請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78776完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁俞文(Yu-wen Ting) | |
| dc.contributor.author | Fu-Min Sun | en |
| dc.contributor.author | 孫芙敏 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:18:32Z | - |
| dc.date.available | 2022-06-30 | |
| dc.date.copyright | 2019-07-31 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-15 | |
| dc.identifier.citation | 1. 李凱琳. 以幾丁聚醣或混合幾丁聚醣及卵磷脂為乳化劑製備南瓜籽油奈米乳滴乳化液及其性質之研究. 2017.
2. 曹恒光, 連大成, 淺談微乳液. 2001, 23 (4), 488-493. 3. 蔡義弘, 乳化原理. 1979, 2, 13-19. 4. Aboofazeli, R., Nanometric-scaled emulsions (nanoemulsions). Iranian journal of pharmaceutical research: IJPR 2010, 9 (4), 325. 5. Acosta, E., Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current opinion in colloid & interface science 2009, 14 (1), 3-15. 6. Ahmet, I., Spangler, E., Shukitt-Hale, B., et al., Blueberry-enriched diet protects rat heart from ischemic damage. PLoS One 2009, 4 (6), e5954. 7. Alosi, J. A., McDonald, D. E., Schneider, J. S., et al., Pterostilbene inhibits breast cancer in vitro through mitochondrial depolarization and induction of caspase-dependent Apoptosis1. Journal of Surgical Research 2010, 161 (2), 195-201. 8. Anton, N., Benoit, J.-P., Saulnier, P., Design and production of nanoparticles formulated from nano-emulsion templates—a review. Journal of Controlled Release 2008, 128 (3), 185-199. 9. Aulton, M. E., Pharmaceutics: the science of dosage form design. Churchill Livingstone: 2000. 10. Azeem, A., Rizwan, M., Ahmad, F. J., et al., Nanoemulsion components screening and selection: a technical note. Aaps Pharmscitech 2009, 10 (1), 69-76. 11. Baillie, A., Florence, A., Hume, L., et al., The preparation and properties of niosomes—non‐ionic surfactant vesicles. Journal of pharmacy and pharmacology 1985, 37 (12), 863-868. 12. Bainbridge, W. S., Societal implications of nanoscience and nanotechnology. Springer: 2001. 13. Bhanushali, R., Gatne, M., Gaikwad, R., et al., Nanoemulsion based Intranasal Delivery of Antimigraine Drugs for Nose to Brain Targeting. Indian journal of pharmaceutical sciences 2009, 71 (6), 707-709. 14. Bhattacharjee, S., DLS and zeta potential–What they are and what they are not? Journal of Controlled Release 2016, 235, 337-351. 15. Boaz, M., Smetana, S., Weinstein, T., et al., Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. The Lancet 2000, 356 (9237), 1213-1218. 16. Chen, G., Tao, D., An experimental study of stability of oil–water emulsion. Fuel processing technology 2005, 86 (5), 499-508. 17. Chen, L., Remondetto, G. E., Subirade, M., Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology 2006, 17 (5), 272-283. 18. Cho, J. H., Kim, T., Yun, H. Y., et al., Facile depolymerization process of β-glucan through the use of a high pressure homogenizer. American Journal of Research Communication 2014, 2, 168-178. 19. Cho, S.-C., Choi, W.-Y., Oh, S.-H., et al., Enhancement of lipid extraction from marine microalga, Scenedesmus associated with high-pressure homogenization process. BioMed Research International 2012, 2012. 20. Chu, B. S., Ichikawa, S., Kanafusa, S., et al., Preparation of protein‐stabilized β‐carotene nanodispersions by emulsification–evaporation method. Journal of the American Oil Chemists' Society 2007, 84 (11), 1053-1062. 21. Curiel, T. J., Tregs and rethinking cancer immunotherapy. The Journal of clinical investigation 2007, 117 (5), 1167-1174. 22. Das, K., Kinsella, J., Stability of food emulsions: physicochemical role of protein and nonprotein emulsifiers. In Advances in food and nutrition research, Elsevier: 1990; Vol. 34, pp 81-201. 23. Dickinson, E., Hydrocolloids as emulsifiers and emulsion stabilizers. Food hydrocolloids 2009, 23 (6), 1473-1482. 24. Ebnesajjad, S., Handbook of adhesives and surface preparation: technology, applications and manufacturing. William Andrew: 2010. 25. Ghosh, M., Polyimides: fundamentals and applications. CRC press: 1996. 26. Gupta, A., Eral, H. B., Hatton, T. A., et al., Nanoemulsions: formation, properties and applications. Soft matter 2016, 12 (11), 2826-2841. 27. Gupta, H., Bhandari, D., Sharma, A., Recent trends in oral drug delivery: a review. Recent patents on drug delivery & formulation 2009, 3 (2), 162-173. 28. Gutiérrez, J., González, C., Maestro, A., et al., Nano-emulsions: New applications and optimization of their preparation. Current Opinion in Colloid & Interface Science 2008, 13 (4), 245-251. 29. Heo, W., Kim, J. H., Pan, J. H., et al., Lecithin-based nano-emulsification improves the bioavailability of conjugated linoleic acid. Journal of agricultural and food chemistry 2016, 64 (6), 1355-1360. 30. Khan, I., Saeed, K., Khan, I., Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 2017. 31. Kim, S. G., Lim, J. Y., Sung, J. H., et al., Emulsion polymerized polyaniline synthesized with dodecylbenzene-sulfonic acid and its electrorheological characteristics: Temperature effect. Polymer 2007, 48 (22), 6622-6631. 32. Kuroiwa, T., Kobayashi, I., Chuah, A. M., et al., Formulation and stabilization of nano-/microdispersion systems using naturally occurring edible polyelectrolytes by electrostatic deposition and complexation. Advances in colloid and interface science 2015, 226, 86-100. 33. Ling Tan, S., Stanslas, J., Basri, M., et al., Nanoemulsion-based parenteral drug delivery system of carbamazepine: preparation, characterization, stability evaluation and blood-brain pharmacokinetics. Current drug delivery 2015, 12 (6), 795-804. 34. Liu, B. Identification of oxidative products of pterostilbene and 3'-hydroxypterostilbene in vitro and evaluation of anti-inflammatory and anti-cancer cell proliferative activity. Rutgers University-Graduate School-New Brunswick, 2014. 35. López-Nicolás, J. M., García-Carmona, F., Aggregation state and p K a values of (E)-resveratrol as determined by fluorescence spectroscopy and UV− visible absorption. Journal of agricultural and food chemistry 2008, 56 (17), 7600-7605. 36. McClements, D. J., Decker, E. A., Park, Y., et al., Designing food structure to control stability, digestion, release and absorption of lipophilic food components. Food Biophysics 2008, 3 (2), 219-228. 37. McClements, D. J., Li, Y., Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Advances in colloid and interface science 2010, 159 (2), 213-228. 38. Naidu, R., Semple, K. T., Megharaj, M., et al., Bioavailability: Definition, assessment and implications for risk assessment. Developments in soil science 2008, 32, 39-51. 39. Nash, J. J., Erk, K. A., Stability and interfacial viscoelasticity of oil-water nanoemulsions stabilized by soy lecithin and Tween 20 for the encapsulation of bioactive carvacrol. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 517, 1-11. 40. Neethirajan, S., Jayas, D. S., Nanotechnology for the food and bioprocessing industries. Food and bioprocess technology 2011, 4 (1), 39-47. 41. Nyankson, E., DeCuir, M. J., Gupta, R. B., Soybean lecithin as a dispersant for crude oil spills. ACS Sustainable Chemistry & Engineering 2015, 3 (5), 920-931. 42. Park, K., Controlled drug delivery systems: past forward and future back. Journal of Controlled Release 2014, 190, 3-8. 43. Priego, S., Feddi, F., Ferrer, P., et al., Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: a Bcl-2-and superoxide dismutase 2-dependent mechanism. Molecular cancer therapeutics 2008, 7 (10), 3330-3342. 44. Riche, D. M., McEwen, C. L., Riche, K. D., et al., Analysis of safety from a human clinical trial with pterostilbene. Journal of toxicology 2013, 2013. 45. Rimando, A. M., Kalt, W., Magee, J. B., et al., Resveratrol, pterostilbene, and piceatannol in vaccinium berries. Journal of agricultural and food chemistry 2004, 52 (15), 4713-4719. 46. Sadtler, V., Rondon‐Gonzalez, M., Acrement, A., et al., PEO‐Covered Nanoparticles by Emulsion Inversion Point (EIP) Method. Macromolecular Rapid Communications 2010, 31 (11), 998-1002. 47. Sambuy, Y., De Angelis, I., Ranaldi, G., et al., The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell biology and toxicology 2005, 21 (1), 1-26. 48. Srinivasan, B., Kolli, A. R., Esch, M. B., et al., TEER measurement techniques for in vitro barrier model systems. Journal of laboratory automation 2015, 20 (2), 107-126. 49. Sun, H., Liu, K., Liu, W., et al., Development and characterization of a novel nanoemulsion drug-delivery system for potential application in oral delivery of protein drugs. International journal of nanomedicine 2012, 7, 5529. 50. Ting, Y., Zhao, Q., Xia, C., et al., Using in vitro and in vivo models to evaluate the oral bioavailability of nutraceuticals. Journal of agricultural and food chemistry 2015, 63 (5), 1332-1338. 51. Tiwari, G., Tiwari, R., Sriwastawa, B., et al., Drug delivery systems: An updated review. International journal of pharmaceutical investigation 2012, 2 (1), 2. 52. Ullman, T. A., Itzkowitz, S. H., Intestinal inflammation and cancer. Gastroenterology 2011, 140 (6), 1807-1816. e1. 53. Viswanathan, P., Muralidaran, Y., Ragavan, G., Challenges in oral drug delivery: a nano-based strategy to overcome. In Nanostructures for Oral Medicine, Elsevier: 2017; pp 173-201. 54. Yu, H., Shi, K., Liu, D., et al., Development of a food-grade organogel with high bioaccessibility and loading of curcuminoids. Food chemistry 2012, 131 (1), 48-54. 55. YU, M.-y., ZHANG, M., GAO, L.-f., et al., An Electrochemical Study of the Difference in Antioxidant Activity between Resveratrol and Pterostilbene [J]. Food Science 2012, 5. 56. Zhang, Y., Shang, Z., Gao, C., et al., Nanoemulsion for solubilization, stabilization, and in vitro release of pterostilbene for oral delivery. AAPS PharmSciTech 2014, 15 (4), 1000-1008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78776 | - |
| dc.description.abstract | 紫檀芪(Pterostilbene)為芪類(stilbene)化合物的一種,是白藜蘆醇(resveratrol)的甲基化衍生物,主要存在於藍莓、杏仁、葡萄和越橘中,紫檀芪具有許多藥理功能,包含抗氧化、抗發炎、抗癌等等…。但由於其水溶性低,且本身容易被氧化而失去活性,故紫檀芪的生物可利用率不高。在本篇實驗中,是以奈米乳液系統包覆紫檀芪,希望可以有效提升其生物可利用率,並增加紫檀芪作為保健食品的利用。
本實驗所使用的乳液配方,是由水相、中鏈脂肪酸以及卵磷脂所組成的。卵磷脂(Lecithin)為一歷史悠久的天然乳化劑,經由本實驗的介電電位、粒徑、黏度以及包覆效率等測試,發現其中可以使用相對低量的乳化劑,以及高比例油相的組別為使用,油相和水相以1:1組成,整體含有1.5%卵磷脂的配方為最適合利用於本實驗的組合。在上述乳液配方中,加入含有整體10.4%的紫檀芪後,使用高壓均質機以500bar的壓力進行均質5個循環,比較粗乳液及不同組經均質的奈米乳液間的各種性質,發現以高壓均質機處理三次的組別,是相對穩定的組別。此組別在放置一個月的過程中,其包覆效率並不會有顯著的差異,且以介電電位判定奈米乳液的穩定性,也發現此組的介電電位的絕對值,在一個月的存放過程中不會出現顯著的差異,這代表此乳液配方相當穩定。 綜合上述的實驗結果,以水相、中鏈脂肪酸和卵磷脂所形成的奈米乳液,可以有效包覆紫檀芪,且是目前文獻中可以包覆最高量紫檀芪的配方,未來可以將此配方包覆其他生物活性物質,以提升相關物質的穩定性和生物可利用率。 | zh_TW |
| dc.description.abstract | Pterostilbene, a dimethylether analog of resveratrol, had been found to have strong antioxidative potential as well as ability to reduce tumorigenesis, chronic inflammation and diabetes development. However, the bioavailability of Pterostilbene in the biological system is limited due to its poor solubility in aqueous gastrointestinal environment. Moreover, the fact that pterostilbene is a strong antioxidant leads to extensive oxidation before and during digestion, which further decrease its chance of reaching the target site of action.
In this work, nanoemulsiosn system were designed and prepared for this purpose. Lecithin-based nanoemulsion was formed after passing 5 cycles through high pressure homogenizer at 500 psi. The rheological properties and particle size were measured by dynamic light scattering and viscosmeter. The storage stability of prepared formulations were determined based on its ability to maintain its particle size and loading concentration, which is analyze using dynamic light scattering method and HPLC, respectively. According to the experimental results, the nanoemulsion system composed of 3% lecithin (w/w) could produce the the optimum nanoemulsion formulation that allow up to 20.8% loading of pterostilbene. Over the 1-month stability test, the particle size and loading concentration of the prepared emulsiosn system did not change significnalty indicating good storage stability regardless of the storage temperature. The positive effect of prepared nanoemulsion system on the bioavailability was studied and confirmed by in vitro lipolysis and Caco-2 monolayer model. That is, the future develop of functional food product using pterostilbene as main bioactive component could be realized using emulsion-based formulation. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:18:32Z (GMT). No. of bitstreams: 1 ntu-108-R06641030-1.pdf: 3338854 bytes, checksum: b34d0c4aaab6c0a57ba585187ab22bf9 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 V 圖目錄 IX 表目錄 XI 第一章、前言 1 第二章、文獻回顧 2 2.1紫檀芪 2 2.1.1紫檀芪 2 2.1.2紫檀芪的抗氧化能力 4 2.1.3紫檀芪的生理活性 5 2.1.4紫檀芪在人體吸收的困難 7 2.2藥物傳遞系統 8 2.2.1藥物傳遞系統 8 2.2.2口服藥物傳遞系統 9 2.2.3生物可利用率 11 2.2.4奈米科技應用於藥物傳輸系統 13 2.3奈米乳液 14 2.3.1乳液系統 14 2.3.2乳化與乳化劑 16 2.3.3乳化不安定 18 2.3.4 HLB值 19 2.3.5簡述奈米乳液 22 2.3.6製備奈米乳液的方法 23 2.3.7奈米乳液的評估方法 25 2.3.8奈米乳液在食品領域的應用 27 2.4卵磷脂 28 第三章 研究目的與實驗架構 30 3.1研究目的 30 3.2實驗架構 30 第四章、材料與方法 31 4.1實驗材料 31 4.1.1藥品試劑 31 4.1.2實驗儀器設備 33 4.2實驗方法 34 4.2.1乳液配方選擇 34 4.2.2溶解度實驗 35 4.2.3奈米乳液樣品製備 35 4.2.4乳液粒徑大小分析 36 4.2.5乳液介電電位分析 36 4.2.6乳液黏度大小分析 37 4.2.7 Caco-2細胞實驗 37 4.2.8奈米乳液之承載效率 43 4.2.9奈米乳液之包覆效率 43 4.2.10脂解實驗 44 4.2.11以HPLC分析紫檀芪 45 4.2.12 DPPH抗氧化測定方法 45 4.2.13儲藏性試驗 46 4.2.14統計分析與圖表繪製 46 第五章、結果與討論 47 5.1乳液配方選擇 47 5.2溶解度實驗結果 48 5.3乳液配方三相圖結果 50 5.4 乳液配方挑選 52 5.5奈米乳液之各項性質與穩定性測試 56 5.5.1紫檀芪奈米乳液粒徑變化 56 5.5.2紫檀芪奈米乳液介電電位變化 60 5.5.3紫檀芪奈米乳液黏度變化 63 5.5.4紫檀芪奈米乳液承載效率 66 5.5.5紫檀芪奈米乳液包覆效率之變化 68 5.5.6以紫檀芪奈米乳液進行脂解實驗 72 5.6 Caco-2細胞實驗 76 5.6.1細胞毒性試驗 77 5.6.2 Caco-2細胞穿透性實驗 79 5.7 DPPH抗氧化實驗 84 第六章、結論 86 第七章、未來展望 87 第八章、參考文獻 88 附錄一 附錄二 | |
| dc.language.iso | zh-TW | |
| dc.subject | 紫檀? | zh_TW |
| dc.subject | 奈米乳液 | zh_TW |
| dc.subject | 生物可利用率 | zh_TW |
| dc.subject | 卵磷脂 | zh_TW |
| dc.subject | 高壓均質機 | zh_TW |
| dc.subject | High Pressure Homogenizer | en |
| dc.subject | Pterostilbene | en |
| dc.subject | Nanoemulsion | en |
| dc.subject | Lecithin | en |
| dc.subject | Bioavailability | en |
| dc.title | 以奈米乳化包埋提升紫檀芪之生物可利用率 | zh_TW |
| dc.title | Nanoemulsification Enhanced Oral Bioavailability of Pterostilbene | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳瑞碧,吳明昌,沈賜川,林哲安 | |
| dc.subject.keyword | 奈米乳液,高壓均質機,紫檀?,卵磷脂,生物可利用率, | zh_TW |
| dc.subject.keyword | Nanoemulsion,Pterostilbene,High Pressure Homogenizer,Lecithin,Bioavailability, | en |
| dc.relation.page | 105 | |
| dc.identifier.doi | 10.6342/NTU201901306 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06641030-1.pdf 未授權公開取用 | 3.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
