Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79245
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭欽玉(Chin-Yu Hsiao)
dc.contributor.authorYu-Chi Houen
dc.contributor.author侯侑期zh_TW
dc.date.accessioned2022-11-23T08:56:35Z-
dc.date.available2022-02-21
dc.date.available2022-11-23T08:56:35Z-
dc.date.copyright2022-02-21
dc.date.issued2022
dc.date.submitted2022-02-07
dc.identifier.citation[BBS08] Robert Berman, Bo Berndtsson, and Johannes Sjöstrand. A direct approach to Bergman kernel asymptotics for positive line bundles. Ark. Mat., 46(2):197–217, 2008. [BdMS76] L.Boutet de Monvel and J. Sjöstrand. Sur la singularité des noyaux de Bergman et de Szego. In Journées: Équations aux Dérivées Partielles de Rennes (1975), Astérisque, No. 34–35, pages 123–164. Société Mathématique de France, Paris, 1976. [Ber22] Stefan Bergmann. Über die Entwicklung der harmonischen Funktionen der Ebene und des Raumes nach Orthogonalfunktionen. Math. Ann., 86(3-4):238–271, 1922. [BMS94] Martin Bordemann, Eckhard Meinrenken, and Martin Schlichenmaier. Toeplitz quantization of Kähler manifolds and gl(N), N → ∞ limits. Comm. Math. Phys., 165(2):281–296, 1994. [Bou90]Thierry Bouche. Convergence de la métrique de Fubini-Study d’un fibré linéaire positif. Ann. Inst. Fourier (Grenoble), 40(1):117–130, 1990. [Bou95] Thierry Bouche. Two vanishing theorems for holomorphic vector bundles of mixed sign. Math. Z., 218(4):519–526, 1995. [BS07] Robert Berman and Johannes Sjöstrand. Asymptotics for Bergman-Hodge kernels for high powers of complex line bundles. Ann. Fac. Sci. Toulouse Math. (6), 16(4):719–771, 2007. [Cat99] David Catlin. The Bergman kernel and a theorem of Tian. In Analysis and geometry in several complex variables (Katata, 1997), Trends Math., pages 1–23. Birkhäuser Boston, Boston, MA, 1999. [CDS15a] Xiuxiong Chen, Simon Donaldson, and Song Sun. Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Amer. Math. Soc., 28(1):183–197, 2015. [CDS15b] Xiuxiong Chen,Simon Donaldson,and Song Sun. Kähler-EinsteinmetricsonFanomanifolds. III: Limits as cone angle approaches 2π and completion of the main proof. J. Amer. Math. Soc., 28(1):235–278, 2015. [CS01] So-Chin Chen and Mei-Chi Shaw. Partial differential equations in several complex variables, volume 19 of AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001. [Dav95] E. B. Davies. Spectral theory and differential operators, volume 42 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. [Dem82] Jean-Pierre Demailly. Estimations L2 pour l’opérateur ∂ ̄ d’un fibré vectoriel holomorphe semi- positif au-dessus d’une variété kählérienne complète. Ann. Sci. École Norm. Sup. (4), 15(3):457–511, 1982. [Dem12] Jean-Pierre Demailly. Complex analytic and algebraic geometry. https://www-fourier.ujf- grenoble.fr/ demailly/manuscripts/agbook.pdf, 2012. [DK10] Michael R. Douglas and Semyon Klevtsov. Bergman kernel from path integral. Comm. Math. Phys., 293(1):205–230, 2010. [DLM06] Xianzhe Dai, Kefeng Liu, and Xiaonan Ma. On the asymptotic expansion of Bergman kernel. J. Differential Geom., 72(1):1–41, 2006. [Don01] S. K. Donaldson. Scalar curvature and projective embeddings. I. J. Differential Geom., 59(3):479–522, 2001. [Don03] Harold Donnelly. Spectral theory for tensor products of Hermitian holomorphic line bundles. Math. Z., 245(1):31–35, 2003. [DS14] Simon Donaldson and Song Sun. Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry. Acta Math., 213(1):63–106, 2014. [FK72] G. B. Folland and J. J. Kohn. The Neumann problem for the Cauchy-Riemann complex. Annals of Mathematics Studies, No. 75. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. [Gaf55] Matthew P. Gaffney. Hilbert space methods in the theory of harmonic integrals. Trans. Amer. Math. Soc., 78:426–444, 1955. [GH78] Phillip Griffiths and Joseph Harris. Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience [John Wiley Sons], New York, 1978. [GS94] Alain Grigis and Johannes Sjöstrand. Microlocal analysis for differential operators, volume 196 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994. An introduction. [H65] Lars Hörmander. L2 estimates and existence theorems for the ∂ ̄ operator. Acta Math., 113:89–152, 1965. [H66] Lars Hörmander. An introduction to complex analysis in several variables. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. [H03] Lars Hörmander. The analysis of linear partial differential operators. I. Classics in Mathematics. Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]. [HKSX16] Hamid Hezari, Casey Kelleher, Shoo Seto, and Hang Xu. Asymptotic expansion of the Bergman kernel via perturbation of the Bargmann-Fock model. J. Geom. Anal., 26(4):2602–2638, 2016. [HM14] Chin-Yu Hsiao and George Marinescu. Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles. Comm. Anal. Geom., 22(1):1–108, 2014. [HS20] Chin-Yu Hsiao and Nikhil Savale. Bergman-szegö kernel asymptotics in weakly pseudoconvex finite type cases. arXiv:2009.07159, Sep 2020. [Hsi15] Chin-Yu Hsiao. Bergman kernel asymptotics and a pure analytic proof of the Kodaira embedding theorem. In Complex analysis and geometry, volume 144 of Springer Proc. Math. Stat., pages 161-173.Springer, Tokyo, 2015. [Mar05] George Marinescu. The Laplace operator on high tensor powers of line bundles. Preprint, http://www.mi.uni-koeln.de/gmarines/PREPRINTS/habil.pdf ,2005. [MM06] Xiaonan Ma and George Marinescu. The first coefficients of the asymptotic expansion of the Bergman kernel of the Spinc Dirac operator. Internat. J. Math., 17(6):737–759, 2006. [MM07] Xiaonan Ma and George Marinescu. Holomorphic Morse inequalities and Bergman kernels, volume 254 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2007. [MM08] Xiaonan Ma and George Marinescu. Generalized Bergman kernels on symplectic manifolds. Adv. Math., 217(4):1756–1815, 2008. [MM12] Xiaonan Ma and George Marinescu. Berezin-Toeplitz quantization on Kähler manifolds. J. Reine Angew. Math., 662:1–56, 2012. [RSN20] Ophélie Rouby, Johannes Sjöstrand, and San Vū Ngo. c. Analytic Bergman operators in the semi-classical limit. Duke Math. J., 169(16):3033–3097, 2020. [Rua98] Wei-Dong Ruan. Canonical coordinates and Bergman metrics. Comm. Anal. Geom., 6(3):589–631, 1998. [Sch10] Martin Schlichenmaier. Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results. Adv. Math. Phys., pages Art. ID 927280, 38, 2010. [Set15] Shoo Seto. On the Asymptotic Expansion of the Bergman Kernel. PhD thesis, UC Irvine, 2015. [Siu84] Yum Tong Siu. A vanishing theorem for semipositive line bundles over non-Kähler manifolds. J.Differential Geom., 19(2):431–452, 1984. [Tia90] Gang Tian. On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom., 32(1):99–130, 1990. [Yos95] Kosaku Yosida. Functional analysis. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the sixth (1980) edition. [Zel98] Steve Zelditch. Szego kernels and a theorem of Tian. Internat. Math. Res. Notices, (6):317–331, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79245-
dc.description.abstract在此論文中,我們給出了一個新的方法證明在局部譜間隙的條件下,任何複流形上全純線叢的柏格曼核在正曲率的點附近都存在逐點展開。主要的關鍵是引入適當的半古典象徵空間與其象徵運算。特別地,對於某些帶有半正定度量的全純線叢,我們證明了其柏格曼核在正曲率的點的逐點展開存在。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T08:56:35Z (GMT). No. of bitstreams: 1
U0001-1801202211441600.pdf: 5406389 bytes, checksum: 719dc11da53bcf2ae99df56c4d8c6a60 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents謝辭 ii 中文摘要 iii Abstract iv Chapter I. Introduction 1 I.1. Statement of Main Results and Applications 4 Chapter II. Preliminaries on ∂ ̄-Harmonic Forms and Bergman Kernel 11 II.1. Some Standard Notations 11 II.2. Hermitian Metrics 12 II.3. Differential Operators and Curvatures 14 II.4. Gaffney Extension of Kodaira Laplacian 16 II.5. Bergman Kernel 19 Chapter III. Asymptotic Expansion of Bergman Kernel 23 III.1. Notations and Set-Up 23 III.2. Approximate Bergman Kernel and Semi-Classical L2-Estimates 26 III.3. Symbolic Calculus and Asymptotic Sum 33 III.4. Asymptotic Expansion of Approximate Kernel 40 III.5. Localization of Global Bergman Kernel 50 Bibliography 59
dc.language.isoen
dc.title柏格曼核的漸進zh_TW
dc.titleAsymptotic of Bergman Kernelen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-7919-1692
dc.contributor.oralexamcommittee王金龍(Chih-Hsien Lai),林學庸(Hui-Hsin Hsiao),(HSIANG-CHIEH LEE)
dc.subject.keyword複幾何,半古典分析,複分析,柏格曼核,譜間隙,象徵空間,zh_TW
dc.subject.keywordComplex Geometry,Semi-Classical Analysis,Complex Analysis,Bergman Kernel,Spectral Gap,Symbol Space,en
dc.relation.page61
dc.identifier.doi10.6342/NTU202200088
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-02-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
U0001-1801202211441600.pdf5.28 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved