Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78891
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顧記華(Jih-Hwa Guh)
dc.contributor.authorYing-Tung Liuen
dc.contributor.author劉映彤zh_TW
dc.date.accessioned2021-07-11T15:27:05Z-
dc.date.available2024-03-11
dc.date.copyright2019-03-11
dc.date.issued2018
dc.date.submitted2018-10-04
dc.identifier.citationReferences
1. America Cancer Society:Cancer Facts and Figures 2018..
2. National Comprehensive Cancer Network. Prostate Cancer (Version 1.2016). 2016.
3. American Cancer Society. Hormone Therapy for Prostate Cancer.
4. Hotte, S. and F. Saad, Current management of castrate-resistant prostate cancer. Curr Oncol, 2010. 17: p. S72-9.
5. Mayo Foundation for Medical Education and Research (MFMER). Prostate cancer.
6. Huggins, C., et al., Studies on prostatic cancer: Ii. the effects of castration on advanced carcinoma of the prostate gland. Archives of Surgery, 1941. 43: p. 209-223.
7. Catalona, W.J. and D.S. Smith, 5-Year Tumor Recurrence Rates After Anatomical Radical Retropubic Prostatectomy For Prostate Cancer. The Journal of Urology, 1994. 152: p. 1837-1842.
8. American Joint Committee on Cancer. Prostate Cancer Staging ( 7th Edition). https://cancerstaging.org/references-tools/quickreferences/Documents/ProstateSmall.pdf.
9. American Cancer Society. Prostate Cancer Stages. https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/staging.html.
10. National Cancer Institute. Cancer Stat Facts: Prostate Cancer.
https://seer.cancer.gov/statfacts/html/prost.html.
11. NCCN Guidelines Version 3.2016 Prostate Cancer. February 6, 2018]; https://www.tri-kobe.org/nccn/guideline/urological/english/prostate.pdf.
12. Kantoff , P.W., et al., Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. New England Journal of Medicine, 2010. 363(5): p. 411-422.
13. Bulloch, M.N., M.M. Elayan, and H.R. Renfroe, Sipuleucel-T: a therapeutic cancer vaccine for the treatment of castration- or hormone-refractory prostate cancer. Expert Rev Clin Pharmacol, 2011. 4(6): p. 685-92.
14. Alimirah, F., et al., DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett, 2006. 580(9): p. 2294-300.
15. Kaighn, M.E., et al., Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol, 1979. 17(1): p. 16-23.
16. Michels, J., et al., First- and second-line chemotherapy with docetaxel or mitoxantrone in patients with hormone-refractory prostate cancer: does sequence matter? Cancer, 2006. 106(5): p. 1041-6.
17. Bilusic, M., Chapter 54 - Castration Resistant Prostate Cancer: Role of Chemotherapy A2 - Mydlo, Jack H, in Prostate Cancer (Second Edition), C.J. Godec, Editor. 2016, Academic Press: San Diego. p. 509-514.
18. National Center for Biotechnology Information. PubChem Compound Database; CID=4212. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/4212
19. Scott, L.J. and D.P. Figgitt, Mitoxantrone: a review of its use in multiple sclerosis. CNS Drugs, 2004. 18(6): p. 379-96.
20. Katzung, B.G., Basic & clinical pharmacology. 2007.
21. Wu, C.-C., et al., On the structural basis and design guidelines for type II topoisomerase-targeting anticancer drugs. Nucleic Acids Research, 2013. 41(22): p. 10630-10640.
22. Nitiss, J.L., Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer, 2009. 9(5): p. 338-50.
23. Drugs.com [Internet]. Mitoxantrone Information from Drugs.com. [cited 2018 April 11]; Available from: https://www.drugs.com/mtm/mitoxantrone.html.
24. Fleischer, V., et al., Cardiotoxicity of Mitoxantrone Treatment in a German Cohort of 639 Multiple Sclerosis Patients. Journal of Clinical Neurology (Seoul, Korea), 2014. 10(4): p. 289-295.
25. Kingwell, E., et al., Cardiotoxicity and other adverse events associated with mitoxantrone treatment for MS(e–Pub ahead of print). Neurology, 2010. 74(22): p. 1822-1826.
26. William, D., et al., Mitoxantrone-induced cardiotoxicity. Journal of Oncology Pharmacy Practice, 2001. 7(1): p. 47-48.
27. Sakaguchi, A. and A. Kikuchi, Functional compatibility between isoform α and β of type II DNA topoisomerase. Journal of Cell Science, 2004. 117(7): p. 1047-1054.
28. Berger, J.M., et al., Structure and mechanism of DNA topoisomerase II. Nature, 1996. 379: p. 225.
29. Kutter, E., Topoisomerases A2 - Brenner, Sydney, in Encyclopedia of Genetics, J.H. Miller, Editor. 2001, Academic Press: New York. p. 1970.
30. Drolet, M., H.-Y. Wu, and L.F. Liu, Roles of DNA Topoisomerases in Transcription, in Advances in Pharmacology, L.F. Liu, Editor. 1994, Academic Press. p. 135-146.
31. Freres, P., G. Jerusalem, and M. Moonen, Chapter 2 - Categories of Anticancer Treatments A2 - Lancellotti, Patrizio, in Anti-Cancer Treatments and Cardiotoxicity, J.L.Z. Gómez and M. Galderisi, Editors. 2017, Academic Press: Boston. p. 7-11.
32. Kuroda, S., S. Kagawa, and T. Fujiwara, Chapter 12 - Selectively Replicating Oncolytic Adenoviruses Combined with Chemotherapy, Radiotherapy, or Molecular Targeted Therapy for Treatment of Human Cancers A2 - Lattime, Edmund C, in Gene Therapy of Cancer (Third Edition), S.L. Gerson, Editor. 2014, Academic Press: San Diego. p. 171-183.
33. Nabors, L.B., B. Surboeck, and W. Grisold, Chapter 14 - Complications from pharmacotherapy, in Handbook of Clinical Neurology, M.S. Berger and M. Weller, Editors. 2016, Elsevier. p. 235-250.
34. Browner, W.S., et al., The genetics of human longevity. Am J Med, 2004. 117(11): p. 851-60.
35. Mutagen - Chemical Mutagens. http://medicine.jrank.org/pages/2575/Mutagen-Chemical-Mutagens.html.
36. Maréchal, A. and L. Zou, DNA Damage Sensing by the ATM and ATR Kinases. Cold Spring Harb Perspect Biol, 2013. 5(9).
37. Kastan, M.B. and J. Bartek, Cell-cycle checkpoints and cancer. Nature, 2004. 432(7015): p. 316-23.
38. Weinfeld, M. and S.P. Lees-Miller, Chapter 8 - DNA Double-Strand Break Repair by Non-homologous End Joining and Its Clinical Relevance A2 - Kelley, Mark R, in DNA Repair in Cancer Therapy. 2012, Academic Press: San Diego. p. 161-189.
39. Liu, J.S., S.R. Kuo, and T. Melendy, DNA damage-induced RPA focalization is independent of gamma-H2AX and RPA hyper-phosphorylation. J Cell Biochem, 2006. 99(5): p. 1452-62.
40. Zou, Y., et al., Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol, 2006. 208(2): p. 267-73.
41. Bhattacharya, S., et al., RAD51 interconnects between DNA replication, DNA repair and immunity. Nucleic Acids Res, 2017. 45(8): p. 4590-4605.
42. Tarsounas, M., A.A. Davies, and S.C. West, RAD51 localization and activation following DNA damage. Philos Trans R Soc Lond B Biol Sci, 2004. 359(1441): p. 87-93.
43. Galkin, V.E., et al., The Rad51/RadA N-terminal domain activates nucleoprotein filament ATPase activity. Structure, 2006. 14(6): p. 983-92.
44. Elmore, S., Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol, 2007. 35(4): p. 495-516.
45. Kroemer, G., et al., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ, 2009. 16(1): p. 3-11.
46. Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972. 26(4): p. 239-57.
47. Ashkenazi, A., Targeting the extrinsic apoptosis pathway in cancer. Cytokine & Growth Factor Reviews, 2008. 19(3): p. 325-331.
48. Loreto, C., et al., The Role of Intrinsic Pathway in Apoptosis Activation and Progression in Peyronie's Disease. Biomed Res Int, 2014. 2014.
49. Golias, C.H., A. Charalabopoulos, and K. Charalabopoulos, Cell proliferation and cell cycle control: a mini review. International Journal of Clinical Practice, 2004. 58(12): p. 1134-1141.
50. Schafer, K.A., The cell cycle: a review. Vet Pathol, 1998. 35(6): p. 461-78.
51. Barnum, K.J. and M.J. O’Connell, Cell Cycle Regulation by Checkpoints. Methods Mol Biol, 2014. 1170: p. 29-40.
52. Hydbring, P., M. Malumbres, and P. Sicinski, Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol, 2016. 17(5): p. 280-92.
53. Moroy, T. and C. Geisen, Cyclin E. Int J Biochem Cell Biol, 2004. 36(8): p. 1424-39.
54. Alao, J.P., The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer, 2007. 6: p. 24.
55. Mazumder, S., E. DuPree, and A. Almasan, A Dual Role of Cyclin E in Cell Proliferation and Apotosis May Provide a Target for Cancer Therapy. Curr Cancer Drug Targets, 2004. 4(1): p. 65-75.
56. Mazumder, S., B. Gong, and A. Almasan, Cyclin E induction by genotoxic stress leads to apoptosis of hematopoietic cells. Oncogene, 2000. 19(24): p. 2828-35.
57. Williams, G.H. and K. Stoeber, The cell cycle and cancer. J Pathol, 2012. 226(2): p. 352-64.
58. Zorova, L.D., et al., Mitochondrial membrane potential. Analytical Biochemistry, 2017.
59. Nandhakumar, S., et al., Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay). J Pharmacol Pharmacother, 2011. 2(2): p. 107-11.
60. Armitage, J.O., The role of mitoxantrone in non-Hodgkin's lymphoma. Oncology (Williston Park), 2002. 16(4): p. 490-502, 507-8; discussion 511-2, 514.
61. Im, A., et al., Mitoxantrone and Etoposide for the Treatment of Acute Myeloid Leukemia Patients in First Relapse. Oncol Res, 2016. 24(2): p. 73-80.
62. Ross, D.D., et al., Atypical Multidrug Resistance: Breast Cancer Resistance Protein Messenger RNA Expression in Mitoxantrone-Selected Cell Lines. JNCI: Journal of the National Cancer Institute, 1999. 91(5): p. 429-433.
63. Tannock , I.F., et al., Docetaxel plus Prednisone or Mitoxantrone plus Prednisone for Advanced Prostate Cancer. New England Journal of Medicine, 2004. 351(15): p. 1502-1512.
64. Conner, C.S., Mitoxantrone: a replacement for doxorubicin Drug Intell Clin Pharm, 1984. 18(6): p. 479-80.
65. Thomadaki, H., et al., Treatment of PC3 prostate cancer cells with mitoxantrone, etoposide, doxorubicin and carboplatin induces distinct alterations in the expression of kallikreins 5 and 11. Thromb Haemost, 2009. 101(2): p. 373-80.
66. Buchler, T. and S.J. Harland, Chemotherapy for hormone-resistant prostate cancer: Where are we today? Indian J Urol, 2007. 23(1): p. 55-60.
67. Bellosillo, B., et al., Mitoxantrone, a topoisomerase II inhibitor, induces apoptosis of B-chronic lymphocytic leukaemia cells. Br J Haematol, 1998. 100(1): p. 142-6.
68. Chen, S., et al., Topotecan-induced topoisomerase IIalpha expression increases the sensitivity of the CML cell line K562 to subsequent etoposide plus mitoxantrone treatment. Cancer Chemother Pharmacol, 2002. 49(5): p. 347-55.
69. Crespi, M.D., et al., Mitoxantrone affects topoisomerase activities in human breast cancer cells. Biochemical and Biophysical Research Communications, 1986. 136(2): p. 521-528.
70. De Isabella, P., et al., Topoisomerase II DNA cleavage stimulation, DNA binding activity, cytotoxicity, and physico-chemical properties of 2-aza- and 2-aza-oxide-anthracenedione derivatives. Mol Pharmacol, 1995. 48(1): p. 30-8.
71. Smart, D.J., et al., Assessment of DNA double-strand breaks and γH2AX induced by the topoisomerase II poisons etoposide and mitoxantrone. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2008. 641(1): p. 43-47.
72. Medicine Health. Mitoxantrone. [cited 2018 March 17].
73. Castedo, M., et al., Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene, 2004. 23(25): p. 4362-70.
74. Seifrtova, M., et al., The effect of ATM and ERK1/2 inhibition on mitoxantrone-induced cell death of leukaemic cells. Folia Biol (Praha), 2011. 57(2): p. 74-81.
75. Traganos, F., B. Kaminska-Eddy, and Z. Darzynkiewicz, Caffeine reverses the cytotoxic and cell kinetic effects of Novantrone (mitoxantrone). Cell Proliferation, 1991. 24(3): p. 305-319.
76. Satyanarayana, A. and P. Kaldis, A dual role of Cdk2 in DNA damage response. Cell Division, 2009. 4(1): p. 9.
77. Bartkova, J., et al., DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature, 2005. 434: p. 864.
78. Koceva-Chyła, A., et al., Mechanisms of induction of apoptosis by anthraquinone anticancer drugs aclarubicin and mitoxantrone in comparison with doxorubicin: Relation to drug cytotoxicity and caspase-3 activation. Apoptosis, 2005. 10(6): p. 1497-1514.
79. Los, M., et al., Activation and Caspase-mediated Inhibition of PARP: A Molecular Switch between Fibroblast Necrosis and Apoptosis in Death Receptor Signaling. Mol Biol Cell, 2002. 13(3): p. 978-88.
80. Boulares, A.H., et al., Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem, 1999. 274(33): p. 22932-40.
81. Porter, A.G. and R.U. Janicke, Emerging roles of caspase-3 in apoptosis. Cell Death Differ, 1999. 6(2): p. 99-104.
82. Woo, M., et al., Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev, 1998. 12(6): p. 806-19.
83. Yang, J., et al., Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked. Science, 1997. 275(5303): p. 1129-1132.
84. Rossato, L.G., et al., Mitochondrial Cumulative Damage Induced by Mitoxantrone: Late Onset Cardiac Energetic Impairment. Cardiovascular Toxicology, 2014. 14(1): p. 30-40.
85. Smith, P.J., et al., Mitoxantrone-DNA binding and the induction of topoisomerase II associated DNA damage in multi-drug resistant small cell lung cancer cells. Biochemical Pharmacology, 1990. 40(9): p. 2069-2078.
86. Zannini, L., D. Delia, and G. Buscemi, CHK2 kinase in the DNA damage response and beyond. J Mol Cell Biol, 2014. 6(6): p. 442-57.
87. Zheng, L., et al., Lessons learned from BRCA1 and BRCA2. Oncogene, 2000. 19(53): p. 6159-75.
88. Smith, J., et al., The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res, 2010. 108: p. 73-112.
89. Zhou, B.B. and S.J. Elledge, The DNA damage response: putting checkpoints in perspective. Nature, 2000. 408(6811): p. 433-9.
90. Zhang, J., et al., Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol, 2004. 24(2): p. 708-18.
91. Ciccia, A. and S.J. Elledge, The DNA Damage Response: Making it safe to play with knives. Mol Cell, 2010. 40(2): p. 179-204.
92. Bahassi, E.M., et al., The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene, 2008. 27(28): p. 3977-85.
93. Binz, S.K., A.M. Sheehan, and M.S. Wold, Replication protein A phosphorylation and the cellular response to DNA damage. DNA Repair (Amst), 2004. 3(8-9): p. 1015-24.
94. Collins, A.R., The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol, 2004. 26(3): p. 249-61.
95. Mozaffarieh, M., et al., Comet assay analysis of single–stranded DNA breaks in circulating leukocytes of glaucoma patients. Mol Vis, 2008. 14: p. 1584-8.
96. Ivashkevich, A., et al., USE OF THE γ-H2AX ASSAY TO MONITOR DNA DAMAGE AND REPAIR IN TRANSLATIONAL CANCER RESEARCH. Cancer Lett, 2012. 327(1-2): p. 123-33.
97. Geric, M., G. Gajski, and V. Garaj-Vrhovac, gamma-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology. Ecotoxicol Environ Saf, 2014. 105: p. 13-21.
98. Valdiglesias, V., et al., gammaH2AX as a marker of DNA double strand breaks and genomic instability in human population studies. Mutat Res, 2013. 753(1): p. 24-40.
99. Kuo, L.J. and L.X. Yang, Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo, 2008. 22(3): p. 305-9.
100. Bhalla, K., et al., High-dose mitoxantrone induces programmed cell death or apoptosis in human myeloid leukemia cells. Blood, 1993. 82(10): p. 3133-40.
101. Diah, S.K., et al., Resistance to mitoxantrone in multidrug-resistant MCF7 breast cancer cells: evaluation of mitoxantrone transport and the role of multidrug resistance protein family proteins. Cancer Res, 2001. 61(14): p. 5461-7.
102. Cabrespine, A., et al., In vitro assessment of cytotoxic agent combinations for hormone-refractory prostate cancer treatment. Anti-Cancer Drugs, 2005. 16(4): p. 417-422.
103. Ashkenazi, A., Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov, 2008. 7(12): p. 1001-12.
104. Otto, T. and P. Sicinski, Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer, 2017. 17(2): p. 93-115.
105. Ronco, C., et al., ATM, ATR, CHK1, CHK2 and WEE1 inhibitors in cancer and cancer stem cells. MedChemComm, 2017. 8(2): p. 295-319.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78891-
dc.description.abstract前列腺惡性腫瘤在男性中,是目前最頻繁被診斷出的癌症。一般而言,早期階段的病人經過適當治療後可延長五年壽命的比率為百分之百。但是當癌症發展到了晚期腫瘤開始轉移時,此比率將急劇下降至百分之三十以下。目前對於轉移性前列腺惡性腫瘤的治療方式主要為「男性荷爾蒙去勢治療法」,但是經過18個月至24個月許多病患會持續惡化發展成轉移性去勢抗性前列腺癌(Castration-Resistant Metastatic Prostate Cancer),發展對於轉移性去勢抗性前列腺癌的治療實為當務之急。蒽醌(Anthracenedione)為抗癌藥物的重要結構,此結構的許多藥物例如mitoxantrone (MTX)和ametantrone都已應用於像是乳癌、前列腺癌、急性骨髓性白血病和非霍奇金淋巴瘤,但是現行蒽醌類藥物有較劇烈的副作用,例如噁心、嘔吐、腹瀉、低血壓和心毒性,因此我們的合作團隊合成了一系列的蒽醌類衍生物,以sulforhodamine B(SRB)assay 檢測,結果顯示一系列衍生物中編號YYC-577的合成物顯著地抑制去勢抗性前列腺癌細胞株 PC-3 (GI50 = 21.82 nM)和DU-145 (GI50 = 26.13 nM)之細胞增生作用,相較mitoxantrone的GI50 為364 nM ,由此可見YYC-577具有較好的抗癌能力。以carboxyfluorescein succinimidyl ester (CFSE)staining與流式細胞儀分析,證實YYC-577抑制細胞增生,並造成細胞停滯於 G2/M期。YYC-577會增加cleaved caspase-3和cleaved PARP,經由粒線體膜電位的測量也發現細胞的粒線體膜電位會被YYC-577破壞,進而造成前列腺癌細胞凋亡。YYC-577引起細胞週期延遲的作用與週期調控蛋白 cyclin D1和cyclin E有關。另外也觀察到和DNA損傷相關蛋白,例如p-chk2、Rad51、γH2AX和RPA32的表現量有顯著增加,免疫螢光染色影像及流式細胞儀定量顯示在YYC-577的作用下,細胞核內的γH2AX表現量顯著增加。Comet assay進一步證實YYC-577會對PC-3和DU-145 細胞株造成DNA的受損。另外透過in vivo complex of enzyme (ICE) assay分析細胞內拓撲異構酶(topoisomerase)和DNA的共價複合物,結果顯示YYC-577影響DNA受損主要干擾拓撲異構酶和DNA的作用。總結來說,YYC-577相較mitoxantrone 對於去勢抗性前列腺癌細胞有更好的抗癌能力,機轉方面主要是透過影響拓撲異構酶的功能造成DNA受損來造成細胞週期停滯和凋亡。zh_TW
dc.description.abstractCarcinoma of the prostate is one of the most frequently diagnosed cancers in men. With adequate treatment, the 5-year relative survival rate is 100%; however, it drops to less than 30% if a distant metastasis occurs at the time of diagnosis. Androgen-deprivation therapy has been the mainstay of therapy for advanced metastatic prostate cancer. However, the growth of castration-resistant prostate cancer (CRPC) occurs ultimately after an 18- to 24-month treatment. Due to the widespread incidence and unmet medical need, prostate cancer is one of the important targets in both biomedical and clinical research. Anthracenedione is a leading structure in several cancer chemotherapeutic agents, such as mitoxantrone (MTX) and ametantrone used in several types of cancers including metastatic breast cancer, prostate cancer, acute myeloid leukemia, and non-Hodgkin’s lymphoma. Therefore, it is a crucial structure lead in the design of anticancer compound derivatives. However, existing anthracenedione agents show adverse side effects such as nausea, vomiting, diarrhea, low blood pressure and heart damage. Hence, our colleagues have synthesized a number of anthracenedione derivatives and after a screening test in CRPC PC-3 and DU-145 cells based on sulforhodamine B assay, we have found that YYC-577 shows a better anticancer efficacy than mitoxantrone with an GI50 of 21.82 nM in PC-3 cells and an GI50 of 26.13 nM in DU-145 cells (mitoxantrone, 364 nM). Both flow cytometric analysis of CFSE staining and colony assay have confirmed that YYC-577 displays a potent anti-proliferative activity. YYC-577 induces cell cycle arrest at G2/M phase and increases apoptosis-related signals such as cleaved PARA and caspase-3. YYC-577 also induces the loss of mitochondrial membrane potential using cytofluorometric analysis of JC-1 staining. YYC-577 exposure also results in increased expressions of DNA-damage-related signals, including p-chk2, Rad51, γH2AX and RPA32. Immunofluorescence imaging and cytofluorometric analysis show that the expression of γH2AX in nucleus is significantly increased by YYC-577. Comet assay further validates YYC-577-induced DNA damage. Moreover, in vivo complex of enzyme (ICE) assay that measures endogenous topoisomerase DNA covalent complexes demonstrates that YYC-577 preferentially targets topoisomerase II for the DNA damage effect. In summary, the data suggest that YYC-577 is a potential anthracenedione derivative that targets topoisomerase II, leading to G2/M arrest of the cell cycle and subsequent cell death in CRPCs.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:27:05Z (GMT). No. of bitstreams: 1
ntu-107-R05423012-1.pdf: 18275805 bytes, checksum: 3e806e479f2b86bed53511d0f969ec13 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
致謝 i
List of Abbreviation ii
中文摘要 iv
Abstract v
Contents viii
List of Figures ix
List of Table x
Aim of the Study 1
Chapter 1: Introduction 2
1.1. Prostate cancer 2
1.2. Prostate cancer cell lines 5
1.3. Mitoxantrone 5
1.4. Topoisomerase 6
1.5. DNA damage 7
1.6. Programmed cell death 8
1.7. Cell cycle 10
1.8. Mitochondrial membrane potential 11
Chapter 2: Materials and Methods 12
2.1. Materials 12
2.2. Methods 15
Chapter 3: Results 23
3.1. Effect of YYC-577 on cell growth in PC-3 and DU-145 cells 23
3.2. Effect of YYC-577 on cell cycle progression in PC-3 and DU-145 cells 23
3.3. Effect of YYC-577 on cell cycle-related proteins in PC-3 and DU-145 cells 23
3.4. Effect of YYC-577 on apoptosis-related cellular signals in PC-3 and DU-145 cells………… 24
3.5. Effect of YYC-577 on mitochondrial membrane potential (MMP) in PC-3 and DU-145 cells 24
3.6. Effect of YYC-577 on DNA damage-related proteins in PC-3 and DU-145 cells……… 25
3.7. Effect of YYC-577 on DNA damage in PC-3 and DU-145 cells 25
3.8. Effect of YYC-577 on the expression of γ-H2AX in PC-3 26
3.9. Effect of YYC-577 on inhibition of topoisomerase function 26
Chapter 4: Discussion 28
4.1. YYC-577 induces anti-proliferative effect in HPRPC cells 28
4.2. YYC-577 disturbs cell cycle progression 29
4.3. YYC-577 induces intrinsic apoptotic pathway 30
4.4. YYC-577 induces DNA damage in CRMPC cells 31
4.5. YYC-577 induces the formation of topoisomerase-DNA adducts 32
Chapter 5: Conclusion 34
Appendices 35
References 70
dc.language.isoen
dc.subjectMitoxantronezh_TW
dc.subject拓撲異構?zh_TW
dc.subject細胞凋亡zh_TW
dc.subject細胞週期停滯zh_TW
dc.subject前列腺癌zh_TW
dc.subjectDNA受損zh_TW
dc.subjectDNA damageen
dc.subjectMitoxantroneen
dc.subjectprostate canceren
dc.subjectcell cycle arresten
dc.subjectapoptosisen
dc.subjecttopoisomerase inhibitoren
dc.titleMitoxantrone衍生物在人類去勢抗性轉移性前列腺癌之抗癌機轉探討zh_TW
dc.titleResearch of the Anticancer Mechanism of Mitoxantrone Derivatives against Human Castration-Resistant Metastatic Prostate Canceren
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃聰龍(Tsong-Long Hwang),蕭哲志(George Hsiao),許麗卿(Lih-Ching Hsu)
dc.subject.keywordMitoxantrone,前列腺癌,細胞週期停滯,細胞凋亡,DNA受損,拓撲異構?,zh_TW
dc.subject.keywordMitoxantrone,prostate cancer,cell cycle arrest,apoptosis,DNA damage,topoisomerase inhibitor,en
dc.relation.page79
dc.identifier.doi10.6342/NTU201804165
dc.rights.note有償授權
dc.date.accepted2018-10-04
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
dc.date.embargo-lift2024-03-11-
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05423012-1.pdf
  未授權公開取用
17.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved