請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78987
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 梁碧惠 | zh_TW |
dc.contributor.author | 蔡盈盈 | zh_TW |
dc.contributor.author | Yin-Yin Tsai | en |
dc.date.accessioned | 2021-07-11T15:34:28Z | - |
dc.date.available | 2024-02-28 | - |
dc.date.copyright | 2018-10-11 | - |
dc.date.issued | 2018 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Brewer, J. M.; Conacher, M.; Satoskar, A.; Bluethmann, H.; Alexander, J., In interleukin-4-deficient mice, alum not only generates T helper 1 responses equivalent to freund's complete adjuvant, but continues to induce T helper 2 cytokine production. Eur J Immunol 1996, 26, 2062-2066.
2. Glenny, A. T.; Pope, C. G.; Waddington, H.; Wallace, U., Immunological notes. XVII-XXIV. J Pathol 1926, 29, 31-40. 3. Freund, J.; Casals, J.; Hosmer, E. P., Sensitization and antibody formation after injection of tubercle bacilli and paraffin oil. Proc Soc Exp Biol Med 1937, 37, 509-513. 4. Johnson, A. G.; Gaines, S.; Landy, M., Studies on the O antigen of Salmonella typhosa. V. Enhancement of antibody response to protein antigens by the purified lipopolysaccharide. J Exp Med 1956, 103, 225-246. 5. Ellouz, F.; Adam, A.; Ciorbaru, R.; Lederer, E., Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem Biophys Res Commun 1974, 59, 1317-1325. 6. Garçon, N.; Leroux-Roels, G.; Cheng, W.-F., Vaccine adjuvants. 2011, 1, 89-113. 7. Bonam, S. R.; Partidos, C. D.; Halmuthur, S. K. M.; Muller, S., An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol Sci 2017, 38, 771-793. 8. Awate, S.; Babiuk, L. A.; Mutwiri, G., Mechanisms of action of adjuvants. Front Immunol 2013, 4, 114. 9. Kool, M.; Fierens, K.; Lambrecht, B. N., Alum adjuvant: some of the tricks of the oldest adjuvant. J Med Microbiol 2012, 61, 927-934. 10. Kensil, C. R.; Patel, U.; Lennick, M.; Marciani, D., Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J Immunol 1991, 146, 431-437. 11. Khoshnejad, M.; Young, P. R.; Toth, I.; Minchin, R. F., Modified influenza virosomes: recent advances and potential in gene delivery. Curr Med Chem 2007, 14, 3152-3156. 12. Bungener, L.; Idema, J.; ter Veer, W.; Huckriede, A.; Daemen, T.; Wilschut, J., Virosomes in vaccine development: induction of cytotoxic T lymphocyte activity with virosome-encapsulated protein antigens. J Liposome Res 2002, 12, 155-163. 13. Kreuter, J., Possibilities of using nanoparticles as carriers for drugs and vaccines. J Microencapsul 1988, 5, 115-127. 14. Seubert, A.; Monaci, E.; Pizza, M.; O'Hagan, D. T.; Wack, A., The adjuvants aluminum hydroxide and MF59 induce monocyte and granulocyte chemoattractants and enhance monocyte differentiation toward dendritic cells. J Immunol 2008, 180, 5402-5412. 15. Podda, A., The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59-adjuvanted vaccine. Vaccine 2001, 19, 2673-2680. 16. Haensler, J.; Probeck, P.; Su, J.; Piras, F.; Dalencon, F.; Cotte, J. F.; Chambon, V.; Iqbal, S. M.; Hawkins, L.; Burdin, N., Design and preclinical characterization of a novel vaccine adjuvant formulation consisting of a synthetic TLR4 agonist in a thermoreversible squalene emulsion. Int J Pharm 2015, 486, 99-111. 17. Garcon, N.; Chomez, P.; Van Mechelen, M., GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines 2007, 6, 723-739. 18. Vella, A. T.; McCormack, J. E.; Linsley, P. S.; Kappler, J. W.; Marrack, P., Lipopolysaccharide interferes with the induction of peripheral T cell death. Immunity 1995, 2, 261-270. 19. Didierlaurent, A. M.; Morel, S.; Lockman, L.; Giannini, S. L.; Bisteau, M.; Carlsen, H.; Kielland, A.; Vosters, O.; Vanderheyde, N.; Schiavetti, F.; Larocque, D.; Van Mechelen, M.; Garcon, N., AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol 2009, 183, 6186-6197. 20. Tong, N. K.; Beran, J.; Kee, S. A.; Miguel, J. L.; Sanchez, C.; Bayas, J. M.; Vilella, A.; de Juanes, J. R.; Arrazola, P.; Calbo-Torrecillas, F.; de Novales, E. L.; Hamtiaux, V.; Lievens, M.; Stoffel, M., Immunogenicity and safety of an adjuvanted hepatitis B vaccine in pre-hemodialysis and hemodialysis patients. Kidney Int 2005, 68, 2298-2303. 21. McKeage, K.; Romanowski, B., AS04-adjuvanted human papillomavirus (HPV) types 16 and 18 vaccine (Cervarix(R)): a review of its use in the prevention of premalignant cervical lesions and cervical cancer causally related to certain oncogenic HPV types. Drugs 2011, 71, 465-488. 22. Morel, S.; Didierlaurent, A.; Bourguignon, P.; Delhaye, S.; Baras, B.; Jacob, V.; Planty, C.; Elouahabi, A.; Harvengt, P.; Carlsen, H.; Kielland, A.; Chomez, P.; Garcon, N.; Van Mechelen, M., Adjuvant System AS03 containing alpha-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 2011, 29, 2461-2473. 23. Leroux-Roels, I.; Borkowski, A.; Vanwolleghem, T.; Drame, M.; Clement, F.; Hons, E.; Devaster, J. M.; Leroux-Roels, G., Antigen sparing and cross-reactive immunity with an adjuvanted rH5N1 prototype pandemic influenza vaccine: a randomised controlled trial. Lancet 2007, 370, 580-589. 24. Newman, M. J.; Wu, J. Y.; Gardner, B. H.; Anderson, C. A.; Kensil, C. R.; Recchia, J.; Coughlin, R. T.; Powell, M. F., Induction of cross-reactive cytotoxic T-lymphocyte responses specific for HIV-1 gp120 using saponin adjuvant (QS-21) supplemented subunit vaccine formulations. Vaccine 1997, 15, 1001-1007. 25. Kester, K. E.; Cummings, J. F.; Ofori-Anyinam, O.; Ockenhouse, C. F.; Krzych, U.; Moris, P.; Schwenk, R.; Nielsen, R. A.; Debebe, Z.; Pinelis, E.; Juompan, L.; Williams, J.; Dowler, M.; Stewart, V. A.; Wirtz, R. A.; Dubois, M. C.; Lievens, M.; Cohen, J.; Ballou, W. R.; Heppner, D. G., Jr., Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection. J Infect Dis 2009, 200, 337-346. 26. James, S. F.; Chahine, E. B.; Sucher, A. J.; Hanna, C., Shingrix: The new adjuvanted recombinant herpes zoster vaccine. Ann Pharmacother 2018, 52, 673-680. 27. Brichard, V. G.; Lejeune, D., GSK's antigen-specific cancer immunotherapy programme: pilot results leading to phase III clinical development. Vaccine 2007, 25 Suppl 2, B61-71. 28. Kruit, W. H.; Suciu, S.; Dreno, B.; Mortier, L.; Robert, C.; Chiarion-Sileni, V.; Maio, M.; Testori, A.; Dorval, T.; Grob, J. J.; Becker, J. C.; Spatz, A.; Eggermont, A. M.; Louahed, J.; Lehmann, F. F.; Brichard, V. G.; Keilholz, U., Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase II study of the European Organisation for Research and Treatment of Cancer melanoma group in metastatic melanoma. J Clin Oncol 2013, 31, 2413-2420. 29. Siskind, G. W.; Benacerraf, B., Cell selection by antigen in the immune response. Adv Immunol 1969, 10, 1-50. 30. Richou, R.; Jensen, R.; Belin, C., Research on saponin, an adjuvant substance which stimulates immunity. Revue d'immunologie et de therapie antimicrobienne 1964, 28, 49-62. 31. Sun, H. X.; Xie, Y.; Ye, Y. P., Advances in saponin-based adjuvants. Vaccine 2009, 27, 1787-1796. 32. Fernandez-Tejada, A.; Chea, E. K.; George, C.; Pillarsetty, N.; Gardner, J. R.; Livingston, P. O.; Ragupathi, G.; Lewis, J. S.; Tan, D. S.; Gin, D. Y., Development of a minimal saponin vaccine adjuvant based on QS-21. Nat Chem 2014, 6, 635-643. 33. Zhu, D.; Tuo, W., QS-21: A potent vaccine adjuvant. Nat Prod Chem Res 2016, 3, 1000e113. 34. Ragupathi, G.; Gardner, J. R.; Livingston, P. O.; Gin, D. Y., Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer. Expert Rev Vaccines 2011, 10, 463-470. 35. Jacobsen, N. E.; Fairbrother, W. J.; Kensil, C. R.; Lim, A.; Wheeler, D. A.; Powell, M. F., Structure of the saponin adjuvant QS-21 and its base-catalyzed isomerization product by 1H and natural abundance 13C NMR spectroscopy. Carbohydr Res 1996, 280, 1-14. 36. Cleland, J. L.; Kensil, C. R.; Lim, A.; Jacobsen, N. E.; Basa, L.; Spellman, M.; Wheeler, D. A.; Wu, J. Y.; Powell, M. F., Isomerization and formulation stability of the vaccine adjuvant QS-21. J Pharm Sci 1996, 85, 22-28. 37. Kim, Y.-J.; Wang, P.; Navarro-Villalobos, M.; Rohde, B. D.; DerryBerry; Gin, D. Y., Synthetic studies of complex immunostimulants from Quillaja saponaria: Synthesis of the potent clinical immunoadjuvant QS-21Aapi. J Am Chem Soc 2006, 128, 11906-11915. 38. Deng, K.; Adams, M. M.; Damani, P.; Livingston, P. O.; Ragupathi, G.; Gin, D. Y., Synthesis of QS-21-xylose: establishment of the immunopotentiating activity of synthetic QS-21 adjuvant with a melanoma vaccine. Angew Chem Int Ed Engl 2008, 47, 6395-6398. 39. Fernandez-Tejada, A.; Tan, D. S.; Gin, D. Y., Development of improved vaccine adjuvants based on the saponin natural product QS-21 through chemical synthesis. Acc Chem Res 2016, 49, 1741-1756. 40. Liu, G.; Anderson, C.; Scaltreto, H.; Barbon, J.; Kensil, C. R., QS-21 structure/function studies: effect of acylation on adjuvant activity. Vaccine 2002, 20, 2808-2815. 41. den Brok, M. H.; Bull, C.; Wassink, M.; de Graaf, A. M.; Wagenaars, J. A.; Minderman, M.; Thakur, M.; Amigorena, S.; Rijke, E. O.; Schrier, C. C.; Adema, G. J., Saponin-based adjuvants induce cross-presentation in dendritic cells by intracellular lipid body formation. Nat Commun 2016, 7, 13324. 42. Marciani, D. J., Elucidating the mechanisms of action of saponin-derived adjuvants. Trends Pharmacol Sci 2018, 39, 573-585. 43. Livingston, P. O.; Adluri, S.; Helling, F.; Yao, T. J.; Kensil, C. R.; Newman, M. J.; Marciani, D., Phase 1 trial of immunological adjuvant QS-21 with a GM2 ganglioside-keyhole limpet haemocyanin conjugate vaccine in patients with malignant melanoma. Vaccine 1994, 12, 1275-1280. 44. Marciani, D. J.; Ptak, R. G.; Voss, T. G.; Reynolds, R. C.; Pathak, A. K.; Chamblin, T. L.; Scholl, D. R.; May, R. D., Degradation of Quillaja saponaria Molina saponins: loss of the protective effects of a herpes simplex virus 1 subunit vaccine. Int Immunopharmacol 2002, 2, 1703-1711. 45. Ricardo, S. M.; Reinaldo, B., Quality control of commercial quillaja (Quillaja saponaria Molina) extracts by reverse phase HPLC. J Sci Food Agric 2000, 80, 2063-2068. 46. Marciani, D. J.; Press, J. B.; Reynolds, R. C.; Pathak, A. K.; Pathak, V.; Gundy, L. E.; Farmer, J. T.; Koratich, M. S.; May, R. D., Development of semisynthetic triterpenoid saponin derivatives with immune stimulating activity. Vaccine 2000, 18, 3141-3151. 47. Wang, P.; Dai, Q.; Thogaripally, P.; Zhang, P.; Michalek, S. M., Synthesis of QS-21-based immunoadjuvants. J Org Chem 2013, 78, 11525-11534. 48. Wang, P.; Devalankar, D. A.; Dai, Q.; Zhang, P.; Michalek, S. M., Synthesis and evaluation of QS-21-based immunoadjuvants with a terminal-functionalized side chain incorporated in the west wing trisaccharide. J Org Chem 2016, 81, 9560-9566. 49. Glauert, A. M.; Dingle, J. T.; Lucy, J. A., Action of saponin on biological cell membranes. Nature 1962, 196, 953-955. 50. Adams, M. M.; Damani, P.; Perl, N. R.; Won, A.; Hong, F.; Livingston, P. O.; Ragupathi, G.; Gin, D. Y., Design and synthesis of potent Quillaja saponin vaccine adjuvants. J Am Chem Soc 2010, 132, 1939-1945. 51. Chea, E. K.; Fernandez-Tejada, A.; Damani, P.; Adams, M. M.; Gardner, J. R.; Livingston, P. O.; Ragupathi, G.; Gin, D. Y., Synthesis and preclinical evaluation of QS-21 variants leading to simplified vaccine adjuvants and mechanistic probes. J Am Chem Soc 2012, 134, 13448-13457. 52. Press, J. B. M., D.J. , Chemically modified saponins and the use thereof as adjuvants., US patent 6,262,029, Feb 24, 2000. 53. Press, J. B.; Reynolds, R. C.; May, R. D.; Marciani, D. J., Structure/function relationships of immunostimulating saponins. In Studies in Natural Products Chemistry, Atta ur, R., Ed. Elsevier: 2000; Vol. 24, pp 131-174. 54. Marciani, D. J., Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov Today 2003, 8, 934-943. 55. Kensil, C. R., Immunomodulatory adjuvants from Quillaja saponaria. In Immunopotentiators in Modern Vaccines, Schijns, V. E. J. C.; O'Hagan, D. T., Eds. Academic Press: London, 2006; pp 109-122. 56. Higuchi, R.; Tokimitsu, Y.; Fujioka, T.; Komori, T.; Kawasaki, T.; Oakenful, D. G., Structure of desacylsaponins obtained from the bark of Quillaja saponaria. Phytochemistry 1986, 26, 229-235. 57. Soltysik, S.; Bedore, D. A.; Kensil, C. R., Adjuvantactivity of QS-21 isomers. Ann N Y Acad Sci 1993, 690, 392-395. 58. Marciani, D. J., Is fucose the answer to the immunomodulatory paradox of Quillaja saponins? Int Immunopharmacol 2015, 29, 908-913. 59. Gringhuis, S. I.; Kaptein, T. M.; Wevers, B. A.; Mesman, A. W.; Geijtenbeek, T. B., Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKepsilon- and CYLD-dependent Bcl3 activation. Nat Commun 2014, 5, 3898. 60. Švajger, U.; Anderluh, M.; Jeras, M.; Obermajer, N., C-type lectin DC-SIGN: An adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal 2010, 22, 1397-1405. 61. Soltysik, S.; Wu, J.-Y.; Recchia, J.; Wheeler, D. A.; Newman, M. J.; Coughlin, R. T.; Kensil, C. R., Structure/function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine 1995, 13, 1403-1410. 62. Rhodes, J., Evidence for an intercellular covalent reaction essential in antigen-specific T cell activation. J Immunol 1989, 143, 1482-1489. 63. Walkowicz, W. E.; Fernandez-Tejada, A.; George, C.; Corzana, F.; Jimenez-Barbero, J.; Ragupathi, G.; Tan, D. S.; Gin, D. Y., Quillaja saponin variants with central glycosidic linkage modifications exhibit distinct conformations and adjuvant activities. Chem Sci 2016, 7, 2371-2380. 64. Borges, R. M.; Tinoco, L. W.; de Souza Filho, J. D.; dos Santos Barbi, N.; da Silva, A. J. R., Two new oleanane saponins from Chiococca alba (L.) Hitch. J Braz Chem Soc 2009, 20, 1738-1741. 65. Nico, D.; Borges, R. M.; Brandao, L. M.; Feijo, D. F.; Gomes, D. C.; Palatnik, M.; Rodrigues, M. M.; da Silva, A. J. R.; Palatnik-de-Sousa, C. B., The adjuvanticity of Chiococca alba saponins increases with the length and hydrophilicity of their sugar chains. Vaccine 2012, 30, 3169-3179. 66. Chapman, P. B.; Morrissey, D. M.; Panageas, K. S.; Hamilton, W. B.; Zhan, C.; Destro, A. N.; Williams, L.; Israel, R. J.; Livingston, P. O., Induction of antibodies against GM2 ganglioside by immunizing melanoma patients using GM2-keyhole limpet hemocyanin + QS21 vaccine: a dose-response study. Clin Cancer Res 2000, 6, 874-879. 67. Mbawuike, I.; Zang, Y.; Couch, R. B., Humoral and cell-mediated immune responses of humans to inactivated influenza vaccine with or without QS21 adjuvant. Vaccine 2007, 25, 3263-3269. 68. Leroux-Roels, G.; Van Belle, P.; Vandepapeliere, P.; Horsmans, Y.; Janssens, M.; Carletti, I.; Garcon, N.; Wettendorff, M.; Van Mechelen, M., Vaccine Adjuvant Systems containing monophosphoryl lipid A and QS-21 induce strong humoral and cellular immune responses against hepatitis B surface antigen which persist for at least 4 years after vaccination. Vaccine 2015, 33, 1084-1091. 69. Wald, A.; Koelle, D. M.; Fife, K.; Warren, T.; Leclair, K.; Chicz, R. M.; Monks, S.; Levey, D. L.; Musselli, C.; Srivastava, P. K., Safety and immunogenicity of long HSV-2 peptides complexed with rhHsc70 in HSV-2 seropositive persons. Vaccine 2011, 29, 8520-8529. 70. Evans, T. G.; McElrath, M. J.; Matthews, T.; Montefiori, D.; Weinhold, K.; Wolff, M.; Keefer, M. C.; Kallas, E. G.; Corey, L.; Gorse, G. J.; Belshe, R.; Graham, B. S.; Spearman, P. W.; Schwartz, D.; Mulligan, M. J.; Goepfert, P.; Fast, P.; Berman, P.; Powell, M.; Francis, D., QS-21 promotes an adjuvant effect allowing for reduced antigen dose during HIV-1 envelope subunit immunization in humans. Vaccine 2001, 19, 2080-2091. 71. Biao, Y.; Yichun, Z.; Pingping, T., Carbohydrate Chemistry in the Total Synthesis of Saponins. Eur J Org Chem 2007, 31, 5145-5161. 72. Wang, P.; Kim, Y.-J.; Navarro-Villalobos, M.; Rohde, B. D.; Gin, D. Y., Synthesis of the Potent Immunostimulatory Adjuvant QS-21A. J Am Chem Soc 2005, 127, 3256-3257. 73. Schmidt, R. R.; Kinzy, W., Anomeric-oxygen activation for glycoside synthesis: the trichloroacetimidate method. Adv Carbohydr Chem Biochem 1994, 50, 21-123. 74. Nicolaou, K. C.; Ohshima, T.; Hosokawa, S.; van Delft, F. L.; Vourloumis, D.; Xu, J. Y.; Pfefferkorn, J.; Kim, S., Total synthesis of Eleutherobin and Eleuthosides A and B. J Am Chem Soc 1998, 120, 8674-8680. 75. Abdel-Shafeek, K. A.; El-Messiry, M. M.; Shahat, A. A.; Apers, S.; Pieters, L.; Seif-El Nasr, M. M., A new acylated flavonol triglycoside from Carrichtera annua. J Nat Prod 2000, 63, 845-847. 76. Borges, R. M.; Valença, S. S.; Lopes, A. A.; Barbi, N. d. S.; da Silva, A. J. R., Saponins from the roots of Chiococca alba and their in vitro anti-inflammatory activity. Phytochem Lett 2013, 6, 96-100. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78987 | - |
dc.description.abstract | 佐劑是添加到疫苗中以修飾針對抗原的免疫反應的藥劑,自從1920年代早期開始被使用。其中,QS-21是一種從皂皮樹(Quillaja saponaria)樹皮分離出來的天然物,是最有潛力的新穎佐劑之一,FDA自2016年通過QS-21使用在皰疹的疫苗,最近許多最近的臨床試驗,如癌症、瘧疾疫苗也使用QS-21作為佐劑。
盡管QS-21具有發展潛力,但是QS-21的缺點為:於皂皮樹中的含量低、全合成步驟冗長、結構不穩定性、具毒性。而學者接著研究出GPI-0100,為一種從皂皮樹萃取物所發展的半合成混合物,具有毒性更低和更穩定等優點,因此很快受到關注。然而,植物混合物成分複雜,因此有多種不同的機轉,生產亦難控制。 本論文中完成了兩個GPI-0100的簡化之衍生物的合成,結構簡化的部分包括三萜的28號位的四醣減為三醣,且在三萜3號位所接的糖由三個減至一個。除此之外,針對結構活性的探討則包括以阿拉伯糖(L-arabinose)取代了岩藻糖(D-fucose)作為結構同質物;此外,鑒於刺囊酸(echinocystic acid)的可用性及低價,我們亦嘗試用刺囊酸(echinocystic acid)替代了皂皮酸(quillaic acid)作為三萜核心合成簡化之GPI-0100類似物。 我們以[1+1+3]之聚合型策略,首先將三醣皆用醯基保護,其再與葡萄醣醛酸鍵結的三萜C-28號位進行醣化作用,此關鍵步驟中,我們使用三氯醯亞胺酸酯(trichloroacetaimidate)為離去基和二氯甲烷為溶劑之三醣提供者,得到45%-56% β位向醣化的最佳結果。在後續的氫化反應時三乙基矽烷基團保護基易離去,因此以質譜儀監測反應,並不單獨純化反應中間體。最後在葡萄醣醛酸6號位接十二烷胺之醯胺鍵,再去除其上的保護基後純化,得到最終產物53-54。是以保護後的單醣及刺囊酸或皂皮酸作為起始物,歷經八步化學反應之總產率為1-2%。 | zh_TW |
dc.description.abstract | Adjuvants are agents added to vaccines to modify the immunological response to an antigen, which has been used since 1920s. The natural product, QS-21, which is separated from the bark of Quillaja saponaria tree, is one of the most potential adjuvants with favorable humoral responses, which was approved by FDA in 2016 in combination with an anti-herpes vaccine and currently it was used in many recent clinical trials, such as cancers, malaria.
Despite its promise, QS-21 has suffered from its scarcity, tedious total synthetic steps, instability in stock solution, and also its toxicity. The semi-synthetic mixture from the extraction of Quillaja saponaria, GPI-0100, soon gains attention, and has several advantages including less toxic and more stable. However, its function and mechanism were not validated, and as a botanical mixture, it should be disassembled. In this study, two compounds of simplified GPI-0100 structures were synthesized. Truncation of GPI-0100 included a branched trisaccharide at triterpene C-28 position and a simplified glucuronic acid at C-3 position. For the structural activity relationship study, a fucose of branched trisaccharide was replaced by an arabinose and quillaic acid was replaced by echinocystic acid, because of its availability and lower price. A concise, [1+1+3] convergent pathway to synthesize these compounds was developed. The hydroxyl groups of trisaccharide were all protected by acyl group and then coupled with the triterpene bearing a C-3 glucuronic acid at C-28 position. In this critical step, use of CH2Cl2 as solvent and trichloroacetaimidate bearing trisaccharide donor for glycosylation, β-glycosylation yields were in the range of 45-56%. The sequential hydrogenation was suffered from the random removal of triethylsilyl groups, which were detected by mass spectroscopy. Amide bond formation of glucuronic acid with 1-dodecylamine and final product deprotection, purification afforded the final products 53-54 with the overall yield of 1-2% in an eight-step process by fully protected sugar donors and echinocystic acid or quillaic acid as starting materials. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:34:28Z (GMT). No. of bitstreams: 1 ntu-107-R05423005-1.pdf: 9981526 bytes, checksum: 196221bc94b807e6ad81090121688f04 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 圖目錄 viii 表目錄 ix 路徑目錄 x 縮寫表 xi 第一章 研究背景 1 1.1 佐劑簡介 1 1.1.1 疫苗與佐劑 1 1.1.2 許可疫苗中之佐劑 3 1.1.3 開發中佐劑 11 1.2 佐劑之藥理機轉 12 1.3 佐劑之安全性 14 1.4 QS-21 15 1.4.1 QS-21之發展 15 1.4.2 QS-21之結構 18 1.4.3 QS-21可能的藥理機轉 19 1.4.4 QS-21使用上的挑戰 21 1.4.5 針對QS-21過去的結構活性關係探討 22 1.4.6 臨床試驗目前進展 36 1.5 研究動機與目的 37 第二章 結果與討論 38 2.1 逆合成分析 38 2.2 三醣之合成 40 2.2.1 木糖(xylose)衍生物70之合成 40 2.2.2 鼠李糖(Rhamnose)衍生物77及60之合成 40 2.2.3 阿拉伯糖(Arabinose)衍生物61及岩藻糖(Fucose)衍生物62之合成 43 2.2.4 雙醣之合成 44 2.2.5 三醣之合成 45 2.3 葡萄醣醛酸再與三萜之連接 47 2.4 最終產物53之合成 50 2.4.1 化合物55之合成 50 2.4.2 化合物55之醯胺鍵生成 53 2.4.3 化合物53之合成 57 2.5 最終產物54之合成 59 2.5.1 化合物56之合成 59 2.5.2 化合物56之醯胺鍵生成 60 2.5.3 化合物54之合成 61 第三章 結論 62 第四章 實驗部分 64 4.1 一般實驗方法 64 4.2 實驗試劑與儀器 64 4.2.1 實驗試劑 64 4.2.2 實驗儀器 65 4.3 合成步驟及數據 67 第五章 參考文獻 103 第六章 附圖 I | - |
dc.language.iso | zh_TW | - |
dc.title | 合成簡化QS-21與其結構之岩藻糖同質物作為免疫佐劑的研究 | zh_TW |
dc.title | Synthesis of the Truncated QS-21 and its Fucose-Congener as Vaccine Adjuvants | en |
dc.type | Thesis | - |
dc.date.schoolyear | 106-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王光昭;陳基旺;忻凌偉 | zh_TW |
dc.contributor.oralexamcommittee | ;; | en |
dc.subject.keyword | QS-21,GPI-0100,佐劑,三?,皂皮酸,刺囊酸,岩藻糖,阿拉伯糖,醣化作用, | zh_TW |
dc.subject.keyword | QS-21,GPI-0100,adjuvants,triterpene,quillaic acid,echinocystic acid,fucose,arabinose,glycosylation, | en |
dc.relation.page | 186 | - |
dc.identifier.doi | 10.6342/NTU201803343 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2018-08-15 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 藥學研究所 | - |
dc.date.embargo-lift | 2028-08-15 | - |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-2.pdf 目前未授權公開取用 | 9.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。