Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78861
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor梁碧惠zh_TW
dc.contributor.advisorPi-Hui Liangen
dc.contributor.author賴彥勳zh_TW
dc.contributor.authorYen-Hsun Laien
dc.date.accessioned2021-07-11T15:24:48Z-
dc.date.available2024-08-16-
dc.date.copyright2019-03-11-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Leroux-Roels, G., Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine 2010, 28 Suppl 3, C25-36.
2. Baxter, D., Active and passive immunity, vaccine types, excipients and licensing. Occup. Med. (Lond) 2007, 57, 552-6.
3. Lee, S.; Nguyen, M. T., Recent advances of vaccine adjuvants for infectious diseases. Immune Netw. 2015, 15, 51-7.
4. Reed, S. G.; Orr, M. T.; Fox, C. B., Key roles of adjuvants in modern vaccines. Nat. Med. 2013, 19, 1597-608.
5. Bonam, S. R.; Partidos, C. D.; Halmuthur, S. K. M.; Muller, S., An Overview of Novel Adjuvants Designed for Improving Vaccine Efficacy. Trends Pharmacol. Sci. 2017, 38, 771-793.
6. Batista-Duharte, A.; Lindblad, E. B.; Oviedo-Orta, E., Progress in understanding adjuvant immunotoxicity mechanisms. Toxicol. Lett. 2011, 203, 97-105.
7. Kool, M.; Fierens, K.; Lambrecht, B. N., Alum adjuvant: some of the tricks of the oldest adjuvant. J. Med. Microbiol. 2012, 61, 927-34.
8. Oleszycka, E.; Lavelle, E. C., Immunomodulatory properties of the vaccine adjuvant alum. Curr. Opin. Immunol. 2014, 28, 1-5.
9. O'Hagan, D. T.; Ott, G. S.; Nest, G. V.; Rappuoli, R.; Giudice, G. D., The history of MF59((R)) adjuvant: a phoenix that arose from the ashes. Expert Rev. Vaccines 2013, 12, 13-30.
10. Schwendener, R. A., Liposomes as vaccine delivery systems: a review of the recent advances. Ther. Adv. Vaccines 2014, 2, 159-82.
11. Moser, C.; Muller, M.; Kaeser, M. D.; Weydemann, U.; Amacker, M., Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev. Vaccines 2013, 12, 779-91.
12. Garcon, N.; Di Pasquale, A., From discovery to licensure, the Adjuvant System story. Hum. Vaccin Immunother. 2017, 13, 19-33.
13. Garcon, N.; Wettendorff, M.; Van Mechelen, M., Role of AS04 in human papillomavirus vaccine: mode of action and clinical profile. Expert Opin. Biol. Ther. 2011, 11, 667-77.
14. Garcon, N.; Vaughn, D. W.; Didierlaurent, A. M., Development and evaluation of AS03, an Adjuvant System containing alpha-tocopherol and squalene in an oil-in-water emulsion. Expert Rev. Vaccines 2012, 11, 349-66.
15. Atmar, R. L.; Keitel, W. A., Adjuvants for pandemic influenza vaccines. Curr. Top. Microbiol. Immunol. 2009, 333, 323-44.
16. Dooling, K. L.; Guo, A.; Patel, M.; Lee, G. M.; Moore, K.; Belongia, E. A.; Harpaz, R., Recommendations of the Advisory Committee on Immunization Practices for Use of Herpes Zoster Vaccines. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 103-108.
17. Lal, H.; Cunningham, A. L.; Godeaux, O.; Chlibek, R.; Diez-Domingo, J.; Hwang, S. J.; Levin, M. J.; McElhaney, J. E.; Poder, A.; Puig-Barbera, J.; Vesikari, T.; Watanabe, D.; Weckx, L.; Zahaf, T.; Heineman, T. C.; Group, Z. O. E. S., Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N. Engl. J. Med. 2015, 372, 2087-96.
18. Schillie, S.; Harris, A.; Link-Gelles, R.; Romero, J.; Ward, J.; Nelson, N., Recommendations of the Advisory Committee on Immunization Practices for Use of a Hepatitis B Vaccine with a Novel Adjuvant. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 455-458.
19. Jackson, S.; Lentino, J.; Kopp, J.; Murray, L.; Ellison, W.; Rhee, M.; Shockey, G.; Akella, L.; Erby, K.; Heyward, W. L.; Janssen, R. S.; Group, H. B. V. S., Immunogenicity of a two-dose investigational hepatitis B vaccine, HBsAg-1018, using a toll-like receptor 9 agonist adjuvant compared with a licensed hepatitis B vaccine in adults. Vaccine 2018, 36, 668-674.
20. Seder, R. A.; Darrah, P. A.; Roederer, M., T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol. 2008, 8, 247-58.
21. Melero, I.; Gaudernack, G.; Gerritsen, W.; Huber, C.; Parmiani, G.; Scholl, S.; Thatcher, N.; Wagstaff, J.; Zielinski, C.; Faulkner, I.; Mellstedt, H., Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol. 2014, 11, 509-24.
22. Kidd, P., Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern. Med. Rev. 2003, 8, 223-46.
23. Shah, M.; Anwar, M. A.; Kim, J. H.; Choi, S., Advances in Antiviral Therapies Targeting Toll-like Receptors. Expert Opin. Investig. Drugs 2016, 25, 437-53.
24. Taylor, D. N.; Treanor, J. J.; Strout, C.; Johnson, C.; Fitzgerald, T.; Kavita, U.; Ozer, K.; Tussey, L.; Shaw, A., Induction of a potent immune response in the elderly using the TLR-5 agonist, flagellin, with a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125, STF2.HA1 SI). Vaccine 2011, 29, 4897-902.
25. Taylor, D. N.; Treanor, J. J.; Sheldon, E. A.; Johnson, C.; Umlauf, S.; Song, L.; Kavita, U.; Liu, G.; Tussey, L.; Ozer, K.; Hofstaetter, T.; Shaw, A., Development of VAX128, a recombinant hemagglutinin (HA) influenza-flagellin fusion vaccine with improved safety and immune response. Vaccine 2012, 30, 5761-9.
26. Martins, K. A.; Bavari, S.; Salazar, A. M., Vaccine adjuvant uses of poly-IC and derivatives. Expert Rev. Vaccines 2015, 14, 447-59.
27. Lovgren Bengtsson, K.; Morein, B.; Osterhaus, A. D., ISCOM technology-based Matrix M adjuvant: success in future vaccines relies on formulation. Expert Rev. Vaccines 2011, 10, 401-3.
28. Lattanzi, M.; Han, J.; Moran, U.; Utter, K.; Tchack, J.; Sabado, R. L.; Berman, R.; Shapiro, R.; Huang, H. H.; Osman, I.; Bhardwaj, N.; Pavlick, A. C., Adjuvant NY-ESO-1 vaccine immunotherapy in high-risk resected melanoma: a retrospective cohort analysis. J Immunother Cancer 2018, 6, 38.
29. Chevallier, A., The encyclopedia of medicinal plants. 1st American ed. ed.; DK Pub.: New York, 1996.
30. Hjertner, B.; Bengtsson, T.; Morein, B.; Paulie, S.; Fossum, C., A novel adjuvant G3 induces both Th1 and Th2 related immune responses in mice after immunization with a trivalent inactivated split-virion influenza vaccine. Vaccine 2018, 36, 3340-3344.
31. Bomford, R., Relative Adjuvant Efficacy of Al(OH)<sub>3</sub> and Saponin Is Related to the Immunogenicity of the Antigen. Int. Arch. Allergy Immunol. 1984, 75, 280-281.
32. Bomford, R., Studies on the cellular site of action of the adjuvant activity of saponin for sheep erythrocytes. Int. Arch. Allergy. Appl. Immunol. 1982, 67, 127-31.
33. Egerton, J. R.; Laing, E. A.; Thorley, C. M., Effect of Quil A, a saponin derivative, on the response of sheep to alum precipitatedBacteroides nodosus vaccines. Veterinary science communications 1978, 2, 247-252.
34. Dalsgaard, K., Saponin adjuvants. 3. Isolation of a substance from Quillaja saponaria Molina with adjuvant activity in food-and-mouth disease vaccines. Archiv fur die gesamte Virusforschung 1974, 44, 243-54.
35. Morein, B.; Sundquist, B.; Hoglund, S.; Dalsgaard, K.; Osterhaus, A., Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 1984, 308, 457-60.
36. Manaargadoo-Catin, M.; Ali-Cherif, A.; Pougnas, J. L.; Perrin, C., Hemolysis by surfactants--A review. Adv. Colloid Interface Sci. 2016, 228, 1-16.
37. Bangham, A. D.; Horne, R. W.; Glauert, A. M.; Dingle, J. T.; Lucy, J. A., Action of saponin on biological cell membranes. Nature 1962, 196, 952-5.
38. Kensil, C. A.; Soltysik, S.; Marciani, D. J. Saponin-antigen conjugates and the use thereof. 5,583,112, Dec. 10, 1996.
39. Kensil, C. R.; Patel, U.; Lennick, M.; Marciani, D., Separation and Characterization of Saponins with Adjuvant Activity from Quillaja-Saponaria Molina Cortex. J. Immunol. 1991, 146, 431-437.
40. Higuchi, R.; Tokimitsu, Y.; Komori, T., An Acylated Triterpenoid Saponin from Quillaja-Saponaria. Phytochemistry 1988, 27, 1165-1168.
41. Higuchi, R.; Tokimitsu, Y.; Fujioka, T.; Komori, T.; Kawasaki, T.; Oakenful, D. G., Structure of desacylsaponins obtained from the bark of Quillaja saponaria. Phytochemistry 1986, 26, 229-235.
42. Nord, L. I.; Kenne, L., Separation and structural analysis of saponins in a bark extract from Quillaja saponaria Molina. Carbohydr. Res. 1999, 320, 70-81.
43. van Setten, D. C.; van de Werken, G., Molecular structures of saponins from Quillaja saponaria Molina. Adv. Exp. Med. Biol. 1996, 404, 185-93.
44. Stenger, S.; Modlin, R. L., Cytotoxic T cell responses to intracellular pathogens. Curr Opin Immunol 1998, 10, 471-7.
45. Cox, J. C.; Coulter, A. R., Adjuvants—a classification and review of their modes of action. Vaccine 1997, 15, 248-256.
46. Olotu, A.; Fegan, G.; Wambua, J.; Nyangweso, G.; Leach, A.; Lievens, M.; Kaslow, D. C.; Njuguna, P.; Marsh, K.; Bejon, P., Seven-Year Efficacy of RTS,S/AS01 Malaria Vaccine among Young African Children. N. Engl. J. Med. 2016, 374, 2519-29.
47. Tinto, H.; D'Alessandro, U.; Sorgho, H.; Valea, I.; Tahita, M. C.; Kabore, W.; Kiemde, F.; Lompo, P.; Ouedraogo, S.; Derra, K.; Ouedraogo, F.; Ouedraogo, J. B.; Ballou, W. R.; Cohen, J.; Guerra, Y.; Heerwegh, D.; Jongert, E.; Lapierre, D.; Leach, A.; Lievens, M.; Ofori-Anyinam, O.; Olivier, A.; Vekemans, J.; Agnandji, S. T.; Lell, B.; Fernandes, J. F.; Abossolo, B. P.; Kabwende, A. L.; Adegnika, A. A.; Mordmuller, B.; Issifou, S.; Kremsner, P. G.; Loembe, M. M.; Bache, E.; Alabi, A.; Owusu-Agyei, S.; Asante, K. P.; Boahen, O.; Dosoo, D.; Asante, I.; Yidana, Z.; Anim, J.; Adeniji, E.; Yawson, A. K.; Kayan, K.; Chandramohan, D.; Greenwood, B.; Ansong, D.; Agbenyega, T.; Adjei, S.; Boateng, H. O.; Rettig, T.; Sylverken, J.; Sambian, D.; Badu-Prepah, A.; Kotey, A.; Buabeng, P.; Paintsil, V.; Enimil, A.; Hamel, M. J.; Kariuki, S.; Oneko, M.; Odero, C.; Otieno, K.; Awino, N.; Muturi-Kioi, V.; Omoto, J.; Sang, T.; Odhiambo, S.; Laserson, K. F.; Slutsker, L.; Otieno, W.; Otieno, L.; Otsyula, N.; Gondi, S.; Ochola, J.; Okoth, G.; Mabunde, D. C.; Wangwe, A.; Otieno, A.; Oyieko, J.; Cowden, J.; Ogutu, B.; Njuguna, P.; Marsh, K.; Akoo, P.; Kerubo, C.; Maingi, C.; Bejon, P.; Olotu, A.; Chilengi, R.; Tsofa, B.; Lang, T.; Gitaka, J.; Awuondo, K.; Martinson, F.; Hoffman, I.; Mvalo, T.; Kamthunzi, P.; Nkomo, R.; Tembo, T.; Tegha, G.; Chawinga, C.; Banda, T.; Khan, S.; Mwambakulu, S.; Mzembe, E.; Sacarlal, J.; Aide, P.; Madrid, L.; Mandjate, S.; Aponte, J. J.; Bulo, H.; Massora, S.; Varela, E.; Macete, E.; Alonso, P.; Lusingu, J.; Gesase, S.; Malabeja, A.; Abdul, O.; Mahende, C.; Liheluka, E.; Lemnge, M.; Theander, T. G.; Drakeley, C.; Mbwana, J.; Olomi, R.; Mmbando, B.; Abdulla, S.; Salim, N.; Mtoro, A.; Ahmed, S.; Hamad, A.; Kafuruki, S.; Minja, R.; Tanner, M.; Maganga, M.; Mdemu, A.; Gwandu, C.; Mohammed, A.; Kaslow, D.; Leboulleux, D.; Savarese, B.; Schellenberg, D.; Partnership, R. S. C. T., Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 2015, 386, 31-45.
48. Eggermont, A. M.; Suciu, S.; Rutkowski, P.; Marsden, J.; Santinami, M.; Corrie, P.; Aamdal, S.; Ascierto, P. A.; Patel, P. M.; Kruit, W. H.; Bastholt, L.; Borgognoni, L.; Bernengo, M. G.; Davidson, N.; Polders, L.; Praet, M.; Spatz, A., Adjuvant ganglioside GM2-KLH/QS-21 vaccination versus observation after resection of primary tumor > 1.5 mm in patients with stage II melanoma: results of the EORTC 18961 randomized phase III trial. J. Clin. Oncol. 2013, 31, 3831-7.
49. Hull, M.; Sadowsky, C.; Arai, H.; Le Prince Leterme, G.; Holstein, A.; Booth, K.; Peng, Y.; Yoshiyama, T.; Suzuki, H.; Ketter, N.; Liu, E.; Ryan, J. M., Long-Term Extensions of Randomized Vaccination Trials of ACC-001 and QS-21 in Mild to Moderate Alzheimer's Disease. Curr. Alzheimer Res. 2017, 14, 696-708.
50. Pasquier, F.; Sadowsky, C.; Holstein, A.; Leterme Gle, P.; Peng, Y.; Jackson, N.; Fox, N. C.; Ketter, N.; Liu, E.; Ryan, J. M.; Team, A. C. C. S., Two Phase 2 Multiple Ascending-Dose Studies of Vanutide Cridificar (ACC-001) and QS-21 Adjuvant in Mild-to-Moderate Alzheimer's Disease. J. Alzheimers Dis. 2016, 51, 1131-43.
51. Gillard, P.; Yang, P. C.; Danilovits, M.; Su, W. J.; Cheng, S. L.; Pehme, L.; Bollaerts, A.; Jongert, E.; Moris, P.; Ofori-Anyinam, O.; Demoitie, M. A.; Castro, M., Safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in adults with tuberculosis: A phase II randomised study. Tuberculosis (Edinburgh, Scotland) 2016, 100, 118-127.
52. Cyster, J. G.; Dang, E. V.; Reboldi, A.; Yi, T., 25-Hydroxycholesterols in innate and adaptive immunity. Nat. Rev. Immunol. 2014, 14, 731-43.
53. Liu, C. L.; Yang, X. V.; Wu, J. J.; Kuei, C.; Mani, N. S.; Zhang, L.; Yu, J. X.; Sutton, S. W.; Qin, N.; Banie, H.; Karlsson, L.; Sun, S. Q.; Lovenberg, T. W., Oxysterols direct B-cell migration through EBI2. Nature 2011, 475, 519-U121.
54. Hannedouche, S.; Zhang, J.; Yi, T.; Shen, W.; Nguyen, D.; Pereira, J. P.; Guerini, D.; Baumgarten, B. U.; Roggo, S.; Wen, B.; Knochenmuss, R.; Noel, S.; Gessier, F.; Kelly, L. M.; Vanek, M.; Laurent, S.; Preuss, I.; Miault, C.; Christen, I.; Karuna, R.; Li, W.; Koo, D. I.; Suply, T.; Schmedt, C.; Peters, E. C.; Falchetto, R.; Katopodis, A.; Spanka, C.; Roy, M. O.; Detheux, M.; Chen, Y. A.; Schultz, P. G.; Cho, C. Y.; Seuwen, K.; Cyster, J. G.; Sailer, A. W., Oxysterols direct immune cell migration via EBI2. Nature 2011, 475, 524-7.
55. Benned-Jensen, T.; Norn, C.; Laurent, S.; Madsen, C. M.; Larsen, H. M.; Arfelt, K. N.; Wolf, R. M.; Frimurer, T.; Sailer, A. W.; Rosenkilde, M. M., Molecular characterization of oxysterol binding to the Epstein-Barr virus-induced gene 2 (GPR183). J. Biol. Chem. 2012, 287, 35470-83.
56. Detienne, S.; Welsby, I.; Collignon, C.; Wouters, S.; Coccia, M.; Delhaye, S.; Van Maele, L.; Thomas, S.; Swertvaegher, M.; Detavernier, A.; Elouahabi, A.; Goriely, S.; Didierlaurent, A. M., Central Role of CD169(+) Lymph Node Resident Macrophages in the Adjuvanticity of the QS-21 Component of AS01. Sci. Rep. 2016, 6, 39475.
57. Marciani, D. J., Is fucose the answer to the immunomodulatory paradox of Quillaja saponins? Int. Immunopharmacol. 2015, 29, 908-913.
58. Mitra, S.; Dungan, S. R., Micellar properties of quillaja saponin. 2. Effect of solubilized cholesterol on solution properties. Colloid Surface B 2000, 17, 117-133.
59. Gogelein, H.; Huby, A., Interaction of saponin and digitonin with black lipid membranes and lipid monolayers. Biochim. Biophys. Acta 1984, 773, 32-8.
60. Gilabert-Oriol, R.; Mergel, K.; Thakur, M.; von Mallinckrodt, B.; Melzig, M. F.; Fuchs, H.; Weng, A., Real-time analysis of membrane permeabilizing effects of oleanane saponins. Bioorg. Med. Chem. 2013, 21, 2387-2395.
61. Stewart, M. P.; Langer, R.; Jensen, K. F., Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem. Rev. 2018, 118, 7409-7531.
62. Jacob, M. C.; Favre, M.; Bensa, J. C., Membrane cell permeabilization with saponin and multiparametric analysis by flow cytometry. Cytometry 1991, 12, 550-8.
63. Bougneres, L.; Helft, J.; Tiwari, S.; Vargas, P.; Chang, B. H.; Chan, L.; Campisi, L.; Lauvau, G.; Hugues, S.; Kumar, P.; Kamphorst, A. O.; Dumenil, A. M.; Nussenzweig, M.; MacMicking, J. D.; Amigorena, S.; Guermonprez, P., A role for lipid bodies in the cross-presentation of phagocytosed antigens by MHC class I in dendritic cells. Immunity 2009, 31, 232-44.
64. den Brok, M. H.; Bull, C.; Wassink, M.; de Graaf, A. M.; Wagenaars, J. A.; Minderman, M.; Thakur, M.; Amigorena, S.; Rijke, E. O.; Schrier, C. C.; Adema, G. J., Saponin-based adjuvants induce cross-presentation in dendritic cells by intracellular lipid body formation. Nat. Commun. 2016, 7, 13324.
65. Hall, S. R.; Rhodes, J., Schiff base-mediated co-stimulation primes the T-cell-receptor-dependent calcium signalling pathway in CD4 T cells. Immunology 2001, 104, 50-7.
66. Rhodes, J., Evidence for an intercellular covalent reaction essential in antigen-specific T cell activation. J. Immunol. 1989, 143, 1482-9.
67. San Martin, R., Sustainable Production of Quillaja Saponaria Mol. Saponins. In Saponins in Food, Feedstuffs and Medicinal Plants, Oleszek, W.; Marston, A., Eds. Springer Netherlands: Dordrecht, 2000; pp 271-279.
68. Cleland, J. L.; Kensil, C. R.; Lim, A.; Jacobsen, N. E.; Basa, L.; Spellman, M.; Wheeler, D. A.; Wu, J. Y.; Powell, M. F., Isomerization and formulation stability of the vaccine adjuvant QS-21. J. Pharm. Sci. 1996, 85, 22-8.
69. Marciani, D. J.; Press, J. B.; Reynolds, R. C.; Pathak, A. K.; Pathak, V.; Gundy, L. E.; Farmer, J. T.; Koratich, M. S.; May, R. D., Development of semisynthetic triterpenoid saponin derivatives with immune stimulating activity. Vaccine 2000, 18, 3141-51.
70. Wang, P.; Kim, Y. J.; Navarro-Villalobos, M.; Rohde, B. D.; Gin, D. Y., Synthesis of the potent immunostimulatory adjuvant QS-21A. J. Am. Chem. Soc. 2005, 127, 3256-7.
71. Kim, Y. J.; Wang, P.; Navarro-Villalobos, M.; Rohde, B. D.; Derryberry, J.; Gin, D. Y., Synthetic studies of complex immunostimulants from Quillaja saponaria: synthesis of the potent clinical immunoadjuvant QS-21Aapi. J. Am. Chem. Soc. 2006, 128, 11906-15.
72. Deng, K.; Adams, M. M.; Gin, D. Y., Synthesis and structure verification of the vaccine adjuvant QS-7-Api. Synthetic access to homogeneous Quillaja saponaria immunostimulants. J. Am. Chem. Soc. 2008, 130, 5860-1.
73. Deng, K.; Adams, M. M.; Damani, P.; Livingston, P. O.; Ragupathi, G.; Gin, D. Y., Synthesis of QS-21-xylose: establishment of the immunopotentiating activity of synthetic QS-21 adjuvant with a melanoma vaccine. Angew. Chem. Int. Ed. Engl. 2008, 47, 6395-8.
74. Dante J. Marciani a, Robert C. Reynolds b, Ashish K. Pathak b,; Kyra Finley-Woodmana, R. D. M., Fractionation, structural studies, and immunological characterization of the semi-synthetic Quillaja saponins derivative GPI-0100. Vaccine 2003, 21, 3961–3971.
75. Marciani, D. J. Triterpene saponin analogs having adjuvant and immunostimulatory activity. U.S. Patent 5,977,081, Nov. 2, 1999.
76. Patil, H. P.; Herrera Rodriguez, J.; de Vries-Idema, J.; Meijerhof, T.; Frijlink, H. W.; Hinrichs, W. L. J.; Huckriede, A., Adjuvantation of Pulmonary-Administered Influenza Vaccine with GPI-0100 Primarily Stimulates Antibody Production and Memory B Cell Proliferation. Vaccines (Basel) 2017, 5, 19.
77. Liu, H.; de Vries-Idema, J.; Ter Veer, W.; Wilschut, J.; Huckriede, A., Influenza virosomes supplemented with GPI-0100 adjuvant: a potent vaccine formulation for antigen dose sparing. Med. Microbiol. Immunol. 2014, 203, 47-55.
78. Amato, R. J.; Shetty, A.; Lu, Y.; Ellis, P. R.; Mohlere, V.; Carnahan, N.; Low, P. S., A Phase I/Ib study of folate immune (EC90 vaccine administered with GPI-0100 adjuvant followed by EC17) with interferon-alpha and interleukin-2 in patients with renal cell carcinoma. J. Immunother. 2014, 37, 237-44.
79. Liu, H.; Bungener, L.; ter Veer, W.; Coller, B. A.; Wilschut, J.; Huckriede, A., Preclinical evaluation of the saponin derivative GPI-0100 as an immunostimulating and dose-sparing adjuvant for pandemic influenza vaccines. Vaccine 2011, 29, 2037-43.
80. Slovin, S. F.; Ragupathi, G.; Fernandez, C.; Jefferson, M. P.; Diani, M.; Wilton, A. S.; Powell, S.; Spassova, M.; Reis, C.; Clausen, H.; Danishefsky, S.; Livingston, P.; Scher, H. I., A bivalent conjugate vaccine in the treatment of biochemically relapsed prostate cancer: a study of glycosylated MUC-2-KLH and Globo H-KLH conjugate vaccines given with the new semi-synthetic saponin immunological adjuvant GPI-0100 OR QS-21. Vaccine 2005, 23, 3114-22.
81. Soltysik, S.; Wu, J. Y.; Recchia, J.; Wheeler, D. A.; Newman, M. J.; Coughlin, R. T.; Kensil, C. R., Structure/function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine 1995, 13, 1403-10.
82. Liu, G.; Anderson, C.; Scaltreto, H.; Barbon, J.; Kensil, C. R., QS-21 structure/function studies: effect of acylation on adjuvant activity. Vaccine 2002, 20, 2808-15.
83. Adams, M. M.; Damani, P.; Perl, N. R.; Won, A.; Hong, F.; Livingston, P. O.; Ragupathi, G.; Gin, D. Y., Design and synthesis of potent Quillaja saponin vaccine adjuvants. J. Am. Chem. Soc. 2010, 132, 1939-45.
84. Gin, D.; Adams, M.; Deng, K.; Perl, N.; Won, A.; Livingston, P.; Ragupathi, G. Triterpen saponins, methods of synthesis, and uses thereof. U. S. Patent 8,283,456 B2, Oct. 9, 2012.
85. Chea, E. K.; Fernandez-Tejada, A.; Damani, P.; Adams, M. M.; Gardner, J. R.; Livingston, P. O.; Ragupathi, G.; Gin, D. Y., Synthesis and preclinical evaluation of QS-21 variants leading to simplified vaccine adjuvants and mechanistic probes. J. Am. Chem. Soc. 2012, 134, 13448-57.
86. Rhodes, J.; Chen, H.; Hall, S. R.; Beesley, J. E.; Jenkins, D. C.; Collins, P.; Zheng, B., Therapeutic potentiation of the immune system by costimulatory Schiff-base-forming drugs. Nature 1995, 377, 71-5.
87. Gori, A.; Trabattoni, D.; Bandera, A.; Saresella, M.; Marchetti, G.; Gazzola, L.; Biasin, M.; Rhodes, J.; McDade, H.; Panebianco, R.; Galli, M.; Moroni, M.; Ferrante, P.; Thomas, N.; Franzetti, F.; Bray, D.; Clerici, M., Immunomodulation induced by tucaresol in HIV infection: results of a 16 week pilot Phase I/II trial. Antivir. Ther. 2004, 9, 603-14.
88. Fernandez-Tejada, A.; Chea, E. K.; George, C.; Gardner, J. R.; Livingston, P. O.; Ragupathi, G.; Tan, D. S.; Gin, D. Y., Design, synthesis, and immunologic evaluation of vaccine adjuvant conjugates based on QS-21 and tucaresol. Bioorg. Med. Chem. 2014, 22, 5917-23.
89. Fernandez-Tejada, A.; Chea, E. K.; George, C.; Pillarsetty, N.; Gardner, J. R.; Livingston, P. O.; Ragupathi, G.; Lewis, J. S.; Tan, D. S.; Gin, D. Y., Development of a minimal saponin vaccine adjuvant based on QS-21. Nat. Chem. 2014, 6, 635-43.
90. Michaudel, Q.; Journot, G.; Regueiro-Ren, A.; Goswami, A.; Guo, Z.; Tully, T. P.; Zou, L.; Ramabhadran, R. O.; Houk, K. N.; Baran, P. S., Improving physical properties via C-H oxidation: chemical and enzymatic approaches. Angew. Chem. Int. Ed. Engl. 2014, 53, 12091-6.
91. Walkowicz, W. E.; Fernandez-Tejada, A.; George, C.; Corzana, F.; Jimenez-Barbero, J.; Ragupathi, G.; Tan, D. S.; Gin, D. Y., Quillaja Saponin Variants with Central Glycosidic Linkage Modifications Exhibit Distinct Conformations and Adjuvant Activities. Chem. Sci. 2016, 7, 2371-2380.
92. Pedebos, C.; Pol-Fachin, L.; Pons, R.; Teixeira, C. V.; Verli, H., Atomic model and micelle dynamics of QS-21 saponin. Molecules 2014, 19, 3744-60.
93. Wang, P.; Devalankar, D. A.; Dai, Q.; Zhang, P.; Michalek, S. M., Synthesis and Evaluation of QS-21-Based Immunoadjuvants with a Terminal-Functionalized Side Chain Incorporated in the West Wing Trisaccharide. J. Org. Chem. 2016, 81, 9560-9566.
94. Wang, P.; Dai, Q.; Thogaripally, P.; Zhang, P.; Michalek, S. M., Synthesis of QS-21-based immunoadjuvants. J. Org. Chem. 2013, 78, 11525-34.
95. Fleck, J. D.; Kauffmann, C.; Spilki, F.; Lencina, C. L.; Roehe, P. M.; Gosmann, G., Adjuvant activity of Quillaja brasiliensis saponins on the immune responses to bovine herpesvirus type 1 in mice. Vaccine 2006, 24, 7129-34.
96. Cibulski, S. P.; Rivera-Patron, M.; Mourglia-Ettlin, G.; Casaravilla, C.; Yendo, A. C. A.; Fett-Neto, A. G.; Chabalgoity, J. A.; Moreno, M.; Roehe, P. M.; Silveira, F., Quillaja brasiliensis saponin-based nanoparticulate adjuvants are capable of triggering early immune responses. Sci. Rep. 2018, 8, 13582.
97. Cibulski, S.; Rivera-Patron, M.; Suarez, N.; Pirez, M.; Rossi, S.; Yendo, A. C.; de Costa, F.; Gosmann, G.; Fett-Neto, A.; Roehe, P. M.; Silveira, F., Leaf saponins of Quillaja brasiliensis enhance long-term specific immune responses and promote dose-sparing effect in BVDV experimental vaccines. Vaccine 2018, 36, 55-65.
98. Yendo, A. C.; de Costa, F.; Cibulski, S. P.; Teixeira, T. F.; Colling, L. C.; Mastrogiovanni, M.; Soule, S.; Roehe, P. M.; Gosmann, G.; Ferreira, F. A.; Fett-Neto, A. G., A rabies vaccine adjuvanted with saponins from leaves of the soap tree (Quillaja brasiliensis) induces specific immune responses and protects against lethal challenge. Vaccine 2016, 34, 2305-11.
99. Cibulski, S. P.; Silveira, F.; Mourglia-Ettlin, G.; Teixeira, T. F.; dos Santos, H. F.; Yendo, A. C.; de Costa, F.; Fett-Neto, A. G.; Gosmann, G.; Roehe, P. M., Quillaja brasiliensis saponins induce robust humoral and cellular responses in a bovine viral diarrhea virus vaccine in mice. Comp. Immunol. Microbiol. Infect. Dis. 2016, 45, 1-8.
100. de Costa, F.; Yendo, A. C.; Cibulski, S. P.; Fleck, J. D.; Roehe, P. M.; Spilki, F. R.; Gosmann, G.; Fett-Neto, A. G., Alternative inactivated poliovirus vaccines adjuvanted with Quillaja brasiliensis or Quil-a saponins are equally effective in inducing specific immune responses. PloS one 2014, 9, e105374.
101. Silveira, F.; Cibulski, S. P.; Varela, A. P.; Marques, J. M.; Chabalgoity, A.; de Costa, F.; Yendo, A. C.; Gosmann, G.; Roehe, P. M.; Fernandez, C.; Ferreira, F., Quillaja brasiliensis saponins are less toxic than Quil A and have similar properties when used as an adjuvant for a viral antigen preparation. Vaccine 2011, 29, 9177-82.
102. Wallace, F.; Bennadji, Z.; Ferreira, F.; Olivaro, C., Analysis of an immunoadjuvant saponin fraction from Quillaja brasiliensis leaves by electrospray ionization ion trap multiple-stage mass spectrometry. Phytochem. Lett 2017, 20, 228-233.
103. Nico, D.; Borges, R. M.; Brandao, L. M.; Feijo, D. F.; Gomes, D. C.; Palatnik, M.; Rodrigues, M. M.; da Silva, A. J.; Palatnik-de-Sousa, C. B., The adjuvanticity of Chiococca alba saponins increases with the length and hydrophilicity of their sugar chains. Vaccine 2012, 30, 3169-79.
104. Castro-Diaz, N.; Salaun, B.; Perret, R.; Sierro, S.; Romero, J. F.; Fernandez, J. A.; Rubio-Moraga, A.; Romero, P., Saponins from the Spanish saffron Crocus sativus are efficient adjuvants for protein-based vaccines. Vaccine 2012, 30, 388-97.
105. Rubio-Moraga, A.; Gerwig, G. J.; Castro-Diaz, N.; Jimeno, M. L.; Escribano, J.; Fernandez, J. A.; Kamerling, J. P., Triterpenoid saponins from corms of Crocus sativus: Localization, extraction and characterization. Ind. Crop. Prod. 2011, 34, 1401-1409.
106. Li, X.; Fujio, M.; Imamura, M.; Wu, D.; Vasan, S.; Wong, C. H.; Ho, D. D.; Tsuji, M., Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 13010-5.
107. Mukhopadhyay, B.; Field, R. A., A simple one-pot method for the synthesis of partially protected mono- and disaccharide building blocks using an orthoesterification-benzylation-orthoester rearrangement approach. Carbohydr. Res. 2003, 338, 2149-52.
108. Wadouachi, A.; Kovensky, J., Synthesis of Glycosides of Glucuronic, Galacturonic and Mannuronic Acids: An Overview. Molecules 2011, 16, 3933-3968.
109. Huang, L.; Huang, X., Highly efficient syntheses of hyaluronic acid oligosaccharides. Chem. Eur. J. 2007, 13, 529-40.
110. Cahiez, G.; Chaboche, C.; Jezequel, M., Cu-catalyzed alkylation of Grignard reagents: A new efficient procedure. Tetrahedron 2000, 56, 2733-2737.
111. Cahiez, G.; Marquais, S., Copper-Catalyzed Alkylation of Organomanganese Chloride Reagents1. Synlett 1993, 1993, 45-47.
112. Liao, C. W.; Chen, C. A.; Lee, C. N.; Su, Y. N.; Chang, M. C.; Syu, M. H.; Hsieh, C. Y.; Cheng, W. F., Fusion protein vaccine by domains of bacterial exotoxin linked with a tumor antigen generates potent immunologic responses and antitumor effects. Cancer. Res. 2005, 65, 9089-98.
113. Gerberick, G. F.; Cruse, L. W.; Miller, C. M.; Sikorski, E. E.; Ridder, G. M., Selective modulation of T cell memory markers CD62L and CD44 on murine draining lymph node cells following allergen and irritant treatment. Toxicol. appl. pharmacol. 1997, 146, 1-10.
114. Konishi, N.; Shirahata, T.; Yokoyama, M.; Katsumi, T.; Ito, Y.; Hirata, N.; Nishino, T.; Makino, K.; Sato, N.; Nagai, T.; Kiyohara, H.; Yamada, H.; Kaji, E.; Kobayashi, Y., Synthesis of Bisdesmosidic Oleanolic Acid Saponins via a Glycosylation-Deprotection Sequence under Continuous Microfluidic/Batch Conditions. J. Org. Chem. 2017, 82, 6703-6719.
115. Babouri, R.; Clarion, L.; Rolland, M.; Van der Lee, A.; Kabouche, Z.; Volle, J. N.; Virieux, D.; Pirat, J. L., Synthesis of Oxaphosphinane-Based Pseudodisaccharides. Eur. J. Org. Chem. 2017, 2017, 5357-5369.
116. Coutant, C.; Jacquinet, J. C., 2-Deoxy-2-Trichloroacetamido-D-Glucopyranose Derivatives in Oligosaccharide Synthesis - from Hyaluronic-Acid to Chondroitin 4-Sulfate Trisaccharides. J. Chem. Soc. Perkin. Trans. 1 1995, 1573-1581.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78861-
dc.description.abstract疫苗佐劑為一種免疫調節劑,佐劑結合病原體後能增強免疫系統對病原體的反應,不僅能提高疫苗治療效果亦能減少接種次數。近年來,一種自皂皮樹 (Quillaja saponaria) 樹皮萃取物中得到的皂苷佐劑QS-21被核准用於帶狀皰疹疫苗中,於臨床試驗中QS-21亦被廣泛應用於如癌症、瘧疾和HIV等疫苗。儘管QS-21作為最有潛力的皂苷疫苗佐劑之一,其結構的不穩定性以及潛在的溶血性毒性,於疫苗使用上仍有隱憂,因此為了提供更安全與有效的的疫苗佐劑,本論文以化學合成方式研究皂苷佐劑的結構與活性關聯。
本論文合成了簡化的皂苷核心結構,透過硼試劑B(PhF5)3與適當的保護基修飾,我們成功地將葡萄醣醛酸 (D-glucuronic acid) 鍵結於皂皮酸 (quillaic acid ) 的3號位置;對於皂皮酸28號位置的寡醣鍊的結構活性探討,我們連結了直鍊型三醣以及分支型四醣的結構,三醣結構中的岩藻醣 (D-fucose) 更以阿拉伯醣 (L-arabinose) 取代,以探討其cis-diol對於佐劑活性的影響;此外,刺囊酸 (echinocystic acid) 亦被應用於三萜類骨幹;於碳鍊端的修飾,我們採用了長度不等的脂肪鍊,並以熱安定的醯胺鍵連結。
於小鼠的免疫刺激實驗中,我們使用人類乳突病毒的融合蛋白PEK做為抗原,結合不同碳鍊修飾的皂苷佐劑衍生物做皮下施打,結果發現化合物122 之免疫刺激活性明顯優於脂肪鍊的皂苷衍生物包括GPI-0100,此實驗結果證實皂苷佐劑122能介導強效的細胞免疫反應,適合用於針對細胞內病原體的疫苗製劑。根據此結果,該碳鍊進一步被應用於其餘皂苷衍生物,以測試寡醣鍊變異對於佐劑活性的影響。最後,我們確立了新穎皂苷佐劑的全合成方法,針對碳鍊以及醣鍊做結構修飾,初步免疫實驗結果顯示,這些皂苷佐劑可能成為安全性高且具有細胞免疫偏向之佐劑,可應用於治療性疫苗上。
zh_TW
dc.description.abstractVaccine adjuvant is an immune modulator which provides improved protection and safety in vaccination than antigen been used along. Recently, a saponin adjuvant QS-21 has been evidenced for its ability to develop adaptive immune responses for herpes zoster prevention; however, the wider use of saponin QS-21 may be hampered by its dose-limiting toxicity and structural instability.
To address these inconveniences, we synthesized a simplified saponin core structure which contained truncated saccharide unities. The most challenging 3-O-glucuronide was constructed by the catalysis of B(PhF5)3. 28-O linked moieties were diversified to trisaccharide and tetrasaccharide. D-Fucose was replaced by L-Arabinose to probe the potential functions of cis-diol. Echinocystic acid was also applied as quillaic acid triterpene surrogate. In addition, lipophilic alkyl chains were conjugated via a thermal stable amide bond.
In a BALB/c mice immunization studies with an antigen PEK, a fusion protein of HPV, we found saponins 122 induced the most promising T-cell mediated cellular immunity. Based on these results, a series of analogues were conjugated at glucuronide to evaluate the structure and activity relationship of these analogues. In conclusion, we provide an accessible and concise approach toward synthesis of saponin adjuvants, and these saponins might become a safer and cellular immunity biased adjuvants for therapeutic vaccines.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:24:48Z (GMT). No. of bitstreams: 1
ntu-108-D03423102-1.pdf: 18926239 bytes, checksum: af69afbca5883168059db24763d19390 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
List of figures viii
List of tables ix
List of schemes x
Abbreviations xi
Structure of protecting groups xiii
1. Introduction 1
1.1. Vaccine adjuvant 1
1.2. Approved vaccine adjuvants 2
1.3. Humoral and cellular immunity 3
1.4. Underdeveloped vaccine adjuvants 5
2. Quillaja saponins 6
2.1. QS-21 and its purified analogues 7
2.2. QS-21 adjuvanted vaccine 9
2.3. Plausible mechanism 10
2.3.1. Surface protein EBI-2 10
2.3.2. Surface receptor DC-SIGN 11
2.3.3. Enhance antigen uptake 11
2.3.4. Lipid body formation 12
2.3.5. Intercellular Schiff-base formation 12
2.3.6. Summary of QS-21 plausible mechanism 13
3. Studies of QS-21 synthesis and SAR 14
3.1. Synthesis of QS-21 and QS-7 14
3.2. GPI-0100 15
3.3. Function of glucuronic acid and aldehyde 16
3.4. Function of Acylation 17
3.4.1. Deacylated Q. saponins 17
3.4.2. Amide bond and linker modifications of QS-21 18
3.5. Function of sugar moieties and aglycon scaffold 19
3.5.1. Truncation of 28-O-linkaged tetrasaccharide 19
3.5.2. Aryl carbon chain and truncation of glucuronide 20
3.6. Aglycon surrogates 21
3.7. Modification of C-17 substituted ester-linkage 22
3.8. Synthesis of QS-21 analogues in GPI-0100 23
3.9. Other saponins with adjuvant activity 24
3.9.1. Quillaja brasiliensis extract 24
3.9.2. Saponins from Chiococca alba 24
3.9.3 Saponins form Spanish saffron Crocus sativus 25
3.10. SAR summary of saponin-based adjuvants 26
4. Motivation 28
5. Result and discussion 29
5.1. Our targets 29
5.2. Retrosynthetic analysis 30
5.3. Oligosaccharide part synthesis 32
5.3.1. Syntheses of building blocks 32
5.3.2. Glycosylation 33
5.3.3. Deprotection of Fmoc. 35
5.3.4. Synthesis of tetrasaccharide 36
5.3.5. Modified synthetic approach to tetrasaccharide 37
5.3.6. Synthesis of trisaccharide donor 38
5.3.7. Modified synthetic approach to trisaccharides 39
5.4. Synthesis of glucuronide 40
5.4.1. Building blocks 41
5.4.2. Koenigs-Knorr glycosylation 42
5.4.3. Schmidt’s glycosylation 43
5.4.4. Glucuronate modification 45
5.4.5. Glucuronidation with pivaloylated donor 45
5.4.6. Glucuronidation with common Lewis acids 47
5.4.7. Glucuronidation of echinocystic ester 48
5.4.8. Glucuronide modification 49
5.5. Conjugation of glucuronide and oligosaccharide parts 50
5.5.1. Conjugation of saponin variants 51
5.5.2. Conjugation of tetrasaccharide and quillaic ester 51
5.6. Terminal aryl-substituted long chain amines synthesis 52
5.7. Global deprotection and amide formation 53
5.8. Immunological evaluation of saponins 115–122 56
5.8.1. E7 specific T-cell activation 56
5.8.2. T-cell activation 57
5.8.3. Memory T-cell stimulation 61
5.8.4. Antibody production assay 63
5.9. Further exploration 64
6. Conclusion 65
7. Experimental section 66
7.1. General procedures 66
7.2. Instrument 66
7.3. Immunological experiments 67
7.3.1. Sample preparation 67
7.3.2. Animal and Vaccinations 67
7.3.3. Splenocytes sample prepare and Flow Cytometry Analysis 67
7.3.4. Flow Cytometric Analysis (Memory T cell) 68
7.3.5. ELISpot 69
7.3.6. ELISA 70
7.4. Synthetic procedure 71
8. References 160
9. Appendices 171
-
dc.language.isoen-
dc.title皂苷疫苗佐劑之合成研究zh_TW
dc.titleSynthesis of Saponin-Based Vaccine Adjuvantsen
dc.typeThesis-
dc.date.schoolyear107-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee程正禹;李水盛;陳基旺;忻凌偉;蒙國光zh_TW
dc.contributor.oralexamcommitteeChen-Yu Cheng;Shoei-Sheng Lee;Ji-Wang Chern;Ling-Wei Hsin;Kwok-Kong Mongen
dc.subject.keyword疫苗佐劑,皂?,QS-21,醣?化反應,細胞免疫活性,zh_TW
dc.subject.keywordvaccine adjuvant,saponins,QS-21,glycosylation,cellular immunity,en
dc.relation.page332-
dc.identifier.doi10.6342/NTU201900035-
dc.rights.note未授權-
dc.date.accepted2019-01-09-
dc.contributor.author-college醫學院-
dc.contributor.author-dept藥學研究所-
dc.date.embargo-lift2024-03-11-
Appears in Collections:藥學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
18.48 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved