Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78803
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳燕惠(Yen-Hui Chen)
dc.contributor.authorHui-Hsin Huangen
dc.contributor.author黃蕙新zh_TW
dc.date.accessioned2021-07-11T15:20:29Z-
dc.date.available2024-08-28
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-03-04
dc.identifier.citation1. Hong JS, Tian J, Wu LH. The influence of chemotherapy-induced neurotoxicity on psychological distress and sleep disturbance in cancer patients. Current Oncology 2014;21:174-80.
2. Majithia N, Loprinzi CL, Smith TJ. New Practical Approaches to Chemotherapy-Induced Neuropathic Pain: Prevention, Assessment, and Treatment. Oncology 2016;30:1020-9.
3. Park SB, Goldstein D, Krishnan AV, et al. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA: A Cancer Journal for Clinicians 2013;63:419-37.
4. Balayssac D, Ferrier J, Descoeur J, et al. Chemotherapy-induced peripheral neuropathies: from clinical relevance to preclinical evidence. Expert Opinion on Drug Safety 2011;10:407-17.
5. Kerckhove N, Collin A, Conde S, Chaleteix C, Pezet D, Balayssac D. Long-Term Effects, Pathophysiological Mechanisms, and Risk Factors of Chemotherapy-Induced Peripheral Neuropathies: A Comprehensive Literature Review. Frontiers in Pharmacology 2017;8:86.
6. Tofthagen C. Surviving chemotherapy for colon cancer and living with the consequences. Journal Of Palliative Medicine 2010;13:1389-91.
7. Cersosimo RJ. Oxaliplatin-associated neuropathy: a review. The Annals Of Pharmacotherapy 2005;39:128-35.
8. Argyriou AA, Cavaletti G, Antonacopoulou A, et al. Voltage-gated sodium channel polymorphisms play a pivotal role in the development of oxaliplatin-induced peripheral neurotoxicity: results from a prospective multicenter study. Cancer 2013;119:3570-7.
9. Attal N, Bouhassira D, Gautron M, et al. Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity: a prospective quantified sensory assessment study. Pain 2009;144:245-52.
10. Alejandro LM, Behrendt CE, Chen K, Openshaw H, Shibata S. Predicting acute and persistent neuropathy associated with oxaliplatin. American Journal Of Clinical Oncology 2013;36:331-7.
11. Starobova H, Vetter I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Frontiers in Molecular Neuroscience 2017;10:174.
12. Janes K, Wahlman C, Little JW, et al. Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain, Behavior, and Immunity 2015;44:91-9.
13. Carozzi VA, Canta A, Chiorazzi A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neuroscience Letters 2015;596:90-107.
14. Hardman CH, Broadhurst RW, Raine AR, Grasser KD, Thomas JO, Laue ED. Structure of the A-domain of HMG1 and its interaction with DNA as studied by heteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry 1995;34:16596-607.
15. Diener KR, Al-Dasooqi N, Lousberg EL, Hayball JD. The multifunctional alarmin HMGB1 with roles in the pathophysiology of sepsis and cancer. Immunology and Cell Biology 2013;91:443-50.
16. Musumeci D, Roviello GN, Montesarchio D. An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther 2014;141:347-57.
17. Goodwin GH, Johns EW. Isolation and characterisation of two calf-thymus chromatin non-histone proteins with high contents of acidic and basic amino acids. European Journal Of Biochemistry 1973;40:215-9.
18. Venereau E, De Leo F, Mezzapelle R, Careccia G, Musco G, Bianchi ME. HMGB1 as biomarker and drug target. Pharmacological Research 2016;111:534-44.
19. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002;418:191-5.
20. Dumitriu IE, Bianchi ME, Bacci M, Manfredi AA, Rovere-Querini P. The secretion of HMGB1 is required for the migration of maturing dendritic cells. Journal Of Leukocyte Biology 2007;81:84-91.
21. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature reviews Immunology 2005;5:331-42.
22. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunological Reviews 2012;249:158-75.
23. Maeda T, Ozaki M, Kobayashi Y, Kiguchi N, Kishioka S. HMGB1 as a potential therapeutic target for neuropathic pain. Journal Of Pharmacological Sciences 2013;123:301-5.
24. Shibasaki M, Sasaki M, Miura M, et al. Induction of high mobility group box-1 in dorsal root ganglion contributes to pain hypersensitivity after peripheral nerve injury. Pain 2010;149:514-21.
25. Nakamura Y, Morioka N, Abe H, et al. Neuropathic pain in rats with a partial sciatic nerve ligation is alleviated by intravenous injection of monoclonal antibody to high mobility group box-1. PloS one 2013;8:e73640.
26. Zhang FF, Morioka N, Harano S, et al. Perineural expression of high-mobility group box-1 contributes to long-lasting mechanical hypersensitivity via matrix metalloproteinase-9 upregulation in mice with painful peripheral neuropathy. Journal Of Neurochemistry 2015.
27. Tanaka J, Seki Y, Ishikura H, et al. Recombinant human soluble thrombomodulin prevents peripheral HMGB1-dependent hyperalgesia in rats. British Journal Of Pharmacology 2013;170:1233-41.
28. Otoshi K, Kikuchi S, Kato K, Sekiguchi M, Konno S. Anti-HMGB1 neutralization antibody improves pain-related behavior induced by application of autologous nucleus pulposus onto nerve roots in rats. Spine 2011;36:E692-8.
29. Zhao X, Shen L, Xu L, Wang Z, Ma C, Huang Y. Inhibition of CaMKIV relieves streptozotocin-induced diabetic neuropathic pain through regulation of HMGB1. BMC Anesthesiology 2016;16:27.
30. Wang X, Feng C, Qiao Y, Zhao X. Sigma 1 receptor mediated HMGB1 expression in spinal cord is involved in the development of diabetic neuropathic pain. Neuroscience Letters 2018;668:164-8.
31. Nishida T, Tsubota M, Kawaishi Y, et al. Involvement of high mobility group box 1 in the development and maintenance of chemotherapy-induced peripheral neuropathy in rats. Toxicology 2016;365:48-58.
32. Dajon M, Iribarren K, Cremer I. Toll-like receptor stimulation in cancer: A pro- and anti-tumor double-edged sword. Immunobiology 2017;222:89-100.
33. Yang H, Hreggvidsdottir HS, Palmblad K, et al. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proceedings of the National Academy of Sciences of the United States of America 2010;107:11942-7.
34. Tanga FY, Nutile-McMenemy N, DeLeo JA. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proceedings of the National Academy of Sciences of the United States of America 2005;102:5856-61.
35. Chen T, Li H, Yin Y, Zhang Y, Liu Z, Liu H. Interactions of Notch1 and TLR4 signaling pathways in DRG neurons of in vivo and in vitro models of diabetic neuropathy. Scientific Reports 2017;7:14923.
36. Wu Z, Wang S, Wu I, Mata M, Fink DJ. Activation of TLR-4 to produce tumour necrosis factor-alpha in neuropathic pain caused by paclitaxel. European Journal Of Pain 2015;19:889-98.
37. Jurga AM, Rojewska E, Piotrowska A, et al. Blockade of Toll-Like Receptors (TLR2, TLR4) Attenuates Pain and Potentiates Buprenorphine Analgesia in a Rat Neuropathic Pain Model. Neural Plasticity 2016;2016:5238730.
38. Liu Y, Zhang Y, Pan R, et al. Lentiviralmediated inducible silencing of TLR4 attenuates neuropathic pain in a rat model of chronic constriction injury. Molecular Medicine Reports 2018;18:5545-51.
39. Yan JE, Yuan W, Lou X, Zhu T. Streptozotocin-induced diabetic hyperalgesia in rats is associated with upregulation of Toll-like receptor 4 expression. Neuroscience Letters 2012;526:54-8.
40. Li Y, Zhang H, Zhang H, Kosturakis AK, Jawad AB, Dougherty PM. Toll-like receptor 4 signaling contributes to Paclitaxel-induced peripheral neuropathy. The Journal of Pain 2014;15:712-25.
41. Li J, Csakai A, Jin J, Zhang F, Yin H. Therapeutic Developments Targeting Toll-like Receptor-4-Mediated Neuroinflammation. ChemMedChem 2016;11:154-65.
42. Mollica L, De Marchis F, Spitaleri A, et al. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chemistry & Biology 2007;14:431-41.
43. Bangert A, Andrassy M, Muller AM, et al. Critical role of RAGE and HMGB1 in inflammatory heart disease. Proceedings of the National Academy of Sciences of the United States of America 2016;113:E155-64.
44. Su S, Wu J, Gong T, et al. Inhibition of High Mobility Group Box 1-Toll-Like Receptor-4 Signaling by Glycyrrhizin Contributes to the Attenuation of Cold Ischemic Injury of Liver in a Rat Model. Transplantation Proceedings 2016;48:191-8.
45. Tang D, Kang R, Cheh CW, et al. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 2010;29:5299-310.
46. Choi HW, Tian M, Song F, et al. Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses. Molecular Medicine 2015;21:526-35.
47. Stubblefield MD, Burstein HJ, Burton AW, et al. NCCN task force report: management of neuropathy in cancer. Journal of the National Comprehensive Cancer Network 2009;7 Suppl 5:S1-S26; quiz S7-8.
48. Piccolo J, Kolesar JM. Prevention and treatment of chemotherapy-induced peripheral neuropathy. American Journal of Health-System Pharmacy 2014;71:19-25.
49. Pachman DR, Barton DL, Watson JC, Loprinzi CL. Chemotherapy-induced peripheral neuropathy: prevention and treatment. Clinical Pharmacology and Therapeutics 2011;90:377-87.
50. Smith EM, Pang H, Cirrincione C, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA 2013;309:1359-67.
51. Bellingham GA, Peng PW. Duloxetine: a review of its pharmacology and use in chronic pain management. Regional Anesthesia and Pain Medicine 2010;35:294-303.
52. Hirayama Y, Ishitani K, Sato Y, et al. Effect of duloxetine in Japanese patients with chemotherapy-induced peripheral neuropathy: a pilot randomized trial. International Journal of Clinical Oncology 2015;20:866-71.
53. Zhou DM, Zhuang Y, Chen WJ, Li W, Miao B. Effects of Duloxetine on the Toll-Like Receptor 4 Signaling Pathway in Spinal Dorsal Horn in a Rat Model of Diabetic Neuropathic Pain. Pain Medicine 2018;19:580-8.
54. Song Y, Jun JH, Shin EJ, Kwak YL, Shin JS, Shim JK. Effect of pregabalin administration upon reperfusion in a rat model of hyperglycemic stroke: Mechanistic insights associated with high-mobility group box 1. PloS one 2017;12:e0171147.
55. Huan CC, Wang HX, Sheng XX, Wang R, Wang X, Mao X. Glycyrrhizin inhibits porcine epidemic diarrhea virus infection and attenuates the proinflammatory responses by inhibition of high mobility group box-1 protein. Archives of Virology 2017;162:1467-76.
56. Kong Z-H, Chen X, Hua H-P, Liang L, Liu L-J. The Oral Pretreatment of Glycyrrhizin Prevents Surgery-Induced Cognitive Impairment in Aged Mice by Reducing Neuroinflammation and Alzheimer’s-Related Pathology via HMGB1 Inhibition. Journal of Molecular Neuroscience 2017;63:385-95.
57. Klessig DF. Newly Identified Targets of Aspirin and Its Primary Metabolite, Salicylic Acid. DNA and Cell Biology 2016;35:163-6.
58. Cerletti C, Bonati M, del Maschio A, et al. Plasma levels of salicylate and aspirin in healthy volunteers: relevance to drug interaction on platelet function. Journal of Laboratory and Clinical Medicine 1984;103:869-77.
59. Taylor CP, Angelotti T, Fauman E. Pharmacology and mechanism of action of pregabalin: The calcium channel α2–δ (alpha2–delta) subunit as a target for antiepileptic drug discovery. Epilepsy Research 2007;73:137-50.
60. Colloca L, Ludman T, Bouhassira D, et al. Neuropathic pain. Nature Reviews Disease Primers 2017;3:17002.
61. Antoine DJ, Harris HE, Andersson U, Tracey KJ, Bianchi ME. A systematic nomenclature for the redox states of high mobility group box (HMGB) proteins. Molecular Medicine 2014;20:135-7.
62. Yang H, Wang H, Ju Z, et al. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. The Journal of Experimental Medicine 2015;212:5-14.
63. Agalave NM, Larsson M, Abdelmoaty S, et al. Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain 2014;155:1802-13.
64. Brederson JD, Strakhova M, Mills C, et al. A monoclonal antibody against the receptor for advanced glycation end products attenuates inflammatory and neuropathic pain in the mouse. European Journal of Pain 2016;20:607-14.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78803-
dc.description.abstract化療引起周邊性神經病變(chemotherapy-induced peripheral neuropathy, CIPN)為常見且具有劑量依賴性的副作用,症狀包含麻木、刺痛感,影響患者的生活品質,而需要調整劑量或換藥,進而造成治療效果改變。造成CIPN的明確機轉尚不清楚,其中一部份可能的原因為發炎性細胞激素(inflammatory cytokines)的釋放導致神經發炎。
許多文獻指出高遷移率族蛋白1 (high mobility group box 1 protein, HMGB1)於化療引起神經痛中可能扮演重要的角色,HMGB1為廣泛表現於哺乳類動物細胞的核蛋白,當細胞死亡或受損時便會被動的釋放;在細胞外環境,HMGB1為多功能蛋白質,可誘導發炎前驅細胞激素(proinflammatory cytokines),導致不正常的發炎反應。另外,動物研究顯示類鐸受體(toll-like receptors 4, TLR4)過度表現與神經痛高度相關,而神經細胞上的TLR4為HMGB1的受體。因此本論文欲探討HMGB1/TLR4途徑是否參與化療藥物造成的神經痛。結果顯示臨床上治療大腸癌的化療藥物組合益樂鉑(oxaliplatin)以及fluorouracil(5-FU)會使大腸癌細胞株HCT116與WiDr的HMGB1基因表現上升並釋放HMGB1。含有HMGB1的癌細胞上清液會使神經細胞株SH-SY5Y上的TLR4增加,加入HMGB1抑制劑glycyrrhizin或aspirin可逆轉TLR4的過度表現。利瑞卡(pregabalin)可降低大腸癌細胞HMGB1基因表現與細胞外HMGB1濃度,pregabalin加上含有HMGB1的癌細胞上清液也能減少神經細胞SH-SY5Y上的TLR4。此外,千憂解(duloxetine)為目前唯一於大型臨床試驗證明有效減緩神經痛的藥物,研究結果顯示duloxetine不影響癌細胞外HMGB1的濃度,但能直接作用在神經細胞SH-SY5Y,減少TLR4的表現,且當duloxetine加上含有HMGB1的癌細胞上清液則能大幅降低SH-SY5Y上TLR4的表現,暗示duloxetine治療神經痛的機轉可能有一部份是透過影響HMGB1/TLR4途徑。經由本研究,未來能以此機制為基礎發展出類似藥物以減少病人產生化療引起神經痛的不良反應。
zh_TW
dc.description.abstractChemotherapy-induced peripheral neuropathy(CIPN) is a debilitating adverse effect. It may result from abnormal functioning of peripheral or central nervous system and is characterized by paresthesia, dysesthesia, and deficits in normal sensation, which reduces quality of life and the efficacy of treatment. However, the molecular mechanisms underlying the chemotherapy-induced neurotoxicity and dysfunction are still not entirely understood. Accumulating evidence supports that neuropathic pain is associated with neuroinflammation.
Recent study implicates that HMGB1 is involved in the induction and maintenance of CIPN. HMGB1 is a non-histone DNA-binding protein which is engaged in many physiological activities. Extracellular HMGB1 is known as a pro-inflammatory mediator which plays a pronociceptive role in animal models. Moreover, emerging evidence indicate that toll-like receptor 4 (TLR4) which recognizes HMGB1 is highly expressed and strongly correlated with development of behavioral hypersensitivity in CIPN models. Therefore, we investigated whether oxaliplatin/5-FU treatment affect HMGB1/TLR4 pathway. Real-time PCR confirmed that oxaliplatin/5-FU induced HMGB1 mRNA upregulation in colon cancer cell lines WiDr and HCT116 and extracellular HMGB1 concentration was increased, which subsequently led to TLR4 overexpression in neuroblastoma cell line SH-SY5Y. Glycyrrhizin and aspirin which have been proven to be HMGB1 inhibitors could reverse TLR4 upregulation. Pregabalin which is an optional treatment of neuropathic pain suppressed oxaliplatin/5-FU-induced HMGB1 overexpression and extracellular HMGB1 concentration in a dose-dependent manner. Pregabalin also suppressed HMGB1-induced TLR4 upregulation in SH-SY5Y. Duloxetine, used for treatment of chronic pain, had no effect on HMGB1 release from colon cancer cells whereas duloxetine directly attenuated the expression of TLR4 in SH-SY5Y cells as well as HMGB1-induced TLR4 overexpression, suggesting that the therapeutic mechanism may be in part through HMGB1/TLR4 inhibition. Future studies are warranted for verifying the detailed mechanisms as well as developing therapeutic strategies for prevention of CIPN.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:20:29Z (GMT). No. of bitstreams: 1
ntu-108-R05423016-1.pdf: 1998113 bytes, checksum: 0921679494faf63a47750cdc8856bb9e (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
中文摘要 I
英文摘要 III
目錄 V
圖目錄 VIII
英文名詞與縮寫對照表 IX
第1章 緒論 1
1-1、 化療藥物引起神經痛之不良反應 1
1-2、 High mobility group box 1(HMGB1)簡介 2
1-2-1、 HMGB1的結構 2
1-2-2、 HMGB1的功能 2
1-2-3、 HMGB1與神經痛之關聯性 3
1-2-4、 HMGB1的受體 4
1-2-4-1. Toll Like Receptors (TLRs) 4
1-2-4-2. TLR4與神經痛之關聯性 4
1-3、 HMGB1抑制劑 5
1-4、 化療引起神經痛之治療 6
1-5、 假說與研究目的 6
第2章 材料與研究方法 8
2-1、 實驗儀器 8
2-2、 實驗材料 9
2-2-1、細胞、實驗藥品與試劑 9
2-2-2、核酸引子序列 10
2-3、 實驗方法 11
2-3-1、培養液與緩衝液之製備 11
2-3-2、細胞株培養 11
2-3-3、細胞存活率分析 (MTT assay) 12
2-3-4、即時定量聚合酶連鎖反應法(Real-time quantitative polymerase chain reaction, Real-time PCR) 12
2-3-5、酵素連結免疫分析法(Enzyme-linked immunosorbent assay, ELISA) 13
2-3-6、細胞表面受體測定-流式細胞儀(Flow cytometry analysis) 15
2-3-7、統計檢定 15
第3章 實驗結果 16
3-1. Oxaliplatin與5-FU於大腸癌細胞之存活率評估 16
3-2. Oxaliplatin/5-FU可使大腸癌細胞HMGB1表現量增加 16
3-3. Oxaliplatin/5-FU可使大腸癌細胞HMGB1蛋白質釋放量增加 16
3-4. Oxaliplatin/5-FU對於神經細胞SH-SY5Y上TLR4的影響 17
3-5. 化療引起神經痛的HMGB1/TLR4途徑受到HMGB1抑制劑的影響 17
3-6. Pregabalin對於HMGB1/TLR4途徑之影響 18
3-7. Duloxetine可抑制神經細胞SH-SY5Y上TLR4的表現 19
第4章 討論 40
第5章 結論與未來展望 44
參考文獻 46
dc.language.isozh-TW
dc.subject益樂鉑zh_TW
dc.subject千憂解zh_TW
dc.subject化療引起周邊性神經病變zh_TW
dc.subject利瑞卡zh_TW
dc.subject高遷移率族蛋白1zh_TW
dc.subject類鐸受體zh_TW
dc.subjectpregabalinen
dc.subjectChemotherapy-induced peripheral neuropathyen
dc.subjectduloxetineen
dc.subjectHMGB1en
dc.subjectoxaliplatinen
dc.subjectTLR4en
dc.titleHMGB1在化療藥物引起神經痛之角色zh_TW
dc.titleThe role of HMGB1 in chemotherapy-induced neuropathic painen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許麗卿,孔繁璐
dc.subject.keyword千憂解,化療引起周邊性神經病變,利瑞卡,高遷移率族蛋白1,益樂鉑,類鐸受體,zh_TW
dc.subject.keywordChemotherapy-induced peripheral neuropathy,duloxetine,HMGB1,oxaliplatin,pregabalin,TLR4,en
dc.relation.page53
dc.identifier.doi10.6342/NTU201900335
dc.rights.note有償授權
dc.date.accepted2019-03-05
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
dc.date.embargo-lift2024-08-28-
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-108-R05423016-1.pdf
  未授權公開取用
1.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved