Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78944
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor孔繁璐zh_TW
dc.contributor.author顏家誠zh_TW
dc.contributor.authorJia-Cheng Yanen
dc.date.accessioned2021-07-11T15:31:08Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation(1) Weidmann, J.; Craik, D. J. Discovery, structure, function, and applications of cyclotides: circular proteins from plants. J. Exp. Bot. 2016, 67, 4801-4812.
(2) Craik, D. J.; Daly, N. L.; Bond, T.; Waine, C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 1999, 294, 1327-1336.
(3) Svangard, E.; Hocaoglu, Z.; Gullbo, J.; Larsson, R.; Claeson, P.; Bohlin, L. Cytotoxic cyclotides from Viola tricolor. J. Nat. Prod. 2004, 67, 144-147.
(4) Tam, J. P.; Lu, Y. A.; Yang, J. L.; Chiu, K. W. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc. Natl. Acad. Sci. USA. 1999, 96, 8913-8918.
(5) Gustafson, K. R.; Sowder, R. C.; Henderson, L. E.; Parsons, I. C.; Kashman, Y.; Cardellina, J. H.; McMahon, J. B.; Buckheit, R. W.; Pannell, L. K.; Boyd, M. R. Circulins A and B. Novel human immunodeficiency virus (HIV)-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J. Am. Chem. Soc. 1994, 116, 9337-9338.
(6) Poth, A. G.; Chan, L. Y.; Craik, D. J. Cyclotides as grafting frameworks for protein engineering and drug design applications. Biopolymers 2013, 100, 480-491.
(7) Colgrave, M. L.; Craik, D. J. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry 2004, 43, 5965-5975.
(8) Li, Y.; Bi, T.; Camarero, J. A. Chemical and biological production of cyclotides. Adv. Bot. Res. 2015, 76, 271-303.
(9) Craik, D. J.; Mulvenna, J.; Plan, M. R.; Trabi, M. Discovery, structure and biological activities of the cyclotides. Curr. Protein Pept. Sci. 2004, 5, 297-315.
(10) Abdul, G. H.; Henriques, S. T.; Huang, Y. H.; Swedberg, J. E.; Schroeder, C. I.; Craik, D. J. Structural and functional characterization of chimeric cyclotides from the Möbius and trypsin inhibitor subfamilies. Biopolymers 2017, 108, e22927.
(11) D'Souza, C.; Henriques, S. T.; Wang, C. K.; Cheneval, O.; Chan, L. Y.; Bokil, N. J.; Sweet, M. J.; Craik, D. J. Using the MCoTI-II cyclotide scaffold to design a stable cyclic peptide antagonist of SET, a protein overexpressed in human cancer. Biochemistry 2016, 55, 396-405.
(12) Ji, Y.; Majumder, S.; Millard, M.; Borra, R.; Bi, T.; Elnagar, A. Y.; Neamati, N.; Shekhtman, A.; Camarero, J. A. In vivo activation of the p53 tumor suppressor pathway by an engineered cyclotide. J. Am. Chem. Soc. 2013, 135, 11623-11633.
(13) Troeira, H. S.; Craik, D. J. Cyclotide structure and function: The role of membrane binding and permeation. Biochemistry 2017, 56, 669-682.
(14) Kimura, R. H.; Tran, A. T.; Camarero, J. A. Biosynthesis of the cyclotide kalata B1 by using protein splicing. Angew. Chem. Int. Edit. 2006, 45, 973-976.
(15) Camarero, J. A.; Kimura, R. H.; Woo, Y. H.; Shekhtman, A.; Cantor, J. Biosynthesis of a fully functional cyclotide inside living bacterial cells. Chembiochem. 2007, 8, 1363-1366.
(16) Austin, J.; Wang, W.; Puttamadappa, S.; Shekhtman, A.; Camarero, J. A. Biosynthesis and biological screening of a genetically encoded library based on the cyclotide MCoTI-I. Chembiochem. 2009, 10, 2663-2670.
(17) Jagadish, K.; Borra, R.; Lacey, V.; Majumder, S.; Shekhtman, A.; Wang, L.; Camarero, J. A. Expression of fluorescent cyclotides using protein trans-splicing for easy monitoring of cyclotide-protein interactions. Angew. Chem. Int. Ed. Engl. 2013, 52, 3126-3131.
(18) Gran, L. On the effect of a polypeptide isolated from “Kalata‐Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta. Pharmacol. Tox. 1973, 33, 400-408.
(19) Conlan, B. F.; Colgrave, M. L.; Gillon, A. D.; Guarino, R.; Craik, D. J.; Anderson, M. A. Insights into processing and cyclization events associated with biosynthesis of the cyclic peptide kalata B1. J. Biol. Chem. 2012, 287, 28037-28046.
(20) Colgrave, M. L.; Craik, D. J. Thermal chemical and enzymatic stability of the cyclotide kalata B1. Biochemistry 2004, 43, 5965-5975.
(21) Daly, N. L.; Gustafson, K. R.; Craik, D. J. The role of the cyclic peptide backbone in the anti-HIV activity of the cyclotide kalata B1. FEBS Lett. 2004, 574, 69-72.
(22) Barry, D. G.; Daly, N. L.; Clark, R. J.; Sando, L.; Craik, D. J. Linearization of a naturally occurring circular protein maintains structure but eliminates hemolytic activity. Biochemistry 2003, 42, 6688-6695.
(23) Grage, S. L.; Sani, M. A.; Cheneval, O.; Henriques, S. T.; Schalck, C.; Heinzmann, R.; Mylne, J. S.; Mykhailiuk, P. K.; Afonin, S.; Komarov, I. V.; Separovic, F.; Craik, D. J.; Ulrich, A. S. Orientation and location of the cyclotide kalata B1 in lipid bilayers revealed by solid-state NMR. Biophys. J. 2017, 112, 630-642.
(24) Saether, O.; Craik, D. J.; Campbell, I. D.; Sletten, K.; Juul, J.; Norman, D. G. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 1995, 34, 4147-4158.
(25) Clark, R. J.; Daly, N. L.; Craik, D. J. Structural plasticity of the cyclic-cystine-knot framework: implications for biological activity and drug design. Biochem. J. 2006, 15, 85-93.
(26) Thell, K.; Hellinger, R.; Sahin, E.; Michenthaler, P.; Gold-Binder, M.; Haider, T.; Kuttke, M.; Liutkeviciute, Z.; Goransson, U.; Grundemann, C.; Schabbauer, G.; Gruber, C. W. Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis. Proc. Natl. Acad. Sci. USA. 2016, 113, 3960-3965.
(27) Wong, C. T.; Rowlands, D. K.; Wong, C. H.; Lo, T. W.; Nguyen, G. K.; Li, H. Y.; Tam, J. P. Orally active peptidic bradykinin B1 receptor antagonists engineered from a cyclotide scaffold for inflammatory pain treatment. Angew. Chem. 2012, 124, 5718-5722.
(28) Hernandez, J. F.; Gagnon, J.; Chiche, L.; Nguyen, T. M.; Andrieu, J. P.; Heitz, A.; Hong, T. T.; Pham, T. T.; Le Nguyen, D. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 2000, 39, 5722-5730.
(29) Felizmenio-Quimio, M. E.; Daly, N. L.; Craik, D. J. Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis. J. Biol. Chem. 2001, 276, 22875-22882.
(30) Cascales, L.; Henriques, S. T.; Kerr, M. C.; Huang, Y. H.; Sweet, M. J.; Daly, N. L.; Craik, D. J. Identification and characterization of a new family of cell-penetrating peptides: cyclic cell-penetrating peptides. J. Biol. Chem. 2011, 286, 36932-36943.
(31) Greenwood, K. P.; Daly, N. L.; Brown, D. L.; Stow, J. L.; Craik, D. J. The cyclic cystine knot miniprotein MCoTI-II is internalized into cells by macropinocytosis. Int. J. Biochem. Cell Biol. 2007, 39, 2252-2264.
(32) Liu, H.; Gu, Y.; Yin, J.; Zheng, G.; Wang, C.; Zhang, Z.; Deng, M.; Liu, J.; Jia, X.; He, Z. SET-mediated NDRG1 inhibition is involved in acquisition of epithelial-to-mesenchymal transition phenotype and cisplatin resistance in human lung cancer cell. Cell. Signal. 2014, 26, 2710-2720.
(33) Li, M.; Makkinje, A.; Damuni, Z. The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J. Biol. Chem. 1996, 271, 11059-11062.
(34) Pazgier, M.; Liu, M.; Zou, G.; Yuan, W.; Li, C.; Li, C.; Li, J.; Monbo, J.; Zella, D.; Tarasov, S. G.; Lu, W. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc. Natl. Acad. Sci. USA. 2009, 106, 4665.
(35) Joo, S. H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. 2012, 20, 19-26.
(36) Nguyen, G. K.; Qiu, Y.; Cao, Y.; Hemu, X.; Liu, C. F.; Tam, J. P. Butelase-mediated cyclization and ligation of peptides and proteins. Nat. Protoc. 2016, 11, 1977-1988.
(37) Nguyen, G. K.; Wang, S.; Qiu, Y.; Hemu, X.; Lian, Y.; Tam, J. P. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat. Chem. Biol. 2014, 10, 732-738.
(38) Nguyen, G. K.; Hemu, X.; Quek, J. P.; Tam, J. P. Butelase-mediated macrocyclization of d-Amino-Acid-containing peptides. Angew. Chem, Int. Ed. Engl. 2016, 55, 12802-12806.
(39) Nguyen, G. K. T.; Wang, S. J.; Qiu, Y. B.; Hemu, X.; Lian, Y. L.; Tam, J. P. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat. Chem. Biol. 2014, 10, 732-738.
(40) Nguyen, G. K.; Kam, A.; Loo, S.; Jansson, A. E.; Pan, L. X.; Tam, J. P. Butelase 1: A versatile ligase for peptide and protein macrocyclization. J. Am. Chem. Soc. 2015, 137, 15398-15401.
(41) Nguyen, G. K.; Cao, Y.; Wang, W.; Liu, C. F.; Tam, J. P. Site‐specific N‐terminal labeling of peptides and proteins using butelase 1 and thiodepsipeptide. Angew. Chem. Int. Ed. Engl. 2015, 54, 15694-15698.
(42) Kumar, A.; Singh, A.; Ekavali. A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacol. Rep. 2015, 67, 195-203.
(43) Anand, R.; Gill, K. D.; Mahdi, A. A. Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology 2014, 76, 27-50.
(44) Prince, M.; Bryce, R.; Albanese, E.; Wimo, A.; Ribeiro, W.; Ferri, C. P. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013, 9, 63-75.
(45) Brookmeyer, R.; Johnson, E.; Ziegler-Graham, K.; Arrighi, H. M. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement. 2007, 3, 186-191.
(46) Blennow, K.; de Leon, M. J.; Zetterberg, H. Alzheimer's disease. Lancet 2006, 368, 387-403.
(47) Alzheimer, A. Über einen eigenartigen schweren Erkrankungsprozeβ der Hirnrincle. Neurologisches Centralblatt 1906, 23, 1129-1136.
(48) Glenner, G. G.; Wong, C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 1984, 120, 885-890.
(49) Selkoe, D. J.; Hardy, J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol. Med. 2016, 8, 595-608.
(50) Hardy, J.; Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002, 297, 353-356.
(51) Liu, C. C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 2013, 9, 106-118.
(52) Blennow, K.; Mattsson, N.; Schöll, M.; Hansson, O.; Zetterberg, H. Amyloid biomarkers in Alzheimer's disease. Trends Pharmacol. Sci. 2015, 36, 297-309.
(53) Kornhuber, J.; Weller, M. S., K.; Riederer, P. Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J. Neural. Transm. Suppl. 1994, 43, 91-104.
(54) Zhao, J.; Nussinov, R.; Ma, B. Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. J. Biol. Chem. 2017, 292, 18325-18343.
(55) Kennedy, M. E., et al. . The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients. Sci. Transl. Med. 2016, 8, 363ra150.
(56) Doody, R. S.; Thomas, R. G.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; Raman, R.; Sun, X.; Aisen, P. S.; Siemers, E.; Liu-Seifert, H.; Mohs, R. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. New Engl. J. Med. 2014, 370, 311-321.
(57) Polanco, J. C.; Li, C.; Bodea, L. G.; Martinez-Marmol, R.; Meunier, F. A.; Gotz, J. Amyloid-beta and tau complexity-towards improved biomarkers and targeted therapies. Nat. Rev. Neurol. 2018, 14, 22-39.
(58) Mahley, R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988, 240, 622-630.
(59) Goldstein, J. L.; Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 2015, 161, 161-172.
(60) Holtzman, D. M.; Herz, J.; Bu, G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. CSH. Perspect. Med. 2012, 2, a006312.
(61) Sun, Y.; Wu, S.; Bu, G.; Onifade, M. K.; Patel, S. N.; LaDu, M. J.; Fagan, A. M.; Holtzman, D. M. Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic mice: astrocyte-specific expression and differing biological effects of astrocyte-secreted apoE3 and apoE4 lipoproteins. J. Neurosci. 1998, 18, 3261-3272.
(62) Mahley, R. W., Rall, S.C. Jr. Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Gen. Hum. Genet. 2000, 1, 507-537.
(63) Farrer, L. A.; Haines, J. L.; Hyman, B.; Kukull, W. A.; Mayeux, R.; Myers, R. H.; Pericak-Vance, M. A.; Risch, N.; van Duijn, C. M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 1997, 278, 1349-1356.
(64) Hatters, D. M.; Peters-Libeu, C. A.; Weisgraber, K. H. Apolipoprotein E structure: insights into function. Trends Biochem. Sci. 2006, 31, 445-454.
(65) Mahley, R. W.; Huang, Y. Apolipoprotein E sets the stage: response to injury triggers neuropathology. Neuron 2012, 76, 871-885.
(66) Nathan, B. P.; Sanan, D. A.; Weisgraber, K. H.; Mahley, R. W.; Pitas, R. E. Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 1994, 264, 850-852.
(67) Mahley, R. W.; Weisgraber, K. H.; Huang, Y. Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 2006, 103, 5644-5651.
(68) Harold, D., et. al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat. Genet. 2009, 41, 1088-1093.
(69) Bertram, L.; Tanzi, R. E. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat. Rev. Neurosci. 2008, 9, 768-778.
(70) Montufar, S.; Calero, C.; Vinueza, R.; Correa, P.; Carrera-Gonzalez, A.; Villegas, F.; Moreta, G.; Paredes, R. Association between the APOE ε4 allele and late-onset Alzheimer's disease in an Ecuadorian Mestizo population. Int. J. Alz. Dis. 2017, 2017, 1059678.
(71) Bellosta, S.; Orth, M.; Dong, L. M.; Mahley, R. W.; Pitas, R. E. Stable expression and secretion of apolipoproteins E3 and E4 in mouse neuroblastoma cells produces differential effects on neurite outgrowth. J. Biol. Chem. 1995, 270, 27063-27071.
(72) Holtzman, D. M.; Pitas, R. E.; Kilbridge, J.; Nathan, B.; Mahley, R. W.; Bu, G.; Schwartz, A. L. Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. Proc. Natl. Acad. Sci. USA. 1995, 92, 9480-9484.
(73) Buttini, M.; Orth, M.; Bellosta, S.; Akeefe, H.; Pitas, R. E.; Wyss-Coray, T.; Mucke, L.; Mahley, R. W. Expression of human apolipoprotein E3 or E4 in the brains of ApoE-/- mice: isoform specific effects on neurodegeneration J. Neurosci. 1999, 19, 4867-4880.
(74) Buttini, M.; Akeefe, H.; Lin, C.; Mahley, R. W.; Pitas, R. E.; Wyss-Coray, T.; Mucke, L. Dominant negative effects of apolipoprotein E4 revealed in transgenic models of neurodegenerative disease. Neuroscience 2000, 97, 207-210.
(75) Raber, J.; Yu, G. Q.; Buttini, M.; Mahley, R. W.; Pitas, R. E.; Mucke, L. Apolipoprotein E and cognitive performance. Nature 2000, 404, 352-354.
(76) Raber, J.; Bongers, G.; LeFevour, A.; Buttini, M.; Mucke, L. Androgens protect against apolipoprotein E4-induced cognitive deficits. J. Neurosci. 2002, 22, 5204-5209.
(77) Barthel, H., et. al. Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011, 10, 424-435.
(78) LaDu, M. J.; Falduto, M. T.; Manelli, A. M.; Reardon, C. A.; Getz, G. S.; Frail, D. E. Isoform-specific binding of apolipoprotein E to beta-amyloid. J. Biol. Chem. 1994, 269, 23403-23406.
(79) Chen, H. K.; Liu, Z.; Meyer-Franke, A.; Brodbeck, J.; Miranda, R. D.; McGuire, J. G.; Pleiss, M. A.; Ji, Z. S.; Balestra, M. E.; Walker, D. W.; Xu, Q.; Jeong, D. E.; Budamagunta, M. S.; Voss, J. C.; Freedman, S. B.; Weisgraber, K. H.; Huang, Y.; Mahley, R. W. Small molecule structure correctors abolish detrimental effects of apolipoprotein E4 in cultured neurons. J. Biol. Chem. 2012, 287, 5253-5266.
(80) Brodbeck, J.; Liu, Z.; Meyer-Franke, A.; Balestra, M. E.; Jeong, D. E.; Pleiss, M. A.; McComas, C.; Hess, F.; Witter, D.; Peterson, S.; Childers, M.; Goulet, M.; Liverton, N.; Hargreaves, R.; Freedman, S.; Weisgraber, K. H.; Mahley, R. W.; Huang, Y. Structure-dependent impairment of intracellular apolipoprotein E4 trafficking and its detrimental effects are rescued by small-molecule structure correctors. J. Biol. Chem. 2011, 286, 17217-17226.
(81) Xu, Q.; Brecht, W. J.; Weisgraber, K. H.; Mahley, R. W.; Huang, Y. Apolipoprotein E4 domain interaction occurs in living neuronal cells as determined by fluorescence resonance energy transfer. J. Biol. Chem. 2004, 279, 25511-25516.
(82) Chen, H. K.; Ji, Z. S.; Dodson, S. E.; Miranda, R. D.; Rosenblum, C. I.; Reynolds, I. J.; Freedman, S. B.; Weisgraber, K. H.; Huang, Y.; Mahley, R. W. Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease. J. Biol. Chem. 2011, 286, 5215-5221.
(83) Huang, Y. Abeta-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer's disease. Trends Mol. Med. 2010, 16, 287-294.
(84) Ye, S.; Huang, Y.; Müllendorff, K.; Dong, L.; Giedt, G.; Meng, E. C.; Cohen, F. E.; Kuntz, I. D.; Weisgraber, K. H.; Mahley, R. W. Apolipoprotein (apo) E4 enhances amyloid β peptide production in cultured neuronal cells: ApoE structure as a potential therapeutic target. Proc. Natl. Acad. Sci. USA. 2005, 102, 18700-18705.
(85) Berghammer, H.; Auer, B. "Easypreps": fast and easy plasmid minipreparation for analysis of recombinant clones in E. coli. Biotechniques 1993, 14, 524-528.
(86) Palmer, I.; Wingfield, P. T. Preparation and extraction of insoluble (inclusion-body) proteins from Escherichia coli. Current Protocols in Protein Science 2012, 70, 6.3.1-6.3.20.
(87) Novagen. pET System Manual, TB055. 58th Edition.
(88) Quan, S.; Hiniker, A.; Collet, J. F.; Bardwell, J. C. Isolation of bacteria envelope proteins. Methods Mol. Biol. 2013, 966, 359-366.
(89) Ames, G. F.; Prody, C.; Kustu, S. Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J. Bacterio. 1984, 160, 1181-1183.
(90) Mergulhao, F. J.; Monteiro, G. A. Analysis of factors affecting the periplasmic production of recombinant proteins in Escherichia coli. J. Microbiol. Biotechnol. 2007, 17, 1236-1241.
(91) Dumon-Seignovert, L.; Cariot, G.; Vuillard, L. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr. Purif. 2004, 37, 203-206.
(92) Studier, F. W. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J. Mol. Biol. 1991, 219, 37-44.
(93) Camarero, J. A. Cyclotides, a versatile ultrastable micro-protein scaffold for biotechnological applications. Bioorg. & Med. Chem. Lett. 2017, 27, 5089-5099.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78944-
dc.description.abstractCyclotides是源自於植物的一種環狀胜肽,在結構上具有由三個分子內的雙硫鍵而形成胱胺酸紐結,此特徵造就了cyclotides結構上的穩定性。有許多的cyclotides,例如:McoTI-II和kalata B1,已經被發現具有細胞穿透的功能,同時在cyclotides的環狀區域上,對於胺基酸序列的置換擁有良好耐受性。這些特徵使得cyclotides具有潛力,作為以胜肽為骨架的藥物設計。在本篇研究中,以載脂蛋白E4上的第50到70號胺基酸序列取代McoTI-II與kalata B1的第6環狀區域上的胺基酸序列,藉此去抑制載脂蛋白E4上第61號位置精胺酸與第255號位置麩醯胺酸的結構區域交互作用。根據過去的研究顯示,cyclotides能透過大腸桿菌生合成的方法來製備,因此在本篇研究設計中,嘗試以大腸桿菌來表現改造過的McoTI-II與kalata B1,同時共同表現butelase環化酶來協助cyclotides的環化。Butelase能將受質蛋白的N端與C端進行分子內相連,因而協助cyclotides形成環狀結構。本實驗嘗試將butelase以及改造過的McoTI-II與kalata B1的基因編碼序列放入pET20b載體中表現,由於pET20b帶有pelB訊號序列,因此能將表現出的蛋白質運送至膜間質,以提供氧化環境去協助雙硫鍵之形成與氧化折疊。在本篇研究中,以BL21(DE3)、C41(DE3)與C43(DE3)pLysS作為表現目標蛋白的菌株。在C41(DE3)菌株中,初步以IPTG誘導蛋白質表現的結果顯示,pET20b-McoTI-IIa組別中在SDS-PAGE上有出現小於10 kDa的條帶,但透過LC-MS/MS分析的結果顯示沒有鑑定到目標蛋白。而在另一方面,無論有無pelB訊號序列的存在,目標蛋白質都沒有被過度表現。因此,是否改造過的cyclotides能影響載脂蛋白E4的結構域交互作用並沒有結論。zh_TW
dc.description.abstractCyclotides are cyclic peptides originated from plants possessing ultra-stability because of their intramolecular cystine knot involving three disulfide bonds and a cyclic structure. Several cyclotides such as Momordica cochinchinensis trypsin inhibitor-II (McoTI-II) and kalata B1 have been shown to display cell-penetrating properties and exhibit a great tolerance to amino acid substitutions in loop structure. These features make cyclotides potential scaffolds for peptide-based drug design. In this study, two cyclotides were designed to disrupt the R61-E255-mediated domain interaction in apolipoprotein E4 (apoE4) by replacing the loop 6 region of McoTI-II and kalata B1 with a fragment spanning amino acid residues 50 to 70 of apoE4. According to previous studies, cyclotides can be biosynthesized in E. coli for the preparation of genetically-encoded libraries. Here, these two cyclotides were intended to be generated through biosynthesis in E. coli with a cyclase, butelase. Butelase was used to connect the N and C termini of substrate proteins to assemble a cyclic structure. Coding sequences of grafted McoTI-II and kalata B1 were cloned into pET20b, an expression vector carrying a pelB signal sequence for directing the produced proteins to the periplasm, which provides an oxidative folding environment. In this study, bacterial strains, BL21(DE3), C41(DE3) and C43(DE3)pLysS was used to express target proteins. Preliminary results of protein expression in C41(DE3) strain showed a more intense band below 10 kDa was observed in the pET20b-McoTI-IIa group on SDS-PAGE analysis. However, no fragments of target protein was identified by LC-MS/MS analysis. On the other hand, whether or not pelB signal sequence was present, the target protein was not overexpressed after IPTG induction. Therefore, whether the grafted cyclotides can disrupt the domain interaction in apoE4 was still inconclusive.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:31:08Z (GMT). No. of bitstreams: 1
ntu-107-R05423010-1.pdf: 2905567 bytes, checksum: eafe88c20f28d11c5274f813091798e5 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口委審定書 i
致謝 ii
Table of Contents iii
中文摘要 iv
Abstract v
Abbreviations vii
Introduction 1
Specific Aims and Objectives 11
Materials and Methods 12
Results and Discussion 20
Figures 28
References 48
-
dc.language.isoen-
dc.subjectkalata B1zh_TW
dc.subjectcyclotideszh_TW
dc.subject載脂蛋白E4zh_TW
dc.subjectMcoTI-IIzh_TW
dc.subjectbutelasezh_TW
dc.subjectMcoTI-IIen
dc.subjectcyclotidesen
dc.subjectkalata B1en
dc.subjectbutelaseen
dc.subjectapolipoprotein E4en
dc.title以大腸桿菌生合成grafted cyclotides做為抑制載脂蛋白E4區域交互作用之結構校正器zh_TW
dc.titleBiosynthesis of grafted cyclotides in E. coli as structure correctors against domain interaction in apolipoprotein E4en
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許麗卿;忻凌偉zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keywordcyclotides,McoTI-II,kalata B1,butelase,載脂蛋白E4,zh_TW
dc.subject.keywordcyclotides,McoTI-II,kalata B1,butelase,apolipoprotein E4,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU201803658-
dc.rights.note未授權-
dc.date.accepted2018-08-16-
dc.contributor.author-college醫學院-
dc.contributor.author-dept藥學研究所-
dc.date.embargo-lift2023-10-09-
Appears in Collections:藥學系

Files in This Item:
File SizeFormat 
ntu-106-2.pdf
  Restricted Access
2.84 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved