Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78971
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許麗卿zh_TW
dc.contributor.advisorLih-Ching Hsuen
dc.contributor.author洪學致zh_TW
dc.contributor.authorHsueh Chih Hungen
dc.date.accessioned2021-07-11T15:33:15Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citationReferences
1. Hanahan D and Weinberg Robert A. Hallmarks of Cancer: The Next Generation. Cell. 2011; 144:646-674.
2. Granchi C, Fortunato S and Minutolo F. Anticancer agents interacting with membrane glucose transporters. MedChemComm. 2016; 7:1716-1729.
3. Zhao F, Ming J, Zhou Y and Fan L. Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol. 2016; 77:963-972.
4. Chen Q, Meng YQ, Xu XF and Gu J. Blockade of GLUT1 by WZB117 resensitizes breast cancer cells to adriamycin. Anti-Cancer Drugs. 2017; 28:880-887.
5. Deng D and Yan N. GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Science. 2016; 25:546-558.
6. Chen L-Q, Cheung LS, Feng L, Tanner W and Frommer WB. Transport of sugars. Annual Review of Biochemistry. 2015; 84:865-894.
7. Marina T and R. FJ. Molecular Tools for facilitative carbohydrate transporters (Gluts). ChemBioChem. 2017; 18:1774-1788.
8. Navale AM and Paranjape AN. Glucose transporters: physiological and pathological roles. Biophysical Reviews. 2016; 8:5-9.
9. Mann GE, Yudilevich DL and Sobrevia L. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiological Reviews. 2003; 83:183-252.
10. Carruthers A, DeZutter J, Ganguly A and Devaskar SU. Will the original glucose transporter isoform please stand up! American Journal of Physiology Endocrinology and Metabolism. 2009; 297:E836-848.
11. Deng D, Xu C, Sun P, Wu J, Yan C, Hu M and Yan N. Crystal structure of the human glucose transporter GLUT1. Nature. 2014; 510:121.
12. Augustin R. The protein family of glucose transport facilitators: It's not only about glucose after all. IUBMB life. 2010; 62:315-333.
13. Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia. 2015; 58:221-232.
14. DeBerardinis RJ and Chandel NS. Fundamentals of cancer metabolism. Science Advances. 2016; 2.
15. Rahman M and Hasan MR. Cancer metabolism and drug resistance. Metabolites. 2015; 5:571-600.
16. Vander Heiden MG, Cantley LC and Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324:1029-1033.
17. Liberti MV and Locasale JW. The warburg effect: How does it benefit cancer cells? Trends in Biochemical Sciences. 2016; 41:211-218.
18. Pelicano H, Martin DS, Xu RH and Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006; 25:4633.
19. Ganapathy-Kanniappan S and Geschwind J-FH. Tumor glycolysis as a target for cancer therapy: progress and prospects. Molecular Cancer. 2013; 12:152-152.
20. Wang Z, Wang N, Chen J and Shen J. Emerging glycolysis targeting and drug discovery from chinese medicine in cancer therapy. Evidence-Based Complementary and Alternative Medicine. 2012; 2012:13.
21. Porporato PE, Dhup S, Dadhich RK, Copetti T and Sonveaux P. Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Frontiers in Pharmacology. 2011; 2:49.
22. Macheda ML, Rogers S and Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. Journal of Cellular Physiology. 2005; 202:654-662.
23. Keun‐Hong P, Kun N, Toshihiro A and Choon LK. Probe of specific interaction between a simplified synthetic glycopolymer and erythrocytes as mediated by a glucose transporter (GLUT) on a cell membrane. Journal of Biomedical Materials Research. 2002; 59:591-594.
24. WALKER J, JIJON Humberto B, DIAZ H, SALEHI P, CHURCHILL T and MADSEN Karen L. 5-Aminoimidazole-4-carboxamide riboside (AICAR) enhances GLUT2-dependent jejunal glucose transport: a possible role for AMPK. Biochemical Journal. 2005; 385:485-491.
25. Sage JM, Cura AJ, Lloyd KP and Carruthers A. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site. American Journal of Physiology - Cell Physiology. 2015; 308:C827-C834.
26. Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, Hines J and Chen X. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Molecular Cancer Therapeutics. 2012; 11:1672-1682.
27. Ung PM-U, Song W, Cheng L, Zhao X, Hu H, Chen L and Schlessinger A. Inhibitor Discovery for the Human GLUT1 from Homology Modeling and Virtual Screening. ACS Chemical Biology. 2016; 11:1908-1916.
28. Yamamoto N and Ashida H. (2012). Evaluation methods for facilitative glucose transport in cells and their applications. Food Sci. Technol. Res.18:493-503.
29. Yamamoto N, Ueda-Wakagi M, Sato T, Kawasaki K, Sawada K, Kawabata K, Akagawa M and Ashida H. Measurement of glucose uptake in cultured cells. Current Protocols in Pharmacology. 2015; 71:12.14.11-26.
30. Yoshioka K, Takahashi H, Homma T, Saito M, Oh K-B, Nemoto Y and Matsuoka H. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochimica et Biophysica Acta (BBA) - General Subjects. 1996; 1289:5-9.
31. Yamada K, Saito M, Matsuoka H and Inagaki N. A real-time method of imaging glucose uptake in single, living mammalian cells. Nature Protocols. 2007; 2:753-762.
32. Zou C, Wang Y and Shen Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. Journal of Biochemical and Biophysical Methods. 2005; 64:207-215.
33. Hassanein M, Weidow B, Koehler E, Bakane N, Garbett S, Shyr Y and Quaranta V. Development of high-throughput quantitative assays for glucose uptake in cancer cell lines. Molecular Imaging and Biology. 2011; 13:840-852.
34. Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J and Karlan BY. Ovarian cancer. Nature Reviews Disease Primers. 2016; 2:16061.
35. Amercian Cancer Society. Ovarian cancer.
https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf
Assessed on 25 June, 2018.
36. Rauh-Hain JA, Krivak TC, del Carmen MG and Olawaiye AB. Ovarian cancer screening and early detection in the general population. Reviews in Obstetrics and Gynecology. 2011; 4:15-21.
37. Gupta D and Lis CG. Role of CA125 in predicting ovarian cancer survival - a review of the epidemiological literature. Journal of Ovarian Research. 2009; 2:13.
38. Cortez AJ, Tudrej P, Kujawa KA and Lisowska KM. Advances in ovarian cancer therapy. Cancer Chemotherapy and Pharmacology. 2018; 81:17-38.
39. Beaufort CM, Helmijr JC, Piskorz AM, Hoogstraat M, Ruigrok-Ritstier K, Besselink N, Murtaza M, van IWF, Heine AA, Smid M, Koudijs MJ, Brenton JD, Berns EM and Helleman J. Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes. PloS One. 2014; 9:e103988.
40. Ince TA, Sousa AD, Jones MA, Harrell JC, Agoston ES, Krohn M, Selfors LM, Liu W, Chen K, Yong M, Buchwald P, Wang B, Hale KS, Cohick E, Sergent P, Witt A, et al. Characterization of twenty-five ovarian tumour cell lines that phenocopy primary tumours. Nature Communications. 2015; 6:7419.
41. Jhawer M, Goel S, Wilson AJ, Montagna C, Ling Y-H, Byun D-S, Nasser S, Arango D, Shin J, Klampfer L, Augenlicht LH, Soler RP and Mariadason JM. PIK3CA mutation / PTEN expression status predicts response of colon cancer cells to the EGFR inhibitor cetuximab. Cancer Research. 2008; 68:1953-1961.
42. Estep AL, Palmer C, McCormick F and Rauen KA. Mutation analysis of BRAF, MEK1 and MEK2 in 15 ovarian cancer cell lines: implications for therapy. PloS One. 2007; 2:e1279.
43. Zi F, Zi H, Li Y, He J, Shi Q and Cai Z. Metformin and cancer: An existing drug for cancer prevention and therapy. Oncology Letters. 2018; 15:683-690.
44. Bowker SL, Majumdar SR, Veugelers P and Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care. 2006; 29:2540-258.
45. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD and Evans JM. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care. 2009; 32:1620-1625.
46. Heckman-Stoddard BM, DeCensi A, Sahasrabuddhe VV and Ford LG. Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia. 2017; 60:1639-1647.
47. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M and Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clinical Science. 2012; 122:253-270.
48. Han G, Gong H, Wang Y, Guo S and Liu K. AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell. Cancer Biology & Therapy. 2015; 16:77-87.
49. Zhao D, Long XD, Lu TF, Wang T, Zhang WW, Liu YX, Cui XL, Dai HJ, Xue F and Xia Q. Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. International Journal of Cancer. 2015; 136:2556-2565.
50. Gallagher EJ and LeRoith D. The proliferating role of insulin and insulin-like growth factors in cancer. Trends in Endocrinology and Metabolism: TEM. 2010; 21:610-618.
51. Foretz M, Guigas B, Bertrand L, Pollak M and Viollet B. Metformin: from mechanisms of action to therapies. Cell Metabolism. 2014; 20:953-966.
52. Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, Le Marchand-Brustel Y, Giorgetti-Peraldi S, Cormont M, Bertolotto C, Deckert M, Auberger P, Tanti J-F and Bost F. Targeting cancer cell metabolism: the combination of metformin and 2-Deoxyglucose induces p53-Dependent apoptosis in prostate cancer cells. Cancer Research. 2010; 70:2465-2475.
53. Xintaropoulou C, Ward C, Wise A, Marston H, Turnbull A and Langdon SP. A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget. 2015; 6:25677-25695.
54. Vanhaesebroeck B, Stephens L and Hawkins P. PI3K signalling: the path to discovery and understanding. Nature Reviews Molecular Cell Biology. 2012; 13:195-203.
55. Fruman DA and Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nature Reviews Drug Discovery. 2014; 13:140-156.
56. Foukas LC, Berenjeno IM, Gray A, Khwaja A and Vanhaesebroeck B. Activity of any class IA PI3K isoform can sustain cell proliferation and survival. Proceedings of the National Academy of Sciences of the United States of America. 2010; 107:11381-11386.
57. Yu L, Chen X, Sun X, Wang L and Chen S. The glycolytic switch in tumors: how many players are involved? Journal of Cancer. 2017; 8:3430-3440.
58. Barthel A, Okino ST, Liao J, Nakatani K, Li J, Whitlock JP, Jr. and Roth RA. Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. The Journal of Biological Chemistry. 1999; 274:20281-20286.
59. Chen X-s, Li L-y, Guan Y-d, Yang J-m and Cheng Y. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect. Acta Pharmacologica Sinica. 2016; 37:1013-1019.
60. Fuchs Y and Steller H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nature Reviews Molecular Cell Biology. 2015; 16:329.
61. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B and Bao JK. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012; 45:487-498.
62. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35:495-516.
63. Nagata S. Apoptosis and clearance of apoptotic cells. Annual Review of Immunology. 2018; 36:489-517.
64. Glick D, Barth S and Macleod KF. Autophagy: cellular and molecular mechanisms. The Journal of Pathology. 2010; 221:3-12.
65. Dikic I and Elazar Z. Mechanism and medical implications of mammalian autophagy. Nature Reviews Molecular Cell Biology. 2018; 19:349-364.
66. Galluzzi L, Bravo-San Pedro JM, Demaria S, Formenti SC and Kroemer G. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nature Reviews Clinical Oncology. 2017; 14:247-258.
67. Levy JMM, Towers CG and Thorburn A. Targeting autophagy in cancer. Nature Reviews Cancer. 2017; 17:528.
68. Zhang W and Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research. 2002; 12:9.
69. Kim EK and Choi E-J. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2010; 1802:396-405.
70. Wagner EF and Nebreda ÁR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nature Reviews Cancer. 2009; 9:537.
71. De Luca A, Maiello MR, D'Alessio A, Pergameno M and Normanno N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opinion on Therapeutic Targets. 2012; 16 Suppl 2:S17-27.
72. Chaffer CL and Weinberg RA. A perspective on cancer cell metastasis. Science. 2011; 331:1559-1564.
73. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR and Polyak K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004; 6:17-32.
74. Guan X. Cancer metastases: challenges and opportunities. Acta Pharmaceutica Sinica B. 2015; 5:402-418.
75. Shiraishi T, Verdone JE, Huang J, Kahlert UD, Hernandez JR, Torga G, Zarif JC, Epstein T, Gatenby R, McCartney A, Elisseeff JH, Mooney SM, An SS and Pienta KJ. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells. Oncotarget. 2015; 6:130-143.
76. Han T, Kang D, Ji D, Wang X, Zhan W, Fu M, Xin H-B and Wang J-B. How does cancer cell metabolism affect tumor migration and invasion? Cell Adhesion & Migration. 2013; 7:395-403.
77. Zhu J, Zheng Y, Zhang H and Sun H. Targeting cancer cell metabolism: The combination of metformin and 2-Deoxyglucose regulates apoptosis in ovarian cancer cells via p38 MAPK/JNK signaling pathway. American Journal of Translational Research. 2016; 8:4812-4821.
78. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010; 70:440-446.
79. Franken NA, Rodermond HM, Stap J, Haveman J and van Bree C. Clonogenic assay of cells in vitro. Nature Protocols. 2006; 1:2315-2319.
80. Sun L, Yin Y, Clark LH, Sun W, Sullivan SA, Tran A-Q, Han J, Zhang L, Guo H, Madugu E, Pan T, Jackson AL, Kilgore J, Jones HM, Gilliam TP, Zhou C, et al. Dual inhibition of glycolysis and glutaminolysis as a therapeutic strategy in the treatment of ovarian cancer. Oncotarget. 2017; 8:63551-63561.
81. Demel HR, Feuerecker B, Piontek G, Seidl C, Blechert B, Pickhard A and Essler M. Effects of topoisomerase inhibitors that induce DNA damage response on glucose metabolism and PI3K/Akt/mTOR signaling in multiple myeloma cells. Am J Cancer Res. 2015; 5:1649-1664.
82. Liu XS, Little JB and Yuan ZM. Glycolytic metabolism influences global chromatin structure. Oncotarget. 2015; 6:4214-4225.
83. Tait SW and Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010; 11:621-632.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78971-
dc.description.abstractzh_TW
dc.description.abstractTumor cells rely on aerobic glycolysis to support their anabolic growth and survival. GLUT1, one of the facilitative membrane transporters mediating glucose transport, is overexpressed in various cancers. Targeting GLUT1 has been considered as an emerging strategy to inhibit cancer cell proliferation. In this study, we first used a comprehensive virtual high-throughput screening (vHTS) protocol to search the NCI chemical library (NCI Diversity Set) for potential GLUT1 inhibitors. Seventy-five hits were further verified for inhibition of glucose uptake by a non-radioactive cell-based method using a fluorescent glucose analogue 2-NBDG as a substrate. This assay provided a rapid and direct glucose uptake measurement to determine the activity of GLUT inhibitors. The results showed that four of the 75 compounds had the inhibitory effect on GLUT1 and may serve as lead compounds for subsequent optimization.
In the present study, we use a well-known GLUT1 inhibitor, WZB117 and a potential hit #12 selected from the NCI Diversity Set to further evaluate the potential use of GLUT1 inhibitors in combinatorial cancer therapy. We found that the combination of WZB117 or #12 with metformin showed a synergistic growth inhibitory effect in ovarian cancer cells. The underlying mechanism was also investigated.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:33:15Z (GMT). No. of bitstreams: 1
ntu-107-R05423018-1.pdf: 2150018 bytes, checksum: 5ada6d1ce7b85c4f2f5027b16b9907a2 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
List of Abbreviations iii
中文摘要 iv
Abstract v
Contents vi
Specific aims of the study 1
Chapter 1 Introduction 2
1.1 Glucose transporters 2
1.2 Cancer metabolism 3
1.3 Glucose uptake assay 4
1.4 Ovarian cancer 6
1.5 Ovarian cancer cell lines 9
1.6 Metformin 10
1.7 The PI3K/Akt/mTOR pathway 10
1.8 Programmed cell death 11
1.9 The MAPK pathway 12
1.10 Cancer metastasis 13
Chapter 2 Materials and Methods 14
2.1 Materials 14
2.2 Methods 15
2.2.1 Cell culture 15
2.2.2 2-NBDG uptake assay 15
2.2.3 2-NBDG flow cytometry analysis 15
2.2.4 Reverse transcriptase-polymerase chain reaction (RT-PCR) 16
2.2.5 Glucose Uptake-Glo™ Assay 17
2.2.6 Cell viability assay and combination index analysis 17
2.2.7 Colony formation assay 17
2.2.8 Cell cycle analysis with propidium iodide (PI) staining 18
2.2.9 Annexin V-FITC/PI double staining 18
2.2.10 Western blotting 18
2.2.11 Wound healing migration assay 20
2.2.12 Data analysis 20
Chapter 3 Results 21
3.1 Screening of potential GLUT inhibitors from the NCI Plated Set and NCI Diversity Set by 2-NBDG uptake assay 21
3.2 Validation of the potential GLUT inhibitors by Glucose Uptake-Glo™ Assay in COS-7 cells 22
3.3 Effects of the potential GLUT inhibitors on cell growth in SKOV3 cells 23
3.4 WZB117 and #12 when combined with metformin displayed a synergistic growth inhibitory effect in SKOV3 cells 23
3.5 Effects of combination of WZB117 and #12 with metformin on cell cycle progression in SKOV3 cells 24
3.6 Combination of #12 and metformin induces apoptosis in SKOV3 cells 24
3.7 Effects of WZB117, #12 and metformin on Akt/mTOR and MAPK signaling in SKOV3 cells 25
3.8 Effects of #12 and metformin on cell migration in SKOV3 cells 25
3.9 Effects of combination of WZB117 or #12 with metformin on cell growth of ES2 cells 26
Chapter 4 Discussion 44
4.1 Validation of a non-radioactive cell-based method for the screening of GLUT inhibitors 44
4.2 Screening and identification of potential GLUT inhibitors 45
4.3 GLUT inhibitors and metformin displayed synergistic growth inhibitory effect in SKOV3 cells 45
4.4 Effects of combination of WZB117 or #12 with metformin on cell cycle progression in SKOV3 cells 46
4.5 Combination of metformin and #12 induces apoptosis in SKOV3 cells 47
4.6 Effects of the WZB117/metformin and #12/metformin combinations on Akt/mTOR and MAPK signaling in SKOV3 cells 47
Chapter 5 Conclusion 52
Appendixes 53
References 58
-
dc.language.isozh_TW-
dc.title發展以第一型葡萄糖轉運蛋白為標的的新型抗癌藥物zh_TW
dc.titleTargeting GLUT1 for the development of novel anticancer agentsen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林榮信;顧記華zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keywordGLUT1抑制劑,卵巢癌,metformin,WZB117,zh_TW
dc.subject.keywordGLUT1 inhibitors,ovarian cancer,metformin,WZB117,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU201803228-
dc.rights.note未授權-
dc.date.accepted2018-08-16-
dc.contributor.author-college醫學院-
dc.contributor.author-dept藥學研究所-
dc.date.embargo-lift2023-10-09-
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  目前未授權公開取用
2.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved