Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78755
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁碧惠(Pi-Hui Liang)
dc.contributor.authorJing-Xiu Caoen
dc.contributor.author曹景琇zh_TW
dc.date.accessioned2021-07-11T15:17:04Z-
dc.date.available2021-08-28
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-07-23
dc.identifier.citation1. Wong, C. H.; Krasnova, L., Highlights in chemical glycobiology. Isr. J. Chem. 2019, 59, 18-22.
2. Huang, G.; Chen, X.; Huang, H., Chemical modifications and biological activities of polysaccharides. Curr. Drug Targets 2016, 17, 1799-1803.
3. Krasnova, L.; Wong, C. H., Understanding the chemistry and biology of glycosylation with glycan synthesis. Annu. Rev. Biochem. 2016, 85, 599-630.
4. Cao, H.; Hwang, J.; Chen, X., 14. Carbohydrate-containing natural products in medicinal chemistry. Research Signpost Publications 2011, 411-431.
5. Petrella, R. J., Hyaluronic acid for the treatment of knee osteoarthritis: long-term outcomes from a naturalistic primary care experience. Am. J. Phys. Med. Rehabil. 2005, 84, 278-283.
6. Baker, C. L., Jr.; Ferguson, C. M., Future treatment of osteoarthritis. Orthopedics 2005, 28, 227-234.
7. de Maio, M., The minimal approach: an innovation in facial cosmetic procedures. Aesthetic Plast. Surg. 2004, 28, 295-300.
8. Alekseeva, L. I.; Benevolenskaia, L. I.; Nasonov, E. L.; Chichasova, N. V.; Kariakin, A. N., [Structum (chondroitin sulfate)--a new agent for the treatment of osteoarthrosis]. Ter. Arkh. 1999, 71, 51-53.
9. Oduah, E. I.; Linhardt, R. J.; Sharfstein, S. T., Heparin: Past, Present, and Future. Pharmaceuticals (Basel) 2016, 9, 38.
10. Hou, N.; Cai, B.; Ou, C. W.; Zhang, Z. H.; Liu, X. W.; Yuan, M.; Zhao, G. J.; Liu, S. M.; Xiong, L. G.; Luo, J. D.; Luo, C. F.; Chen, M. S., Puerarin-7-O-glucuronide, a water-soluble puerarin metabolite, prevents angiotensin II-induced cardiomyocyte hypertrophy by reducing oxidative stress. Naunyn Schmiedebergs Arch. Pharmacol. 2017, 390, 535-545.
11. Singh, B.; Singh, J. P.; Singh, N.; Kaur, A., Saponins in pulses and their health promoting activities: A review. Food Chem. 2017, 233, 540-549.
12. Jacobsen, N. E.; Fairbrother, W. J.; Kensil, C. R.; Lim, A.; Wheeler, D. A.; Powell, M. F., Structure of the saponin adjuvant QS-21 and its base-catalyzed isomerization product by 1H and natural abundance 13C NMR spectroscopy. Carbohydr. Res. 1996, 280, 1-14.
13. Kensil, C. R., Saponins as vaccine adjuvants. Crit. Rev. Ther. Drug Carrier Syst. 1996, 13, 1-55.
14. Jacobsen, N. E.; Fairbrother, W. J.; Kensil, C. R.; Lim, A.; Wheeler, D. A.; Powell, M. F., Structure of the saponin adjuvant QS-21 and its base-catalyzed isomerization product by 1H and natural abundance 13C NMR spectroscopy. Carbohydr. Res. 1996, 280, 1-14.
15. Fernandez-Tejada, A.; Tan, D. S.; Gin, D. Y., Development of improved vaccine adjuvants based on the saponin natural product QS-21 through chemical synthesis. Acc. Chem. Res. 2016, 49, 1741-1756.
16. Kim, Y.-J.; Wang, P.; Navarro-Villalobos, M.; Rohde, B. D.; DerryBerry; Gin, D. Y., Synthetic studies of complex immunostimulants from quillaja saponaria:  synthesis of the potent clinical immunoadjuvant QS-21Aapi. J. Am. Chem. Soc. 2006, 128, 11906-11915.
17. Tomohara, K.; Ito, T.; Onikata, S.; Kato, A.; Adachi, I., Discovery of hyaluronidase inhibitors from natural products and their mechanistic characterization under DMSO-perturbed assay conditions. Bioorg. Med. Chem. Lett. 2017, 27, 1620-1623.
18. Yang, G.; Ge, S.; Singh, R.; Basu, S.; Shatzer, K.; Zen, M.; Liu, J.; Tu, Y.; Zhang, C.; Wei, J.; Shi, J.; Zhu, L.; Liu, Z.; Wang, Y.; Gao, S.; Hu, M., Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab. Rev. 2017, 49, 105-138.
19. Dang, N. L.; Hughes, T. B.; Krishnamurthy, V.; Swamidass, S. J., A simple model predicts UGT-mediated metabolism. Bioinformatics 2016, 32, 3183-3189.
20. Bhagavan, N. V.; Ha, C.-E., Chapter 14 - Carbohydrate Metabolism II: Gluconeogenesis, Glycogen Synthesis and Breakdown, and Alternative Pathways. In Essentials of Medical Biochemistry (Second Edition), Bhagavan, N. V.; Ha, C.-E., Eds. Academic Press: San Diego, 2015, 205-225.
21. van Dorp, E. L.; Morariu, A.; Dahan, A., Morphine-6-glucuronide: potency and safety compared with morphine. Expert Opin. Pharmacother. 2008, 9, 1955-1961.
22. de Hoogd, S.; Valitalo, P. A. J.; Dahan, A.; van Kralingen, S.; Coughtrie, M. M. W.; van Dongen, E. P. A.; van Ramshorst, B.; Knibbe, C. A. J., Influence of morbid obesity on the pharmacokinetics of morphine, morphine-3-glucuronide, and morphine-6-glucuronide. Clin. Pharmacokinet. 2017, 56, 1577-1587.
23. Prijovich, Z. M.; Burnouf, P. A.; Chou, H. C.; Huang, P. T.; Chen, K. C.; Cheng, T. L.; Leu, Y. L.; Roffler, S. R., Synthesis and antitumor properties of bqc-glucuronide, a camptothecin prodrug for selective tumor activation. Mol. Pharm. 2016, 13, 1242-1250.
24. Houba, P. H.; Boven, E.; van der Meulen-Muileman, I. H.; Leenders, R. G.; Scheeren, J. W.; Pinedo, H. M.; Haisma, H. J., A novel doxorubicin-glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy: distribution and efficacy in experimental human ovarian cancer. Br. J. Cancer 2001, 84, 550-557.
25. Haisma, H. J.; Boven, E.; van Muijen, M.; de Jong, J.; van der Vijgh, W. J.; Pinedo, H. M., A monoclonal antibody-beta-glucuronidase conjugate as activator of the prodrug epirubicin-glucuronide for specific treatment of cancer. Br. J. Cancer 1992, 66, 474-478.
26. Muller, T.; Schneider, R.; Schmidt, R. R., Utility of glycosyl phosphites as glycosyl donors - fructofuranosyl and 2-deoxyhexopyranosyl phosphites in glycoside bond formation. Tetrahedron Lett. 1994, 35, 4763-4766.
27. V. Stachulski, A.; V. Jenkins, G., The synthesis of O-glucuronides. Nat. Prod. Rep. 1998, 15, 173.
28. Kaspersen, F. M.; Van Boeckel, C. A., A review of the methods of chemical synthesis of sulphate and glucuronide conjugates. Xenobiotica 1987, 17, 1451-1471.
29. Wadouachi, A.; Kovensky, J., Synthesis of glycosides of glucuronic, galacturonic and mannuronic acids: an overview. Molecules 2011, 16, 3933-3968.
30. Fischer, B.; Nudelman, A.; Ruse, M.; Herzig, J.; Gottlieb, H. E.; Keinan, E., A novel method for stereoselective glucuronidation. J. Org. Chem. 1984, 49, 4988-4993.
31. Stone, A. N.; Mackenzie, P. I.; Galetin, A.; Houston, J. B.; Miners, J. O., Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human udp-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7. Drug Metab. Dispos. 2003, 31, 1086-1089.
32. Marsh, C. A., Catalytic oxidation of glucosides to glucuronides. Nature 1951, 168, 602-603.
33. Desai, R. N.; Blackwell, L. F., TEMPO-mediated regiospecific oxidation of glucosides to glucuronides. Synlett 2003, 2003, 1981-1984.
34. Schmidt, R. R.; Kinzy, W., Anomeric-Oxygen Activation for Glycoside Synthesis: The Trichloroacetimidate Method. In Adv. Carbohydr. Chem. Biochem., Horton, D., Ed. Academic Press: 1994, 50, 21-123.
35. Igarashi, K., The Koenigs-Knorr Reaction**Throughout this Chapter, the terms glycose, glycosyl, glycoside, glycofuranoside, glycopyranoside, and glycoseptanoside refer to aldoses and the corresponding derivatives thereof. In Adv. Carbohydr. Chem. Biochem., Stuart Tipson, R.; Horton, D., Eds. Academic Press: 1977, 34, 243-283.
36. Rukhman, I.; Gutman, A. L., Synthesis of morphine 6-α-d-glucuronide. Tetrahedron Lett. 2000, 41, 6889-6892.
37. Mukaiyama, T.; Murai, Y.; Shoda, S., An efficient method for glucosylation of hydroxy compounds using glucopyranosyl fluoride. Chem. Lett. 1981, 10, 431-432.
38. Kunz, H., Synthesis of glycopeptides, partial structures of biological recognition components [New Synthetic Methods (67)]. Angew. Chem. Int. Ed. Engl. 1987, 26, 294-308.
39. Suzuki, K.; Maeta, H.; Matsumoto, T.; Tsuchihashi, G., New Glycosidation Reaction .2. Preparation of 1-fluoro-d-desosamine derivative and its efficient glycosidation by the use of Cp2hfcl2-Agclo4 as the activator. Tetrahedron Lett. 1988, 29, 3571-3574.
40. Suzuki, K.; Maeta, H.; Matsumoto, T., An improved procedure for metallocene-promoted glycosidation - enhanced reactivity by employing 1-2-ratio of Cp2hfcl2-Agclo4. Tetrahedron Lett. 1989, 30, 4853-4856.
41. Ohtsuka, I.; Ako, T.; Kato, R.; Daikoku, S.; Koroghi, S.; Kanemitsu, T.; Kanie, O., Synthesis of a library of fucopyranosyl-galactopyranosides consisting of a complete set of anomeric configurations and linkage positions. Carbohydr. Res. 2006, 341, 1476-1487.
42. Pougny, J. R.; Jacquinet, J. C.; Nassr, M.; Duchet, D.; Milat, M. L.; Sinay, P., A novel synthesis of 1,2-cis-disaccharides. J. Am. Chem. Soc. 1977, 99, 6762-6763.
43. Schmidt, R. R., Recent developments in the synthesis of glycoconjugates. Pure Appl. Chem. 1989, 61, 1257-1270.
44. Jacquinet, J. C., Syntheses of the methyl glycosides of the repeating units of chondroitin 4- and 6-sulfate. Carbohydr. Res. 1990, 199, 153-181.
45. Urban, F. J.; Moore, B. S.; Breitenbach, R., Synthesis of tigogenyl β-O-cellobioside heptaacetate and glycoside tetraacetate via Schmidt's trichloroacetimidate method; some new observatons. Tetrahedron Lett. 1990, 31, 4421-4424.
46. Stick, R. V.; Williams, S. J., Chapter 4 - Formation of the Glycosidic Linkage. In Carbohydrates: The Essential Molecules of Life (Second Edition), Stick, R. V.; Williams, S. J., Eds. Elsevier: Oxford, 2009, 133-202.
47. Tian, Q.; Zhang, S.; Yu, Q.; He, M. B.; Yang, J. S., Amberlyst 15 as a mild and effective activator for the glycosylation with disarmed glycosyl trichloroacetimidate donors. Tetrahedron 2007, 63, 2142-2147.
48. Yang, J.; Cooper-Vanosdell, C.; Mensah, E. A.; Nguyen, H. M., Cationic palladium(II)-catalyzed stereoselective glycosylation with glycosyl trichloroacetimidates. J. Org. Chem. 2008, 73, 794-800.
49. Engstrom, K. M.; Henry, R. F.; Marsden, I., Synthesis of the glucuronide metabolite of ABT-751. Tetrahedron Lett. 2007, 48, 1359-1362.
50. Sears, P.; Wong, C. H., Toward automated synthesis of oligosaccharides and glycoproteins. Science 2001, 291, 2344-2350.
51. Singh, Y.; Wang, T.; Geringer, S. A.; Stine, K. J.; Demchenko, A. V., Regenerative glycosylation. J. Org. Chem. 2018, 83, 374-381.
52. Paulsen, H., Synthesen, konformationen und röntgenstrukturanalysen von saccharidketten der core‐regionen von glycoproteinen. Angew. Chem. 1990, 102, 851-867.
53. Heuckendorff, M.; Jensen, H. H., DIDMH in combination with triflic acid - A new promoter system for thioglycoside glycosyl donors. Carbohydr. Res. 2018, 455, 86-91.
54. Ferrier, R.; Hay, R.; Vethaviyasar, N.] A potentially versatile synthesis of glycosides. Carbohydr. Res. 1973, 27, 55-61.
55. Nilsson, M.; Svahn, C. M.; Westman, J., Synthesis of the methyl glycosides of a tri- and a tetra-saccharide related to heparin and heparan sulphate. Carbohydr. Res. 1993, 246, 161-172.
56. Plante, O. J.; Palmacci, E. R.; Andrade, R. B.; Seeberger, P. H., Oligosaccharide synthesis with glycosyl phosphate and dithiophosphate triesters as glycosylating agents. J. Am. Chem. Soc. 2001, 123, 9545-9554.
57. Carrel, F. R.; Seeberger, P. H., Protecting group manipulations on glycosyl phosphate triesters. J. Carbohydr. Chem. 2007, 26, 125-139.
58. Wildberger, P.; Pfeiffer, M.; Brecker, L.; Nidetzky, B., Diastereoselective synthesis of glycosyl phosphates by using a phosphorylase-phosphatase combination catalyst. Angew. Chem. Int. Ed. Engl. 2015, 54, 15867-15871.
59. Polakova, M.; Pitt, N.; Tosin, M.; Murphy, P. V., Glycosidation reactions of silyl ethers with conformationally inverted donors derived from glucuronic acid: stereoselective synthesis of glycosides and 2-deoxyglycosides. Angew. Chem. Int. Ed. Engl. 2004, 43, 2518-2521.
60. Fraser-Reid, B.; López, J. C., Armed–Disarmed Effects in Carbohydrate Chemistry: History, Synthetic and Mechanistic Studies. In Reactivity Tuning in Oligosaccharide Assembly, Fraser-Reid, B.; Cristóbal López, J., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2011, 1-29.
61. Li, Z.; Gildersleeve, J. C., An armed-disarmed approach for blocking aglycon transfer of thioglycosides. Tetrahedron Lett. 2007, 48, 559-562.
62. Lucas, R.; Alcantara, D.; Morales, J. C., A concise synthesis of glucuronide metabolites of urolithin-B, resveratrol, and hydroxytyrosol. Carbohydr. Res. 2009, 344, 1340-1346.
63. Harding, J. R.; King, C. D.; Perrie, J. A.; Sinnott, D.; Stachulski, A. V., Glucuronidation of steroidal alcohols using iodosugar and imidate donors. Org. Biomol. Chem. 2005, 3, 1501-1507.
64. Goodman, L., Neighboring-Group Participation in Sugars. In Adv. Carbohydr. Chem., Wolfrom, M. L.; Tipson, R. S., Eds. Academic Press: 1967, 22, 109-175.
65. Alonen, A.; Gartman, M.; Aitio, O.; Finel, M.; Yli-Kauhaluoma, J.; Kostiainen, R., Synthesis, structure characterization, and enzyme screening of clenbuterol glucuronides. Eur. J. Pharm. Sci. 2009, 37, 581-587.
66. Kong, F., Recent studies on reaction pathways and applications of sugar orthoesters in synthesis of oligosaccharides. Carbohydr. Res. 2007, 342, 345-373.
67. Brown, R. T.; Carter, N. E.; Mayalarp, S. P.; Scheinmann, F., A simple synthesis of morphine-3,6-di-β-d-glucuronide. Tetrahedron 2000, 56, 7591-7594.
68. Buhren, B. A.; Schrumpf, H.; Hoff, N.-P.; Bölke, E.; Hilton, S.; Gerber, P. A., Hyaluronidase: from clinical applications to molecular and cellular mechanisms. Eur. J. Med. Res. 2016, 21, 5.
69. Lepperdinger, G.; Fehrer, C.; Reitinger, S., Chapter 4 - Biodegradation of Hyaluronan. In Chemistry and Biology of Hyaluronan, Garg, H. G.; Hales, C. A., Eds. Elsevier Science Ltd: Oxford, 2004, 71-82.
70. Nicola, D., Turbidimetric measurement of acid mucopolysaccharides and hyaluronidase activity. J. Biol. Chem. 1955, 10, 303-306.
71. Takahashi, T.; Ikegami-Kawai, M.; Okuda, R.; Suzuki, K., A fluorimetric Morgan-Elson assay method for hyaluronidase activity. Anal. Biochem. 2003, 322, 257-263.
72. Konishi, N.; Shirahata, T.; Yokoyama, M.; Katsumi, T.; Ito, Y.; Hirata, N.; Nishino, T.; Makino, K.; Sato, N.; Nagai, T.; Kiyohara, H.; Yamada, H.; Kaji, E.; Kobayashi, Y., Synthesis of bisdesmosidic oleanolic acid saponins via a glycosylation-deprotection sequence under continuous microfluidic/batch conditions. J. Org. Chem. 2017, 82, 6703-6719.
73. Winterstein, A.; Stein, G., Double bond between C-12 and C-13 of oleanolic acid is inert to catalytic hydrogenation. Z. physiol. Chem 1931, 202, 222-231.
74. Liu, L.; Ji, X.; Li, Y.; Ji, W.; Mo, T.; Ding, W.; Zhang, Q., A mechanistic study of the non-oxidative decarboxylation catalyzed by the radical S-adenosyl-l-methionine enzyme BlsE involved in blasticidin S biosynthesis. Chem. Commun. (Camb.) 2017, 53, 8952-8955.
75. Kondo, H.; Aoki, S.; Ichikawa, Y.; Halcomb, R. L.; Ritzen, H.; Wong, C. H., Glycosyl phosphites as glycosylation reagents - scope and mechanism. J. Org. Chem. 1994, 59, 864-877.
76. Weishaupt, M. W.; Matthies, S.; Hurevich, M.; Pereira, C. L.; Hahm, H. S.; Seeberger, P. H., Automated glycan assembly of a S. pneumoniae serotype 3 CPS antigen. Beilstein J. Org. Chem. 2016, 12, 1440-1446.
77. Yadav, R.; Leviatan Ben-Arye, S.; Subramani, B.; Padler-Karavani, V.; Kikkeri, R., Screening of Neu5Acalpha(2-6)gal isomer preferences of siglecs with a sialic acid microarray. Org. Biomol. Chem. 2016, 14, 10812-10815.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78755-
dc.description.abstract三萜類皂苷廣泛分布於植物界中,其中數個三萜類葡萄醣醛酸苷衍生物,被發現具有藥物活性。例如:疫苗佐劑QS-21、和玻尿酸抑制劑Chikusetusaponin IV。而為了研究這類結構的構效關係,化學合成為一有效途徑來獲得結構多元的衍生物。然而化學合成進行葡萄醣醛酸化反應經常受限於低產率,其困難點在於葡萄醣醛酸的低反應性,同時因為三萜類化合物的立體障礙導致低親核性,使三萜類化合物的葡萄醣醛酸化反應更具有挑戰性。為了促進三萜類葡萄醣醛酸化反應,我們在葡萄醣醛酸上使用了不同的保護基,包括乙醯基(Ac),苯甲醯基(Bz),三甲基乙醯基(Piv)和叔丁基二甲基矽烷基(TBS),建構了arm與disarm的醣予體,探討其與三萜類齊墩果酸和皂皮酸在不同活化劑、溫度和溶劑下的反應性及選擇性。
實驗結果發現,在室溫下以B(PhF5)3為活化劑具有最佳的反應性及β選擇性,在O-2位置使用的保護基中,Ac保護基由於立體障礙較小而容易有副反應的發生。Bz保護基的醣給予者與齊墩果酸有60%的產率;Piv保護基的醣給予者與皂皮酸也有60%的產率。在選擇性方面,Piv保護基因為立障效應,能抑制原酯的副產物生成。另一方面,TBS保護基具有更少的副產物,較高的產物收率(50%至60%),具有更好的發展潛力。
而在以本研究中所獲得的葡萄醣醛酸衍生物進行玻尿酸分解酶抑制劑之活性測定,不幸的是,發現在1 mM下仍無明顯抑制活性。儘管如此,本研究提供了優化的葡萄醣醛酸化反應條件,未來有助於進一步合成更多葡萄醣醛酸衍生物。
zh_TW
dc.description.abstractTriterpenoid saponins are widely distributed in plants, and several of these compounds are found as glucuronides which possess biologically activities, such as vaccine adjuvant- QS-21 and hyaluronidase inhibitor- Chikusetusaponin IV. In order to study their structural-activity relationship, chemical synthesis is an effective way to obtain structure-relative and diversified derivatives. However, chemical synthesis for glucuronidation is often limited to low yields. The difficulty lies on the low reactivity of glucuronic acid, and also the low nucleophilicity of steric-hindrance triterpenoids, which cause the glucuronidation of triterpenes and glucuronic acid more challenging. To promote the reactivity of glucuronidation, we explored the usage of various protecting groups, including acetyl (Ac), benzoyl (Bz), trimethylacetyl (Piv) and tert-butyldimethyl silyl (TBS) groups, to construct the “armed” and “disarmed” glucuronyl donors. Using these compounds, we can investigate their reactivity and selectivity with oleanolic acid and quillaic acid under different promoters, temperature and solvent.
The results showed that using B(PhF5)3 as a promotor at room temperature provided the best reactivity and β-selective products. Among these protective groups at O-2 position of donor, Ac group was easy to have side reactions due to it is less hindrance. Glucuronic acid bearing Bz groups had 60% yield with oleanolic acid and Piv groups had 60% yield with quillaic acid. In terms of selectivity, Piv protecting group can inhibit the formation of orthoester by-products due to the steric effect. TBS protecting group had the less side products, higher yield (in a range of 50% to 60%) at room termperatur which had potential for future development.
The glucuronide derivative 92 obtained in this study was subjected to the hyaluronidase inhibitor assay. Unfortunately, it was found to no significant inhibitory activity at 1 mM. Nonetheless, this study provides an optimized glucuronidation conditions that will help to synthesis more glucuronic acid derivatives in future.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:17:04Z (GMT). No. of bitstreams: 1
ntu-108-R06423021-1.pdf: 7629426 bytes, checksum: c67ca6dae6c2b1b71f88425ac78d1e7b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
圖目錄 viii
表目錄 ix
路徑目錄 x
縮寫表 xi
第一章 研究背景 1
1.1葡萄糖醛酸及其衍生物 1
1.1.1簡介 1
1.1.2 葡萄醣醛酸參與代謝反應 3
1.2 葡萄醣醛酸化反應(Glucuronidation) 6
1.2.1 酵素合成葡萄醣醛酸苷 7
1.2.2 化學合成葡萄醣醛酸苷 9
1.3 研究動機與目的 21
第二章 結果與討論 23
2.1 合成策略與方法 23
2.1.1 三萜類接受者的製備 23
2.1.2 醣給予者的合成 24
2.2 葡萄醣醛酸化反應 31
2.2.1 齊敦果酸衍生物的3-O-葡萄醣醛酸化反應 31
2.2.2 皂皮酸衍生物(allyl quillaic ester)的3-O-葡萄醣醛酸化反應 35
2.3 玻尿酸分解酶抑制劑活性 37
第三章 結論 39
第四章 實驗部分 41
4.1 生物分析 41
4.1.1 材料與器材 41
4.1.2 溶液 41
4.1.3 玻尿酸分解酶抑制劑試驗--混濁度試驗 42
4.1.4 玻尿酸分解酶抑制劑試驗--比色法試驗 42
4.2一般實驗方法 43
4.3 實驗試劑及儀器來源 43
4.3.1 實驗試劑 43
4.3.2 實驗儀器 45
4.4合成步驟及數據 46
第五章 參考文獻 75
第六章 附圖 81
dc.language.isozh-TW
dc.title藉由保護基策略探討三萜之 3-O-葡萄糖醛酸化反應的
優化研究
zh_TW
dc.titleReaction Optimization of 3-O-Glucuronidation with
Triterpenes by Protective Group′s Strategy
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee忻凌偉(Ling-Wei Hsin),李水盛(Shoei-Sheng Lee),張嘉銓(Chia-Chuan Chang)
dc.subject.keyword葡萄醣醛酸化反應,葡萄醣醛酸,三?類,玻尿酸分解?抑制劑,zh_TW
dc.subject.keywordglucuronidation,glucuronic acid,triterpene,hyaluronidase inhibitor,en
dc.relation.page122
dc.identifier.doi10.6342/NTU201901675
dc.rights.note有償授權
dc.date.accepted2019-07-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-108-R06423021-1.pdf
  目前未授權公開取用
7.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved