Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78930
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor許麗卿zh_TW
dc.contributor.advisorLih-Ching Hsuen
dc.contributor.author武華緯zh_TW
dc.contributor.authorHwa-Wei Wuen
dc.date.accessioned2021-07-11T15:30:02Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014; 37:S81–S90.
2. International Diabetes Federation. IDF diabetes atlas.
http://www.diabetesatlas.org/component/attachments/?task=download&id=116 (2015)
Accessed on 2 July, 2018.
3. Uppu R and Parinandi N. Insulin sensitization and resistance interrelationship revisited with a quantitative molecular model approach. J. Diabetes Metab. 2011; 2:2.
4. Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA and Lernmark Å. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers. 2017; 3:17016.
5. Diaz-Valencia PA, Bougneres P and Valleron AJ. Global epidemiology of type 1 diabetes in young adults and adults: a systematic review. BMC Public Health. 2015; 15:255.
6. Svensson J, Carstensen B, Mortensen HB and Borch-Johnsen K. Early childhood risk factors associated with type 1 diabetes--is gender important? Eur. J. Epidemiol. 2005; 20:429–434.
7. Askar M, Daghstani J, Thomas D, Leahy N, Dunn P, Claas F, Doran S, Saji H, Kanangat S, Karoichane M, Tambur A, Monos D, El-Khalifa M, Turner V, Kamoun M, Mustafa M, et al. 16(th) IHIW: global distribution of extended HLA haplotypes. Int. J. Immunogenet. 2013; 40:31–38.
8. Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care. 2011; 34:1249–1257.
9. 2. Classification and diagnosis of diabetes: standards of dedical care in diabetes-2018. Diabetes Care. 2018; 41:S13–S27.
10. Colditz GA, Willett WC, Rotnitzky A and Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann. Intern. Med. 1995; 122:481–486.
11. Chan JM, Rimm EB, Colditz GA, Stampfer MJ and Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994; 17:961–969.
12. Ley SH, Hamdy O, Mohan V and Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet (London, England). 2014; 383:1999–2007.
13. Cappuccio FP, D'Elia L, Strazzullo P and Miller MA. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2010; 33:414–420.
14. Serrano‐Rìos M, Goday A and Martìnez Larrad T. Migrant populations and the incidence of type 1 diabetes mellitus: an overview of the literature with a focus on the Spanish‐heritage countries in Latin America. Diabetes/Metab. Res. Rev. 1999; 15:113–132.
15. Beyerlein A, Donnachie E, Jergens S and Ziegler AG. Infections in early life and development of type 1 diabetes. Jama. 2016; 315:1899–1901.
16. Knip M, Virtanen SM and Akerblom HK. Infant feeding and the risk of type 1 diabetes. Am. J. Clin. Nutr. 2010; 91:1506S–1513S.
17. La Torre D, Seppanen-Laakso T, Larsson HE, Hyotylainen T, Ivarsson SA, Lernmark A and Oresic M. Decreased cord-blood phospholipids in young age-at-onset type 1 diabetes. Diabetes. 2013; 62:3951–3956.
18. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA and Weiss R. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers. 2015; 1:15019.
19. American Cancer Society. Oral cavity and oropharyngeal cancer.
https://www.cancer.org/cancer/oral-cavity-and-oropharyngeal-cancer.html
Accessed on 2 July, 2018.
20. Siegel RL, Miller KD and Jemal A. Cancer statistics, 2018. CA Cancer J. Clin. 2018; 68:7–30.
21. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015; 136:E359–386.
22. Hashibe M, Brennan P, Chuang SC, Boccia S, Castellsague X, Chen C, Curado MP, Dal Maso L, Daudt AW, Fabianova E, Fernandez L, Wunsch-Filho V, Franceschi S, Hayes RB, Herrero R, Kelsey K, et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev. 2009; 18:541–550.
23. Ansara DL AF, Kishor S, et al. Tobacco use by men and women in 49 countries with demographic health surveys.
https://www.dhsprogram.com/pubs/pdf/CR31/CR31.pdf
Accessed on 2 July, 2018.
24. Gupta PC and Ray CS. Epidemiology of betel quid usage. Ann. Acad. Med. Singapore. 2004; 33:31–36.
25. Gupta PC and Warnakulasuriya S. Global epidemiology of areca nut usage. Addict. Biol. 2002; 7:77–83.
26. Ho PS, Ko YC, Yang YH, Shieh TY and Tsai CC. The incidence of oropharyngeal cancer in Taiwan: an endemic betel quid chewing area. J. Oral Pathol. Med. 2002; 31:213–219.
27. D'Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C, Koch WM, Westra WH and Gillison ML. Case-control study of human papillomavirus and oropharyngeal cancer. N. Engl. J. Med. 2007; 356:1944–1956.
28. Harrison LB, Sessions RB, Hong WK, Medina J, Mendenhall W and O'Malley B. (2004). Head and Neck Cancer: A Multidisciplinary Approach. Philadelphia, Pennsylvania: Lippincott Williams & Wilkins.
29. Hediger MA, Clemencon B, Burrier RE and Bruford EA. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol. Aspects Med. 2013; 34:95–107.
30. Wright EM. Glucose transport families SLC5 and SLC50. Mol. Aspects Med. 2013; 34:183–196.
31. Wright EM, Loo DD and Hirayama BA. Biology of human sodium glucose transporters. Physiol. Rev. 2011; 91:733–794.
32. Deng D and Yan N. GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters. Protein Sci. 2016; 25:546–558.
33. Wisniewski JR, Friedrich A, Keller T, Mann M and Koepsell H. The impact of high-fat diet on metabolism and immune defense in small intestine mucosa. J. Proteome Res. 2015; 14:353–365.
34. Gorboulev V, Schurmann A, Vallon V, Kipp H, Jaschke A, Klessen D, Friedrich A, Scherneck S, Rieg T, Cunard R, Veyhl-Wichmann M, Srinivasan A, Balen D, Breljak D, Rexhepaj R, Parker HE, et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes. 2012; 61:187–196.
35. Vrhovac I, Balen Eror D, Klessen D, Burger C, Breljak D, Kraus O, Radovic N, Jadrijevic S, Aleksic I, Walles T, Sauvant C, Sabolic I and Koepsell H. Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflügers Arch. 2015; 467:1881–1898.
36. O'Malley D, Reimann F, Simpson AK and Gribble FM. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes. 2006; 55:3381–3386.
37. Bonner C, Kerr-Conte J, Gmyr V, Queniat G, Moerman E, Thevenet J, Beaucamps C, Delalleau N, Popescu I, Malaisse WJ, Sener A, Deprez B, Abderrahmani A, Staels B and Pattou F. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat. Med. 2015; 21:512–517.
38. Bhavsar SK, Singh Y, Sharma P, Khairnar V, Hosseinzadeh Z, Zhang S, Palmada M, Sabolic I, Koepsell H and Lang KS. Expression of JAK3 sensitive Na+ coupled glucose carrier SGLT1 in activated cytotoxic T lymphocytes. Cell. Physiol. Biochem. 2016; 39:1209–1228.
39. Santer R and Calado J. Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin. J. Am. Soc. Nephrol. 2010; 5:133–141.
40. Dyer J, Wood IS, Palejwala A, Ellis A and Shirazi-Beechey SP. Expression of monosaccharide transporters in intestine of diabetic humans. Am. J. Physiol.: Gastrointest. Liver Physiol. 2002; 282:G241–G248.
41. Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G and Brown J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes. 2005; 54:3427–3434.
42. Ehrenkranz JR, Lewis NG, Kahn CR and Roth J. Phlorizin: a review. Diabetes/Metab. Res. Rev. 2005; 21:31–38.
43. Vick H, Diedrich DF and Baumann K. Reevaluation of renal tubular glucose transport inhibition by phlorizin analogs. Am. J. Physiol. 1973; 224:552–557.
44. Choi CI. Sodium-glucose cotransporter 2 (SGLT2) inhibitors from natural products: discovery of next-generation antihyperglycemic agents. Molecules. 2016; 21.
45. Turk E, Zabel B, Mundlos S, Dyer J and Wright EM. Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature. 1991; 350:354–356.
46. Oku A, Ueta K, Arakawa K, Ishihara T, Nawano M, Kuronuma Y, Matsumoto M, Saito A, Tsujihara K, Anai M, Asano T, Kanai Y and Endou H. T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes. 1999; 48:1794–1800.
47. Link J and Sorensen BK. A method for preparing C-glycosides related to phlorizin. Tetrahedron Lett. 2000; 41:9213–9217.
48. Meng W, Ellsworth BA, Nirschl AA, McCann PJ, Patel M, Girotra RN, Wu G, Sher PM, Morrison EP and Biller SA. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 2008; 51:1145–1149.
49. Powell DR, DaCosta CM, Gay J, Ding ZM, Smith M, Greer J, Doree D, Jeter-Jones S, Mseeh F, Rodriguez LA, Harris A, Buhring L, Platt KA, Vogel P, Brommage R, Shadoan MK, et al. Improved glycemic control in mice lacking Sglt1 and Sglt2. Am. J. Physiol.: Endocrinol. Metab. 2013; 304:E117–E130.
50. Powell DR, Smith M, Greer J, Harris A, Zhao S, DaCosta C, Mseeh F, Shadoan MK, Sands A, Zambrowicz B and Ding ZM. LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose. J. Pharmacol. Exp. Ther. 2013; 345:250–259.
51. Lapuerta P, Zambrowicz B, Strumph P and Sands A. Development of sotagliflozin, a dual sodium-dependent glucose transporter 1/2 inhibitor. Diabetes Vasc. Dis. Res. 2015; 12:101–110.
52. FDA to review Zynquista™ (sotagliflozin) as potential treatment for type 1 diabetes.
http://www.news.sanofi.us/2018-05-22-FDA-to-review-Zynquista-TM-sotagliflozin-as-potential-treatment-for-type-1-diabetes
Accessed on 4 July, 2018.
53. Drugs@FDA.
https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm
Accessed on 4 July, 2018.
54. Koepsell H. The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol. Ther. 2017; 170:148–165.
55. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M and Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 2017; 377:644–657.
56. Vander Heiden MG, Cantley LC and Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324:1029–1033.
57. Ganapathy-Kanniappan S and Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol. Cancer. 2013; 12:152.
58. Porporato PE, Dhup S, Dadhich RK, Copetti T and Sonveaux P. Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front. Pharmacol. 2011; 2:49.
59. Scafoglio C, Hirayama BA, Kepe V, Liu J, Ghezzi C, Satyamurthy N, Moatamed NA, Huang J, Koepsell H, Barrio JR and Wright EM. Functional expression of sodium-glucose transporters in cancer. Proc. Natl. Acad. Sci. U.S.A. 2015; 112:E4111–E4119.
60. Kaji K, Nishimura N, Seki K, Sato S, Saikawa S, Nakanishi K, Furukawa M, Kawaratani H, Kitade M, Moriya K, Namisaki T and Yoshiji H. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. Int. J. Cancer. 2018; 142:1712–1722.
61. Kuang H, Liao L, Chen H, Kang Q, Shu X and Wang Y. Therapeutic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin on renal cell carcinoma. Med. Sci. Monit. 2017; 23:3737–3745.
62. Ishikawa N, Oguri T, Isobe T, Fujitaka K and Kohno N. SGLT gene expression in primary lung cancers and their metastatic lesions. Jpn. J. Cancer Res. 2001; 92:874–879.
63. Casneuf VF, Fonteyne P, Van Damme N, Demetter P, Pauwels P, de Hemptinne B, De Vos M, Van de Wiele C and Peeters M. Expression of SGLT1, Bcl-2 and p53 in primary pancreatic cancer related to survival. Cancer Invest. 2008; 26:852–859.
64. Guo GF, Cai YC, Zhang B, Xu RH, Qiu HJ, Xia LP, Jiang WQ, Hu PL, Chen XX, Zhou FF and Wang F. Overexpression of SGLT1 and EGFR in colorectal cancer showing a correlation with the prognosis. Med. Oncol. 2011; 28 Suppl 1:S197–203.
65. Hanabata Y, Nakajima Y, Morita K, Kayamori K and Omura K. Coexpression of SGLT1 and EGFR is associated with tumor differentiation in oral squamous cell carcinoma. Odontology. 2012; 100:156–163.
66. Lai B, Xiao Y, Pu H, Cao Q, Jing H and Liu X. Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinoma. Arch. Gynecol. Obstet. 2012; 285:1455–1461.
67. Perla V and Jayanty SS. Biguanide related compounds in traditional antidiabetic functional foods. Food Chem. 2013; 138:1574–1580.
68. Bedekar A, Shah K and Koffas M. Natural products for type II diabetes treatment. Adv. Appl. Microbiol. 2010; 71:21–73.
69. Lee SS, Lin HC and Chen CK. Acylated flavonol monorhamnosides, alpha-glucosidase inhibitors, from Machilus philippinensis. Phytochemistry. 2008; 69:2347–2353.
70. Ramirez G, Zavala M, Perez J and Zamilpa A. In vitro screening of medicinal plants used in Mexico as antidiabetics with glucosidase and lipase inhibitory activities. Evid. Based Complement Alternat. Med. 2012; 2012:701261.
71. Rahimzadeh M, Jahanshahi S, Moein S and Moein MR. Evaluation of alpha- amylase inhibition by Urtica dioica and Juglans regia extracts. Iran. J. Basic Med. Sci. 2014; 17:465–469.
72. El-Abhar HS and Schaalan MF. Phytotherapy in diabetes: Review on potential mechanistic perspectives. World J. Diabetes. 2014; 5:176–197.
73. Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM and Atanasov AG. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARgamma): a review. Biochem. Pharmacol. 2014; 92:73–89.
74. Kosaraju J, Dubala A, Chinni S, Khatwal RB, Satish Kumar MN and Basavan D. A molecular connection of Pterocarpus marsupium, Eugenia jambolana and Gymnema sylvestre with dipeptidyl peptidase-4 in the treatment of diabetes. Pharm. Biol. 2014; 52:268–271.
75. Wang P, Alvarez-Perez JC, Felsenfeld DP, Liu H, Sivendran S, Bender A, Kumar A, Sanchez R, Scott DK, Garcia-Ocana A and Stewart AF. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat. Med. 2015; 21:383–388.
76. Pitschmann A, Zehl M, Atanasov AG, Dirsch VM, Heiss E and Glasl S. Walnut leaf extract inhibits PTP1B and enhances glucose-uptake in vitro. J. Ethnopharmacol. 2014; 152:599–602.
77. Chen J, Mangelinckx S, Adams A, Wang ZT, Li WL and De Kimpe N. Natural flavonoids as potential herbal medication for the treatment of diabetes mellitus and its complications. Nat. Prod. Commun. 2015; 10:187–200.
78. Chang HC, Yang SF, Huang CC, Lin TS, Liang PH, Lin CJ and Hsu LC. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG. Mol. BioSyst. 2013; 9:2010–2020.
79. White JS, Weissfeld JL, Ragin CC, Rossie KM, Martin CL, Shuster M, Ishwad CS, Law JC, Myers EN, Johnson JT and Gollin SM. The influence of clinical and demographic risk factors on the establishment of head and neck squamous cell carcinoma cell lines. Oral Oncol. 2007; 43:701–712.
80. Song P, Onishi A, Koepsell H and Vallon V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin. Ther. Targets. 2016; 20:1109–1125.
81. Obara K, Shirakami Y, Maruta A, Ideta T, Miyazaki T, Kochi T, Sakai H, Tanaka T, Seishima M and Shimizu M. Preventive effects of the sodium glucose cotransporter 2 inhibitor tofogliflozin on diethylnitrosamine-induced liver tumorigenesis in obese and diabetic mice. Oncotarget. 2017; 8:58353–58363.
82. Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, Day EA, Salt IP, Steinberg GR and Hardie DG. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016; 65:2784–2794.
83. Villani LA, Smith BK, Marcinko K, Ford RJ, Broadfield LA, Green AE, Houde VP, Muti P, Tsakiridis T and Steinberg GR. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration. Mol. Metab. 2016; 5:1048–1056.
84. Secker PF, Beneke S, Schlichenmaier N, Delp J, Gutbier S, Leist M and Dietrich DR. Canagliflozin mediated dual inhibition of mitochondrial glutamate dehydrogenase and complex I: an off-target adverse effect. Cell Death Dis. 2018; 9:226.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78930-
dc.description.abstractzh_TW
dc.description.abstractSodium-coupled glucose co-transporters SGLT1 and SGLT2 are active glucose transporters responsible for glucose absorption in the intestine and glucose reabsorption in the kidney, respectively. Several selective SGLT2 inhibitors have been approved for the treatment of type 2 diabetes. It is also reported that SGLT1 and SGLT2 are overexpressed in many cancers. Therefore, SGLT inhibitors might be potential anticancer agents. We have established a non-radioactive cell-based method for screening SGLT inhibitors using 1-NBDG, a fluorescent D-glucose analogue, and transiently transfected COS-7 cells overexpressing hSGLT1 or hSGLT2 to perform glucose uptake assays. In this study, we found that two kaempferol glycosides, isolated from Cinnamomum macrostemon leaves, possessed potent SGLTs inhibitory activities. Based on the kaempferol core moiety, we further evaluated the inhibitory activities of a series of related flavonoids against SGLT1 and SGLT2. The assay results led to some conclusions of structure activity relationship (SAR). First, glycosyl residues are crucial since the kaempferol aglycon shows no SGLTs inhibitory activities. In addition, the sugar inter-linkage and their substitution position to the aglycon not only affect the activities but also the inhibitory selectivity toward SGLTs.
In order to search for selective SGLT2 inhibitors, 1-NBDG uptake assay in hSGLT2 transfected COS-7 cells was conducted to screen crude extracts from Lauraceae plants. ISC-1236l, ISC-1966s, and ISC-1827s showed the best inhibitory activities toward SGLT2 among the crude extracts, although they were much less than the leaf extract of Cinnamomum macrostemon. Besides, 1-NBDG uptake assay and RT-qPCR were conducted in OSCC cell lines, including SCC103, SCC104 and SCC131. The results indicated that the expression of SGLT1 and SGLT2 in SCC131 was the most abundant among three cell lines. Therefore, SCC131 was chosen for drug treatment examination and cell viability was detected by the MTT assay. Obvious difference of cell viability between cells treated with 0 and 100 M of phlorizin was observed when the assay was conducted in culture medium containing more FBS and/or less glucose. The combination of phlorizin with cisplatin, doxorubicin, paclitaxel, 5-fluorouracil, vinblastine, (R)(S)(S)-BF65, NVP-BEZ235, dihydroartemisinin, and phloretin were further examined in SCC131 cells. However, no synergistic effect was observed.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:30:02Z (GMT). No. of bitstreams: 1
ntu-107-R05423015-1.pdf: 3188737 bytes, checksum: aeb971eb211d0d581a56999be28ba193 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi
LIST OF ABBREVIATIONS xii
AIMS OF THE STUDY 1
Chapter 1 Introduction 2
1.1 Diabetes mellitus 2
1.1.1 Types of diabetes 2
1.1.2 Epidemiology 2
1.1.3 Diagnosis 3
1.1.4 Risk factor 3
1.1.5 Management 3
1.2 Oral cavity and oropharyngeal cancers 4
1.2.1 Epidemiology 4
1.2.2 Risk factors 5
1.2.3 Symptoms and diagnosis 5
1.2.4 Stages and survival rates 6
1.2.5 Treatment 7
1.3 Sodium-coupled glucose cotransporters (SGLTs) 8
1.3.1 SGLT1 8
1.3.2 SGLT2 9
1.4 SGLT inhibitors 9
1.4.1 Development of SGLT inhibitors 9
1.4.2 Current selective SGLT2 inhibitors 10
1.5 SGLT inhibitors as potential anticancer agents 11
1.6 Antidiabetic agents from natural products 12
1.7 1-NBDG 12
Chapter 2 Materials and Methods 23
2.1 Cell culture 23
2.2 Transfection 24
2.3 1-NBDG uptake assay 25
2.4 Cell viability assay 28
2.5 Reverse transcription-polymerase chain reaction (RT-PCR) 29
2.5.1 RNA extraction 29
2.5.2 Reverse-transcription 30
2.5.3 Quantitative real-time polymerase chain reaction (qPCR) 31
2.6 Data analysis 32
Chapter 3 Results 34
3.1 Screening of Natural compounds by the 1-NBDG system 34
3.2 Screening of natural flavonoids by the 1-NBDG system 34
3.3 Screening for selective SGLT2 inhibitors from crude extracts by the 1-NBDG system 35
3.4 Determination of Cell background and Na/Ch ratio (the ratio of total uptake over sodium-independent uptake) 36
3.5 Determination of SGLT1 and SGLT2 expression in SCC103, SCC104, and SCC131 cell lines. 37
3.6 Effect of SGLT inhibitors on cell viability by single treatment or combination with chemotherapeutic drugs in OSCC cell lines. 37
Chapter 4 Discussion 61
4.1 Effect of SGLT inhibitors on cancer treatment. 61
4.2 3-O glycosylation on flavonols is important to hSGLT inhibitory activities. 61
4.3 7-O glycosylation on flavonols may reduce hSGLT inhibitory activities. 62
4.4 8-C xylosylation on flavones shows better hSGLT2 inhibitory activity. 63
4.5 Effect of saturation of 2,3 double bond on flavonols on hSGLT inhibitory activities. 63
4.6 Effect of substituents in B ring of flavonoids on hSGLT inhibitory activities. 63
4.7 Effect of FBS and glucose concentration on cell viability of SCC131. 64
Chapter 5 Conclusion 72
REFERENCES 74
-
dc.language.isoen-
dc.subjectSGLTszh_TW
dc.subject癌症zh_TW
dc.subject糖尿病zh_TW
dc.subject口腔鱗狀細胞癌zh_TW
dc.subject構效分析zh_TW
dc.subject黃酮?zh_TW
dc.subjectDiabetesen
dc.subjectcanceren
dc.subjectSGLTsen
dc.subjectflavonoid glycosidesen
dc.subjectSARen
dc.subjectOSCCen
dc.titleSGLT1 和 SGLT2 之天然抑制劑篩選和構效分析zh_TW
dc.titleScreening and SAR analysis of natural products with inhibitory activities toward SGLT1 and SGLT2en
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李水盛;顧記華zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword糖尿病,癌症,SGLTs,黃酮?,構效分析,口腔鱗狀細胞癌,zh_TW
dc.subject.keywordDiabetes,cancer,SGLTs,flavonoid glycosides,SAR,OSCC,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU201803889-
dc.rights.note未授權-
dc.date.accepted2018-08-17-
dc.contributor.author-college醫學院-
dc.contributor.author-dept藥學研究所-
dc.date.embargo-lift2023-10-09-
Appears in Collections:藥學系

Files in This Item:
File SizeFormat 
ntu-106-2.pdf
  Restricted Access
3.11 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved