important part in the singularity analysis of Ricci flow.J. Enders,
et al. shows that blow up around a type-I singularity point in 3-dimensional Ricci flow
always converge to shrinking gradient Ricci solitons [5] . Thus a brief analysis in 4-
dimensional cases would be a central issue in Ricci flow.

In three-dimensional shrinking gradient Ricci solitons. The curvature operator is being
nonnegetive and bounded by scalar curvature, but it is no longer be true in higher di-
mensional cases. However, in this paper, O. Munteanu and J. Wang show that in four-
dimensional cases, if we assume scalar curvature R is bounded, then the curvature oper-

ator is bounded by scalar and bounded blow by zero when the distence r goes to infinite
[1].

Theorem 1.1. Let (M, g, ) be four dimensional shrinking soliton with bounded scalar
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curvature 0 < R < A. then
|Rm| S ClR
and

log(r(z) + 1)

=

RmZ—( )7

where ¢, and cy are constants depanding on A and on metric g within a geodesic ball
B,(v0), p is minimun point of f and ~y is only depending on A, r(x) := d(x, p) is distence

function.

There left some problems in this state of theorem, like how about the cases with R < 0

and the existence of the minimum point of f. We would discuss briefly in next section.
2 Preliminary Results in Gradient Ricci Solotion

In this thesis, we rescale the metric g and define

Definition 2.1. (M, g, f) is called shrinking gradient Ricci soliton if

1
Rij + VZV]f = 592]

One would easily get
Proposition 2.1. Let (M, g, f) be a shrinking gradient Ricci soliton, then
R+ |Vf]* — f = constant

on M.

For convenience, we can add the constant to f and let

R+|Vf]?=f.
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With those assumptions, if we define the weighted Laplacian Ay := A —(V f, V), we

can compute the fallowing proposition.

Proposition 2.2. In four-dimensional shrinking gradient Ricci soliton, we have

Arf = g — I
AfR = R-—2|Ric?
AfR;; = Rij — 2Ry R,
AyRm = Rm+ Rmx* Rm,
ViRjr = Rjfr = ;VJR,
ViRijiu = Riyufi=ViRj, — VR,

1
AVS = VALS = §VS + Rm VS  for any tensor S.

One could see more detail in [6]. Concerning the scalar curvature R, B.L. Chen have

proved that

Theorem 2.1 (B.L. Chen[3)). If (M, g, f) is shrinking gradient Ricci soliton, Then scalar

curvature R > 0 unless M is flat.

Concernig on the potential function f,Cao and Zhou have proved that

Theorem 2.2 (H. D. Cao and D. Zhou[2)). If (M, g, f) is shrinking gradient Ricci soliton,

Then

1 2 1 2
(Maz{0, 5r(z) —a})” < f(2) < (5r(2) — )

Where r(x) := d(p, x) is distance from x to p, the minimum point of f. Constants ¢, and

co can be choosen to depand only on dimension n.

Based on theorem 2.1 and theorem 2.2. B. Chow, P. Lu and B. Yang can show that

Theorem 2.3 (B. Chow, R. Lu and B. Yang[4]). If (M, g, f) is shrinking gradient Ricci
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soliton, Then there exist canstant C > 0 such that

C < fR.

Since the quadraticaly growth of f, one can define

Definition 2.2.

D(t) = {x € M[f(x) <t}

5(t) = {x € M|f(x) = 1}.

It is clear that both D(#) and X(¢) is compact.note that when R < A, if there exist some

A
constants 7o > 7, then

1< ;ﬁs VI—A<f=R<|Vflon M\ D(x),

hence

1
1< oV <IVf| on M\ D(xo).
3 Maximum principle on shrinking gradient Ricci solitons

Before we go to the main theory, here we state some useful theorems of maximun principle

in four-dimensional gradient Ricci solitons with bounded scalar curvature R < A.

Theorem 3.1. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with
bounded scalar curvature R < A, and u > 0 be an smooth function on M. For m > 1, if

there exist an constant vy, such that
Apu > cpu™ +lot of u+ (Vu, VF)

on M\ D(vo), where c; are smooth functions difined on M with leader coefficient c,, > 0
and ‘CC—;' is bounded by constants k; on M \ D(~) for all i < m. F is an smooth function
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satisfied % converging to zero at infinity, then
sup u < C|
M\D(270)

note that the upper bound C depends only on k; for i < m. In particular,

supu < C.
M

Proof. First we assume that v, is big enough such that |VF| < \/f let ¢ : R — R be
a smooth non-negtive function so that ¢ = 1 on [y, 27] and ¢ = 0 outside [y/2, 3], we

could suppose that c is big enough such that
(l¢'*(t) + 1¢7(t) < c.
Note that the choosen of ¢ is independent of . It fallows that
V(P <~ 18] < e
on M\ D(v). Let G := u¢? and choose v > 2maz{1, o} we compute:

¢2m_2AfG — ¢2mAfU 4 ¢2m_4GAf¢2 4 2¢2m_4<VG, v¢2>

891G V!

Vv

" Apu+ ¢ GG ARG + 207" TIG(V G, V) — cf;

v

¢*"Aju — G+ 2(VG, V§?),

*" Ay > P (equ™ + Lot of u+ (Vu, VF))

Vv

cmG™ + ¢*"(l.o.t of u) + ¢*™ (VG VF)
—¢*" G (VYR V),

- 2m74G \V4 Q,VF -G 2m73i
FTIG(VE, V) 2 G

v

—c@.
Note that if 0 < a < m, then ¢*"'c,u® = ¢*" 2%, G* > —k;G* on M \ D(2v,). Hence
»*™ (Lot of u) > l.otof G.
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Then we get
P 2ALG > oG™ + Lot of G+ 20 HVG, V$*) + ¢*2¢*(VG, VF).

Note that the coefficients on right hand side are noly depend on k;, hence by maximun

principle we proove the theorem. ]

Remark that theorem 3.1 is fail when m = 1. In such case, we have the fallowing

theorem.

Theorem 3.2. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with
bounded scalar curvature R < A, and u > 0 be an function on M if there exist an constant
Yo such that

Asu > cru+ co+ (Vu, VF)

and
u < cf2

on M \ D(v), where ci and cy are constants. F' is an smooth function satisfied %

converging to zero at infinity, then

supu < C
M
Proof. let(t) := 1 — * then
IVI? _ 1 f-2

V(I < =5 < 2, Anlf) = J=2

on M \ D(). Now let G := v?u and choose v > 2, we compute:
Case (a). G achive maximun in D(7p)
Then we have

sup u<4sup G<4supG <C
D(v/2) D(v/2) D(v0)
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Case (b). G achive maximun in M \ D(7p)
Direct computation gives that
AG = PPApu+ YT PGAR? + 207 2(VG, VY?) — 8 °GIVY[?
= PV’ (cu+ o+ (Vu, VF)) + 207 3(VG, Vi?)
2T GA — 6T G|V
= ¢*(cau+c) + (VG,VF) —p>G(Vy?* VF)

20 VG, Vi) + 20 GAp — 602G V|

v

(G =) +(VG,V(4Iny + F))
~2)7IG(VY, VF) + 207 GA i) — 672G VY ?
In the line four we use the same argumente as theorem 3.1 did. Note that coefficients of
lower order terms is negative in line four.Let ¢ € M \ D(~,) be the maximun point of G,
then at ¢

0> (1G — cp) — 207 'G(VY,VF) + 20 ' GApp — 69 GIVY|*.

If (1G(q) — co < 0, then G(q) < ¢o. we can conclude that G(q) is bound by constant

independ of v, and sup u <4 sup G < G(q) < C. So we can assume ¢;G(q) — co > 0,
D(v/2) D(v/2)
then

0> =20 'G(V, VF) + 207 'GApp — 60 *G| V2.
Suppose that 7y, is big enough such that [VF| < 11/f and § f — 2 > 1 f, we can estimate
0 > 20 YV, VEF) + 20 'App — 607 2| Ve |?

v 2
> 207 (A — (V6. - 62

1 1 o f
> 2 1§(f—2—§f)—6¢ 2;
L 1f o f
> @/)1%5—615 2@

at g. At the last line, we get ¢(q) < 1,72, hence

576
sup u < 4 sup G <4G(q) < — supu < C
D(v/2) D(v/2) 7" D(y)

by u < cf?. O
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4 Constant Upper bound of Curvature

In this section, we would show that in four-dimensional shrinking gradient Ricei soli-
tons, if scalar curvature R has bounded, then Riemann curvature and it’s derivation is also
bounded by constants. Note that is not our main theory, but those are essential steps for
the proof.

Before we start this section, remark that the shrinking gradient Ricci soliton we mention

here been assumed with following properties:
1
Rij + ViV, f = 59
R+ VI = f.
Lemma 4.1. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with

bounded scalar curvature R < A. Then there exist constants C'(A) and ~o(A) such that

|V Ric|
VI

[Rm < o

+ | Ric|)

on M\ D(vo).

Proof. Choose an orthonormal basis {e; } with {e;, 5, e3} locate on 7% (), which ¢ is big

enough such that 3 forms a submanifold, and e, = %. Thanks the idea to Chih-Wei

Chen, we note that

R
Rig1o = =Ry — Rog + B + R3434, Ri223 = Ri3 + Riaza,

R
Rasas = —Rag — Ras + B + Rig1a, Raszt = Ro1 + Roaua,

R
Rg131 = =Ry — R33 + 5 + Rosga, Ri2s1 = Rog + Rausa.

We can estimate that
|V Ric|
V£

1
| Rijral = W\Rijszﬂ <4
fori, j, k € {1,2,3,4}, hence

|V Ric|
IV /]

|Rm| < c(|Rijut| + | Rijral) < c(|Ric| + ).

d0i:10.6342/NTU201601353



Since R < A, we can choose g big enough such that 1 < £+/f < [V f| on M \ D(v),

we get
|V Ric|
VI

|Rm| < ¢(|Ric| +

) on M\ D(%).

]

Lemma 4.2. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with

bounded scalar curvature R < A. Then there exist constants C such that

|Ricl|?
sup

< C.
M R

Proof. Letu := |Ric|>)R™® where 0 < a < 1. We first show that

cR

Afuz (QG—W

YulR™% — cu?SY? on M \ D(v)
ues lemma 4.1, one get

A¢|Ric|* > 2|VRic|® + 2|Ric|* — ¢|Rm||Ric|?
|V Ric|
i

> 2|VRic|* + 2|Ric| — ¢ |Ric|* — c|Ric|*.

and direct computation gives

Aju = RAy(|Ric*) + |RicPA;R™ + 2(VR™* V|Ric|?),

R™°A;(|Ric|*) > 2|VRic|*R™* + 2|Ric|R™"

|\VRic|, . 5 e
—c Ric|*R™® — ¢|Ric|°R™¢,
Rl R~ c|Ri
|RicPA;R™" = |Ric*(—aR™*+ 2a|Ric]’R™*' + a(a + 1)|VR|*R™*?),

2(VR™* V|Ric|*) > —4a|VRic||VR|R“|Ric|

4
> —a(a+ 1)|VR|*R"2|Ric|> — aiflyvmc\?}ra,

|VRic|, . 5. 2(1 —a) o l+a & . 4.
— a > _ a __ - a
c 77 |Ric|*R™* > T a |\VRic|*R S0—a) 7 |Ric|*R

4
> (—2+ ﬁﬂvchR—a — Cf|Ric|4R_“_1.

Conbined those formalas, we get

cR
(1—a)f

9

Apu > (2a — Ju’R™* — cu/?R%?

d0i:10.6342/NTU201601353



on M \ D(vp). Choosing a constant v > 1 abitary and leta = 1 — %, we can compute

that on M \ D(8vcA)
R 1 A 3 1
2@_6722_7_6—2———21 on M \ D(8ycA)
(1—a)f 2y (1—a)8cAy =2 2
Hence
cR
A 2 (2& U2R a cu3/2Ra/2
f i-af
> PR — cAY?P?
> cf(a)u’® — cAu®/?
> cu? — cu®/?.

In line three, we use theorm 2.3. Now by theorem 3.1 we get

sup u= sup |Ric>)R%'<C.
M\D(16~cA) M\D(16ycA)
Note that C' is independent of A. Hence on X (16vcA), we have
|Ric|*R™' < ( sup ]Ric]2R%_1)R_% <CR % < (E)_% <C.
(M\D(16+cA) Yy
In the last line we use R > () > (£) by theorem 2.3. O
Theorem 4.1. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with
bounded scalar curvature R < A. Then there exists v, > 0 depending only on A so that

forany k € N

sup (|Rm|+ |[V*Rm|) < Cy,
MA\D(m)

where Cy, > 0 are constants depending on A only.

Proof. Let S be a tensor with 0 < | S|, then one can compute

11 11
= 2 — 2 _ — 2|2
Al = ApVISE = g asls — fraplvIsE

(S,r8) V] |SVSP

s TS T sE
> B2 2 a8
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Now we proof the theorem by induction on &.

Stepl. sup |Rm|<C

M\D(y1)
We compute
Ag|Rm| =
>
>
>
A¢|Ric|* >

Conmbining above formulas, we get

|Rm| — c|Rm|?

2|Rm|? — c|Rm|?

2|Rm|? — c|V Ric|* — c|Ric|?
2|Rm|* — ¢|VRic|* — c,

2|V Ric|* — ¢c|V Ric| — c.

A¢(|Rm| + c|Ric|2) > 2|Rm|2 —c> (|Rm| + C|Ric|2)2 —c.

By theorem 3.1, we get the desired results.

Step 2.

Assume that |V Rm| is bounded for all n < k — 1, we use prop 2.2 and compute

(VERm, A,V Rm)

A¢|V*Rm| >

>

|VERm|

(VERm, V*A;Rm + £V* Rm)

|VERmM|

N (Rm * V*Rm + V*Rm x V°Rm)

|VERm|

(V¥Rm,V*(Rm + Rm « Rm) + £V*Rm)

v

|VERm|

N (Rm x VERm + V*Rm * V' Rm)

|VERm|

> —c|VFRm| — ¢,

where a,b € 1,2,....k —1land a + b = k. Also,

AfIVFIRm|? = 2|VFRm> + 2(V* 'Rm, AV ' Rm)

> 2|V*Rm|* + 2(V* ' Rm, V* "' A Rm)

k —

1
+2(V " Rm, Tv’HRm + V®Rm * V' Rm)

> 2|V”“Rm|2 —c,

11 d0i:10.6342/NTU201601353



where a,b € 0,1,2,....k —landa + b=k — 1. Now we get
Af(IVPRm| 4+ [V* P Rm?) > ([VFRm| + V' Rm|?)? — ¢

Applying theorem 3.1 again, the result fallows. [

5 Curvature Bounded by Scalar curvature

In this section we will show that

Lemma 5.1. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with

bounded scalar curvature R < A. Then there exists C > 0 such that

| Rm?
— <.
Sjl\l/[p 7 =
Proof. According to lemma 4.1
Ri 2
< oL iy
< 2+ R)
> O~
f
< ¢R,
where we use R > 1/ f in line three. ]

Lemma 5.2. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with

bounded scalar curvature R < A. Then there exists ¢ > 0 such that

2
|V Rm| <C

sup
M

12 d0i:10.6342/NTU201601353



Proof. Letu := |VRm|*R™', we compute that
Aju = R YA[VEm|?) + (AfR™Y|VERm|?
_4|VR||V2Rm|R"%|V Rm|,

RYA;VRm*) = 2R VRm,A;VRm)

+2RV2Rm)|
> R 2(VRm,VA;Rm + ;VRm + Rm * VRm))
+2R7Y|V2Rm|
> RY(3|VRm| + 2|V2Rm| — c|Rm||VRm|),
(AfRHIVEm? = |VEmP*(-R' +2|Ric|*R™*+ 2|VR*R?,
—4|VR||V2Rm|R?|VRm| > —2|V?Rm|*R™ —2|VR|"R™3|VRm|?
—c|Rm||[VRm[*R™" > —¢|VRm|R™'/?
> |VRm[*R™' —c.
Hence we get
Apu>u—c.

Note that u = [VRm|*R™" < CR™! < ¢f , hence by theorem 3.1, we prove this lemma.

O

Lemma 5.3. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with

bounded scalar curvature R < A. Then there exists C > 0 such that

IVInR|> < Cln(f + 2).

Proof. Let h := (1/¢)R° with e > 0 Then we can compute

A¢h = eh — 2¢|Ric|’R™'h + (e — 1) R ?|VR|*.

13 d0i:10.6342/NTU201601353



If we define o := |Vh|*> = R* %|VR)|, then we get

1
SO0 = |Hess(h)|* + (Vh, V(Ash)) + Ricy(Vh, V)

> (Vh,V(Agh))

> (e —1)(Vh, VR 2VR*) — 2¢(Vh,V|Ric?)R™'h),
(e = 1)(Vh,VR?|VR|*) = (e—1)(Vh,V(R “0))

= —(e—1)e|VR|*’R*0 + (e — 1)R™<(Vh, Vo),

—2¢(Vh,V|Ric|>R™"h) > —4e|VRic||Ric|h|Vh|R™" — 2¢|Ric|2R™|Vh)|?

|V Ric| | Ric]|
> —4 R\/o — ceo
= R VRV
> —c—co.

Note that we use lemma 5.1 and 5.2 in last line. Combined the above formulas, we get
1
§Afa > —(e—1)eR *0* + (e — 1)R"(Vh, Vo) — ¢ — co.

Let ¢ : R — R be a smooth non-negtive function so that ¢ = 1 on [0,v] and ¢ = 0 for

t > 27, and we can choose ¢ such that
(¢ () + 1"|(1)) < c.
Note that the choosen of ¢ is independent of v and it fallows that

|VMﬂFs§AA@UMSconM\wa

for a constant vy, same as in lemma 4.1. Now let G := ¢*0, we compute

;(ézAfG > (1-€)eR™2G*+ (1 — €)R(Vh,VG)

—(1 = )R “(Vh,V¢*)G — ¢G — c + (V¢*, VG).
At the maximun point of G we have
eG? < CG?’/Q\V(MRE +cG+c< iG?’/2 +cG + c.
Vel

Choosing ¢ := (Iny)~!, one founds that

14 d0i:10.6342/NTU201601353



Hence we get eG(q) < C on the maximun point. Note that R < ¢, we have

sup [VR|? = (sup o) R* = 4( sup G)R* < ¢G(q) < © < clnR
B(R)/ B(R)/ E(R)/ €
and the result fallows. ]

Theorem 5.1. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with

bounded scalar curvature R < A. Then there exists C such that

| Rm|
< (.
W R -

Proof. First we note that by lemma 5.2 we have

|V Ric| _ . .
Rm| <e¢ 4+ |Ric|) < (S + |Ric|) < c|Ric].
[Bm| < o 77 | Ric]) < ¢(S + [Ric]) < | Ric|
Hence let u := | Ric|> R~2, we can compute that

Aju = RZA(|Ric]?) + |Ric]*Af(R7?) + 2(VR 2, V|Ric|?)

v

2|VRic|?R™* + 2|Ric|*R™?

—c|Ric|*R™? +2(VR? V|Ric|*)
+|Ric|*(—2R™? + 4| Ric|*R™® 4+ 6|VR|*R™),
2(VR2 V|Ric|?) = R*(VR* V(|Ric|?’R?)) — |VR?|?||Ric|*R?

+(VR™2,V|Ric|?)

v

—2(VIn R, V(|Ric|*)R™%)) — 6|VR|>)R™*|Ric|* — 2|V Ric|?,
—c|Ricl’R™® > —|Ric|*R™® — c|Ric?R™".

Now we have

Aju > 3u*R — cuR — 2(Vu,VIn R).

It is easy to check that % converges to zero at infinity by lemma 5.3. Using theorem
3.1, we get

sup | Ric] <C.

M
and by |Rm| < c|Ric|, the result fallows. O
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Theorem 5.2. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with

bounded scalar curvature R < A. Then there exists C such that

|V*Rm)|
— <
s]1\14p R -

forall k > 0.

Proof. First by prop 2.2, It is not hard to find that
k
AVPRm = (1 + §)v’me + Rm * V*Rm + V*Rm x V' Rm,

where a,b € 1,2,....k — 1 and a + b = k. By induction on k, we assume

|V™Rm)|
sup————

<C
M R -

form € 1,2, ...,k — 1, and by theorem 5.1, we have

Af|VEFRm®2 > 2[VFRm|? + (24 k)|VFRm|> — ¢|Rm||V*Rm|?* — ¢|V*Rm||V’Rm|

> 2|VEFRm|? + (24 k)|[VFRm|? — cR|V*Rm|?* — ¢R>.
Now let u := |V*Rm/|> R~2, we compute

Afu = R_QAf(|VkRm|2)+|VkRm|2Af(R_2)

+2(VR™2 V|V*Rm/|?)

v

2IVFH Rm PR~ + (2 + k)|VFRm|*R ™2
—c|VFRmPR™" — ¢ + 2(VR 2 V|V*Rm|?)
+|VFRm|>(=2R™% + 4|Ric|* R~ 4+ 6|VR|*R™),
2(VR2 V|V*Rm|?) = R*VR2 V(V*Rm|*R™?))

—|VR?||V*Rm|*R* + (VR™2 V|V*Rm|?)

v

—2(V1In R, V(|Ric|*R™?)) — 6|V* Rm|* R™*|Ric|?
—2|Vk+1Rm|2,

4|Ric)?|VFRm|?R™® > —c|V*Rm[*R™".
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where in the last line we apply theorem 5.1, Now we get
Apu > ku — cu?|VRm| — ¢ — 2(Vu, VIn R).
By theorem 4.1, |[V¥Rm| < C, we have
Asu > ku® — cuz — ¢ — 2(Vu,VInR) lequ® — ¢ — 2(Vu,VIn R),

where we estimate —cu2 < —(k — 1)u2 —

452_ 4+ By theorem 3.2, the result fallows. [

6 Curevature lower bound

Theorem 6.1. Let (M, g, f) be a four-dimensional shrinking gradient Ricci soliton with
bounded scalar curvature R < A. Then there exists a constant c such that

& 1

Rm > —(—S )i
= (log(r + 1)>
Proof. Choose an orthonormal basis {e; } with {e1, e, €3} locate on T'%(t), where ¢ is big

enough such that ¥ forms a submanifold, and e, = ~L. In the proof of lemma 4.1, we

IVfl*
shown that
R
Rig12 = —R11 — Ras + B + Raaze, Rioes = Riz + Rz,
R
Rogos = —Rag — R3z + B + Rig14, Razz1 = Ro1 + R,

R
Rg3i31 = —R11 — Rsz + B + Rogoa, Rio31 = Rog + Roaza.

Choose {eq, €2, e3} which diagonalize the Ricci curvarure restrict on 7Y and satisfied

RH S R22 S R33. define

Ri1 = M1, Rag = Ao, R33 = As,

v = )\1"‘)\2—)\3,
)\ - )\1"‘)\3—)\2,

n = )\2+/\3—/\1.
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Easy to see that v < A\ < p, and we can find

1 1 V Ri 1
Rm 2 51/ — C’Rijkét’ > —v — Cl ZC| vV —

=2 Vi T2

In order to prove the theorem, it is sufficient to show

C

> —( )i
v> — ()"
— Clog(r+1)
By prop 2.2, we have ARy, = Rap — 2Riqpj Rij, and compute

Af)\a = Raa - 2RiaajRij + R4aa4R44

= Rga — 3RRey + R+ 4Ry Ry; — 2|Ric|> + O(S%f~1/%).
Where R := Ry; + Ras + Rss, |Ric]* := R}, + R3, + RZ%;. Now one can compute that
A <v—1v>—\u+ cRfY2,
Define F' = f — 2In R and let u := % then compute

Aju = (Ap) +v(AfR = 1)+ 2(Vy, VR™Y) + 2(In R, V(vR™"))

IN

(v—1? =M+ cRfVYHR 4 2(n R, V(vR™Y))
+v(—R™" 4+ 2|Ric|> R™* + 2|VR’R™?)
+2(V(wR™), VR YR+ 2(VR, VR ) (vR™)
= —R2(V®+ MR — 2|Ric|*v) + cf 12
< —RPN(u—v)+ @A —v)) +cf
Where in the last line we use
|Ric|> < |Ric]> + cR*f 7% = (\2 4 p® + v* — A\ + v + muv) + cR2f 12,
By Theorem 5.1, we know there is constants ¢ such that u > —c,. Now we define
wi=u+kf “+eR?

where € =

\/% = \/L_y’ k := co(y1)~¢. We can choose k such that w > 0 on M \ D(y)

and compute that
Apw < —R72(N(u—v) + 1> (A —v)) + 2ekfC — eR™" + ce.
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By choose ¢ := 1 — % and let G := ¢?w , we can get that on the minimum point q of G

f

0< —R2N(u—v)+ 12\ —v)* + (2ekf° — R 4 ce)p* + (w; —

Now we concider two cases: Case 1. (z/% —6|Vy])G < 0.
Then

RPN (= v) + p*(A = v)) < (2ekf ™ — eR™! + ce),
and

eR™Y < 2kef 4+ ce

< 2ke(y1) "+ ce

= (co+c)e.
Hence there exist ¢; such that S(q) > é Now we have

N(p—v)+ (A —v) < ce

In addition, we know R = A + 1+ v > 5, which implies y > z-. By A*(p

and v(q) < 0, we get |\| < /€. And then \?(p — v) < ce implies
—V—cg\/Eg)\—Vgggce.
0
This proves G(q) > —cy/€ and

w > —cy/e

inf
D(v/2)\D(7)

Case 2. (v1 — 6|V |)G > 0.

Since G(q) < 0. We would get 1/(q) < 6/~ and

. C
mf w>-——.
D(v/2)\D(m1) 2
To sumurize,
inf v> —c(ﬁ)6 — ce.

D(v/2\D(m) f

19

6/VY|)G.

—v) <ce
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Plug e = \/% into it, and take ~y abitary, we get

C

log(r + 1))2'

v>—(

References

[1] O. Munteanu and J. P. Wang , Geometry of shrinking Ricci solitons. Compositio

Mathematica, 151, 2273-2300 (2015)

[2] H.D. Cao and D. Zhou, On complete gradient shrinking Ricci solitons, J. Diff. Geom.

85, no. 2, 175-186 (2010)

[3] B. L. Chen, Stron uniqueness of the Ricci flow, J. Diff. Geom. 82, no. 2,362-382

(2009)

[4] B. Chow, R. Lu and B. Yang, 4 lower bound for the scalar curvature of noncompact
nonflat Ricci shrinkers, Comptes Rendus Mathematique. 349, no. 23-24, 1265-1267
(2011)

[5] J. Enders, R. Miiller, P. Topping, On Type-I singularities in Ricci Flow, Comm. Anal.

Geom. 19, , no. 5, 905-922 (2011)

[6] P. Petersen and W. Wylie, On the classification of gradient Ricci solitons, Geom.

Topol. 14, ,2277-2300 (2010)

20 d0i:10.6342/NTU201601353





