請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78720
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅翊禎 | zh_TW |
dc.contributor.author | 林欣誼 | zh_TW |
dc.contributor.author | Hsin-I Lin | en |
dc.date.accessioned | 2021-07-11T15:14:32Z | - |
dc.date.available | 2024-08-07 | - |
dc.date.copyright | 2019-08-07 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Borovikova, D.; Teparić, R.; Mrša, V.; Rapoport, A., Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration. Yeast 2016, 33 (8), 347-353.
Boskou, D.; Camposeo, S.; Clodoveo, M. L., Table olives as sources of bioactive compounds. In Olive and Olive Oil Bioactive Constituents, Elsevier: 2015; pp 217-259. Bouarab, K.; Melton, R.; Peart, J.; Baulcombe, D.; Osbourn, A., A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 2002, 418 (6900), 889. Bowman, S. M.; Free, S. J., The structure and synthesis of the fungal cell wall. Bioessays 2006, 28 (8), 799-808. Cabib, E.; Sburlati, A.; Bowers, B.; Silverman, S. J., Chitin synthase 1, an auxiliary enzyme for chitin synthesis in Saccharomyces cerevisiae. The Journal of cell biology 1989, 108 (5), 1665-1672. Cappellaro, C.; Mrsa, V.; Tanner, W., New Potential Cell Wall Glucanases ofSaccharomyces cerevisiae and Their Involvement in Mating. Journal of Bacteriology 1998, 180 (19), 5030-5037. Chandramouli, K.; Qian, P. Y., Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics 2009, 2009. Cheng, L.-Q.; Na, J. R.; Bang, M. H.; Kim, M. K.; Yang, D.-C., Conversion of major ginsenoside Rb1 to 20 (S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry 2008, 69 (1), 218-224. Chiu, C. H.; Wang, R.; Lee, C. C.; Lo, Y. C.; Lu, T. J., Biotransformation of mogrosides from Siraitia grosvenorii Swingle by Saccharomyces cerevisiae. J Agric Food Chem 2013, 61 (29), 7127-34. Choi, W.-J.; Santos, B.; Durán, A.; Cabib, E., Are yeast chitin synthases regulated at the transcriptional or the posttranslational level? Molecular and cellular biology 1994, 14 (12), 7685-7694. Ciafardini, G.; Marsilio, V.; Lanza, B.; Pozzi, N., Hydrolysis of oleuropein by Lactobacillus plantarum strains associated with olive fermentation. Appl. Environ. Microbiol. 1994, 60 (11), 4142-4147. Deshaware, S.; Gupta, S.; Singhal, R. S.; Joshi, M.; Variyar, P. S., Debittering of bitter gourd juice using β-cyclodextrin: Mechanism and effect on antidiabetic potential. Food Chemistry 2018, 262, 78-85. Donya, A.; Hettiarachchy, N.; Liyanage, R.; Lay, J.; Chen, P.; Jalaluddin, M., Effects of processing methods on the proximate composition and momordicosides K and L content of bitter melon vegetable. Journal of agricultural and food chemistry 2007, 55 (14), 5827-5833. Ecker, M.; Deutzmann, R.; Lehle, L.; Mrsa, V.; Tanner, W., Pir proteins of Saccharomyces cerevisiae are attached to β-1, 3-glucan by a new protein-carbohydrate linkage. Journal of Biological Chemistry 2006, 281 (17), 11523-11529. Esteban, P. F.; Vazquez de Aldana, C. R.; del Rey, F., Cloning and characterization of 1, 3‐β‐glucanase‐encoding genes from non‐conventional yeasts. Yeast 1999, 15 (2), 91-109. Fesel, P. H.; Zuccaro, A., β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genetics and Biology 2016, 90, 53-60. Gao, H.; Wen, J.-J.; Hu, J.-L.; Nie, Q.-X.; Chen, H.-H.; Nie, S.-P.; Xiong, T.; Xie, M.-Y., Momordica charantia juice with Lactobacillus plantarum fermentation: Chemical composition, antioxidant properties and aroma profile. Food Bioscience 2019. Gao, J.; Wang, J.; Cui, J.; Wang, N.; Bai, Y.; Yuan, Y.; Zhou, Y., Purification and characterization of two novel β-glucosidases from Penicillium oxalicum and their application in bioactive ginsenoside production. Biocatalysis and Biotransformation 2014, 32 (4), 199-207. Ghabbour, N.; Lamzira, Z.; Thonart, P.; Cidalia, P.; Markaoui, M.; Asehraou, A., Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives. grasas y aceites 2011, 62 (1), 84-89. Gomez-Mendoza, D. P.; Junqueira, M.; do Vale, L. H.; Domont, G. B.; Ferreira Filho, E. X.; Sousa, M. V.; Ricart, C. A., Secretomic survey of Trichoderma harzianum grown on plant biomass substrates. J Proteome Res 2014, 13 (4), 1810-22. Grover, J. K.; Yadav, S. P., Pharmacological actions and potential uses of Momordica charantia: a review. Journal of Ethnopharmacol 2004, 93 (1), 123-32. Guggenheim, K. G.; Crawford, L. M.; Paradisi, F.; Wang, S. C.; Siegel, J. B., β-Glucosidase Discovery and Design for the Degradation of Oleuropein. ACS omega 2018, 3 (11), 15754-15762. Habicht, S. D.; Kind, V.; Rudloff, S.; Borsch, C.; Mueller, A. S.; Pallauf, J.; Yang, R.-y.; Krawinkel, M. B., Quantification of antidiabetic extracts and compounds in bitter gourd varieties. Food Chemistry 2011, 126 (1), 172-176. Harinantenaina, L.; Tanaka, M.; Takaoka, S.; Oda, M.; Mogami, O.; Uchida, M.; Asakawa, Y., Momordica charantia constituents and antidiabetic screening of the isolated major compounds. Chemical and Pharmaceutical Bulletin 2006, 54 (7), 1017-1021. Janke, C.; Magiera, M. M.; Rathfelder, N.; Taxis, C.; Reber, S.; Maekawa, H.; Moreno‐Borchart, A.; Doenges, G.; Schwob, E.; Schiebel, E., A versatile toolbox for PCR‐based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 2004, 21 (11), 947-962. Jia, S.; Shen, M.; Zhang, F.; Xie, J., Recent Advances in Momordica charantia: Functional Components and Biological Activities. International Journal of Molecular Sciences 2017, 18 (12). Kapteyn, J. C.; Van Den Ende, H.; Klis, F. M., The contribution of cell wall proteins to the organization of the yeast cell wall. Biochimica et Biophysica Acta (BBA)-General Subjects 1999, 1426 (2), 373-383. Klis, F. M., Cell wall assembly in yeast. Yeast 1994, 10 (7), 851-869. Latgé, J. P., The cell wall: a carbohydrate armour for the fungal cell. Molecular microbiology 2007, 66 (2), 279-290. Lesage, G.; Sdicu, A.-M.; Ménard, P.; Shapiro, J.; Hussein, S.; Bussey, H., Analysis of β-1, 3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 2004, 167 (1), 35-49. Li, W.; Gu, C.; Zhang, H.; Awang, D. V.; Fitzloff, J. F.; Fong, H. H.; van Breemen, R. B., Use of high-performance liquid chromatography− tandem mass spectrometry to distinguish Panax ginseng CA Meyer (Asian Ginseng) and Panax quinquefolius L.(North American Ginseng). Analytical Chemistry 2000, 72 (21), 5417-5422. Lilly, M. D., Eighth PV Danckwerts memorial lecture presented at Glaziers' Hall, London, UK 13 May 1993: Advances in biotransformation processes. Chemical engineering science 1994, 49 (2), 151-159. Madinger, C. L.; Sharma, S. S.; Anton, B. P.; Fields, L. G.; Cushing, M. L.; Canovas, J.; Taron, C. H.; Benner, J. S., The effect of carbon source on the secretome of Kluyveromyces lactis. Proteomics 2009, 9 (20), 4744-4754. McCotter, S. W.; Horianopoulos, L. C.; Kronstad, J. W., Regulation of the fungal secretome. Curr Genet 2016, 62 (3), 533-45. Mekuria, D. B.; Kashiwagi, T.; Tebayashi, S.-i.; Kim, C.-S., Cucurbitane glucosides from Momordica charantia leaves as oviposition deterrents to the leafminer, Liriomyza trifolii. Zeitschrift für Naturforschung C 2006, 61 (1-2), 81-86. Merritt, N., The influence of temperature on some properties of yeast. Journal of the Institute of Brewing 1966, 72 (4), 374-383. Morrissey, J. P.; Osbourn, A. E., Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. Biol. Rev. 1999, 63 (3), 708-724. Mrsa, V.; Klebl, F.; Tanner, W., Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-beta-1, 3-glucanase. Journal of Bacteriology 1993, 175 (7), 2102-2106. Ni, H.; Chen, F.; Cai, H.; Xiao, A.; You, Q.; Lu, Y., Characterization and preparation of Aspergillus niger naringinase for debittering citrus juice. J Food Sci 2012, 77 (1), C1-7. Noh, K.-H.; Son, J.-W.; Kim, H.-J.; Oh, D.-K., Ginsenoside compound K production from ginseng root extract by a thermostable β-glycosidase from Sulfolobus solfataricus. Bioscience, biotechnology, and biochemistry 2009, 73 (2), 316-321. Ohta, K.; Hamada, S.; Nakamura, T., Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1993, 59 (3), 729-733. Osumi, M., The ultrastructure of yeast: cell wall structure and formation. Micron 1998, 29 (2-3), 207-233. Puri, M.; Kaur, A.; Schwarz, W. H.; Singh, S.; Kennedy, J. F., Molecular characterization and enzymatic hydrolysis of naringin extracted from kinnow peel waste. Int J Biol Macromol 2011, 48 (1), 58-62. Quidde, T.; Büttner, P.; Tudzynski, P., Evidence for three different specific saponin-detoxifying activities in Botrytis cinerea and cloning and functional analysis of a gene coding for a putative avenacinase. European Journal of Plant Pathology 1999, 105 (3), 273-283. Ram, A. F.; Klis, F. M., Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat Protoc 2006, 1 (5), 2253-6. Ram, A. F.; Wolters, A.; Hoopen, R. T.; Klis, F. M., A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 1994, 10 (8), 1019-1030. Raman, A.; Lau, C., Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomedicine 1996, 2 (4), 349-362. Ramírez, E.; Brenes, M.; de Castro, A.; Romero, C.; Medina, E., Oleuropein hydrolysis by lactic acid bacteria in natural green olives. LWT-Food Science and Technology 2017, 78, 165-171. Rashima, R. S.; Maizura, M.; Kang, W.; Fazilah, A.; Tan, L., Influence of sodium chloride treatment and polysaccharides as debittering agent on the physicochemical properties, antioxidant capacity and sensory characteristics of bitter gourd (Momordica charantia) juice. Journal of food science and technology 2017, 54 (1), 228-235. Roncero, C.; Valdivieso, M.; Ribas, J.; Duran, A., Isolation and characterization of Saccharomyces cerevisiae mutants resistant to Calcofluor white. Journal of Bacteriology 1988, 170 (4), 1950-1954. Ruiz-Herrera, J.; García-Maceira, P.; Castillo-Barahona, L. C.; Valentín, E.; Sentandreu, R., Cell wall composition and structure of Yarrowia lipolytica transposon mutants affected in calcofluor sensitivity. Antonie Van Leeuwenhoek 2003, 84 (3), 229-238. Serra, A.; Strehaiano, P.; Taillandier, P., Influence of temperature and pH on Saccharomyces bayanus var. uvarum growth; impact of a wine yeast interspecific hybridization on these parameters. Int J Food Microbiol 2005, 104 (3), 257-65. Sestak, S.; Hagen, I.; Tanner, W.; Strahl, S., Scw10p, a cell-wall glucanase/transglucosidase important for cell-wall stability in Saccharomyces cerevisiae. Microbiology 2004, 150 (10), 3197-3208. Shaw, J. A.; Mol, P. C.; Bowers, B.; Silverman, S. J.; Valdivieso, M. H.; Durán, A.; Cabib, E., The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. The Journal of cell biology 1991, 114 (1), 111-123. Sikorski, R. S.; Hieter, P., A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989, 122 (1), 19-27. Silverman, S. J.; Sburlati, A.; Slater, M. L.; Cabib, E., Chitin synthase 2 is essential for septum formation and cell division in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences 1988, 85 (13), 4735-4739. Singh, B.; Kaur, A., Control of insect pests in crop plants and stored food grains using plant saponins: A review. LWT - Food Science and Technology 2018, 87, 93-101. Soares, L. M.; Radman-Livaja, M.; Lin, S. G.; Rando, O. J.; Buratowski, S., Feedback control of Set1 protein levels is important for proper H3K4 methylation patterns. Cell Rep 2014, 6 (6), 961-972. Tan, S. P.; Kha, T. C.; Parks, S. E.; Roach, P. D., Bitter melon (Momordica charantiaL.) bioactive composition and health benefits: A review. Food Reviews International 2015, 32 (2), 181-202. Teparić, R.; Mrša, V., Proteins involved in building, maintaining and remodeling of yeast cell walls. Current genetics 2013, 59 (4), 171-185. Wang, R.; Lin, P. Y.; Huang, S. T.; Chiu, C. H.; Lu, T. J.; Lo, Y. C., Hyperproduction of beta-Glucanase Exg1 Promotes the Bioconversion of Mogrosides in Saccharomyces cerevisiae Mutants Defective in Mannoprotein Deposition. J Agric Food Chem 2015, 63 (47), 10271-9. Xia, Y. Supercritical fluid extraction of mogrosides from siraitia grosvenorii. McGill University, 2006. Xie, J.; Zhao, D.; Zhao, L.; Pei, J.; Xiao, W.; Ding, G.; Wang, Z., Overexpression and characterization of a Ca 2+ activated thermostable β-glucosidase with high ginsenoside Rb1 to ginsenoside 20 (S)-Rg3 bioconversion productivity. Journal of industrial microbiology & biotechnology 2015, 42 (6), 839-850. Yaakov, G.; Bell, M.; Hohmann, S.; Engelberg, D., Combination of two activating mutations in one HOG1 gene forms hyperactive enzymes that induce growth arrest. Mol Cell Biol 2003, 23 (14), 4826-40. Yan, Q., Xin-Wen Zhou, Wei Zhou, Xing-Wei Li, Mei-Qing Feng, and Pei Zhou, Purification and Properties of a Novel β-Glucosidase, Hydrolyzing Ginsenoside Rb1 to CK, from Paecilomyces Bainier. journal of microbiology and biotechnology 2008, 18 (6), 1081-1089. Yan, Q.; Zhou, X.-W.; Zhou, W.; Li, X.-W.; Feng, M.-Q.; Zhou, P., Purification and properties of a novel beta-glucosidase, hydrolyzing ginsenoside Rb1 to CK, from Paecilomyces Bainier. journal of microbiology and biotechnology 2008, 18 (6), 1081-1089. Yan, S.; Wei, P.-c.; Chen, Q.; Chen, X.; Wang, S.-c.; Li, J.-r.; Gao, C., Functional and structural characterization of a β-glucosidase involved in saponin metabolism from intestinal bacteria. Biochemical and biophysical research communications 2018, 496 (4), 1349-1356. Zhu, W.; Smith, J. W.; Huang, C. M., Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010, 2010, 840518. 崔竣傑; 李波; 程蛟文; 胡開林, 苦瓜苦味物質及其生物合成研究進展. 園藝學報 2015, 9, 1707-1718. 黃祥益, 苦瓜栽培管理技術. 高雄區農技報導 2010, (105), 3-15. 劉宜叡, 加熱溫度及酵母菌生物轉換對苦瓜皂苷之影響. 臺灣大學食品科技研究所學位論文 2017, 1-80. 賴韻如, 探討酵母菌與乳酸菌轉換苦瓜皂苷之影響. 臺灣大學食品科技研究所學位論文 2018, 1-138. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78720 | - |
dc.description.abstract | 苦瓜為亞洲常見之瓜果類蔬菜,具有許多功效性成分,使之成為歷史悠久之藥用植物。皂苷為苦瓜中重要的活性成分之一,其中,3β, 7β, 25-trihydroxycucurbita-5, 23 (E)-dien-19-al (THC) 被發現對誘導引發有醣尿病之小鼠具有降血醣之功效。因此本實驗希望透過酵母菌發酵山苦瓜以提高具降血醣功效成分3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al之含量。實驗先期透過TLC及HPLC-MS/MS分析篩選具皂苷水解能力之菌株,結果發現酵母菌 YCL-L-019 及 YCL-L-020 具轉換 momordicoside L及 momordicoside K 之能力,同時可顯著提升 THC 之含量,並且YCL-L-020之轉換速度比YCL-L-019快。透過滲透壓、剛果紅及 zymolyase 敏感性試驗觀察到YCL-L-020對於滲透壓及剛果紅有較高之敏感性,並於使用SDS-PAGE分析不同酵母菌株之胞外蛋白時亦觀察到YCL-L-020 相對於YCL-L-019有較為複雜之組成,可初步推測 YCL-L-019 及 YCL-L-020 細胞壁存在有差異,為導致其胞外蛋白組成較為複雜及轉換苦瓜皂苷速度較快速的可能原因之一。欲進一步探討是何種酵素作用造成苦瓜皂苷之轉換,本實驗透過分析 YCL-L-020 之胞外蛋白質體及資料庫搜尋推測可能之作用酵素,並以建構質體之方式使 S. cerevisiae 表現推測之酵素,且將表現有該酵素之菌株培養於含苦瓜甲醇萃取物之基質中,觀察該菌株轉換苦瓜皂苷之效果。最終於表現YCL-L-020 BGL1之菌株中觀察到轉換苦瓜皂苷之效果且轉換效果與YCL-L-020之轉換效果相似,後續可再針對該酵素之活性優化及應用進行探討。 | zh_TW |
dc.description.abstract | Momordica charantia L., also known as bitter gourd, belongs to family Cucurbitaceae and has been used as herbal medicine for a long time in Asia and Africa. Previous studies indicated that saponins play important roles in the bioactivity of Momordica charantia. Particularly, 3β, 7β, 25-trihydroxycucurbita-5, 23 (E)-dien-19-al (THC) is specific saponin that has been reported to have hypoglycemic effects in the diabetes-induced male ddY mice. The aim of this study is to find a unique yeast can enhance the content of THC. In the analysis of thin layer chromatography and HPLC-MS/MS, we found that YCL-L-019 and YCL-L-020 are both able to transform momordicoside L into THC while YCL-L-020 convert more rapidly compared to YCL-L-019. By the test of osmotic sensitivity, congo red sensitivity, Zymolyase sensitivity, and SDS-PAGE analysis, we propose that the difference of cell wall between YCL-L-019 and YCL-L-020 might be a reason why YCL-L-020 have a higher speed in saponin transformation than YCL-L-019. To find out which enzyme is critical for YCL-L-020 to transform the saponins of Momordica charantia further, we use secretome analysis and database searching to screen candidates and clone these enzyme in plasmid and transform into Saccharomyces cerevisiae BY4741 mutants that can’t convert bitter melon saponin in previous experiment. Successfully, we found that the S. cerevisiae BY4741 expresses the BGL1 of YCL-L-020 can specifically convert momordicoside L into THC. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:14:32Z (GMT). No. of bitstreams: 1 ntu-108-R06641017-1.pdf: 12841355 bytes, checksum: d06bf952e1c493808e4f7a6e7b32f9ce (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii 目錄 iii 圖目錄 v 表目錄 vi 附錄目錄 vii 第一章、前言 1 第二章、文獻回顧 2 第一節、苦瓜 2 一、苦瓜簡介 2 二、苦瓜皂苷 3 三、皂苷分析方法 5 第二節、生物轉換 7 一、生物轉換具醣苷之苦味物質 7 二、三萜類皂苷之生物轉換 7 第三節、酵母菌細胞壁 9 一、幾丁質 9 二、葡聚醣 9 三、甘露醣蛋白 10 第四節、蛋白質體分析 11 第三章、研究目的與實驗架構 12 第四章、材料與方法 14 第一節、實驗材料 14 一、山苦瓜 14 二、酵母菌菌株 14 三、質體 14 四、引子 14 五、藥品與試劑 19 六、儀器設備 20 七、統計軟體 21 第二節、實驗方法 22 一、酵母菌生物轉換苦瓜皂苷萃取物 22 二、基本特性確認 24 三、外泌蛋白分析 25 四、作用酵素探討 28 第五章、結果與討論 31 第一節、探討酵母菌轉換苦瓜萃取物中皂苷之能力 31 一、菌株篩選 31 二、YCL-L-019及YCL-L-020轉換苦瓜甲醇萃取物之探討 33 第二節、YCL-L-020及YCL-L-020菌株基本特性之探討 37 一、生長溫度及世代時間 37 二、滲透壓耐受性 39 三、剛果紅耐受性 40 四、酵母菌裂解酶 (zymolyase) 敏感性 42 五、外泌蛋白組成 44 第三節、YCL-L-020中可能作用酵素之篩選 46 第四節、作用酵素之探討 49 一、質體骨架建構 51 二、酵素基因置入及轉換苦瓜皂苷能力探討 52 第六章、結論與展望 72 第七章、參考文獻 73 第八章、附錄 80 | - |
dc.language.iso | zh_TW | - |
dc.title | 以酵母菌發酵提高苦瓜甲醇萃取物中功效性成分3β, 7β, 25-trihydroxycucurbita-5, 23 (E)-dien-19-al之探討 | zh_TW |
dc.title | Increasing 3β, 7β, 25-trihydroxycucurbita-5, 23 (E)-dien-19-al content in methanolic extract of Momordica charantia L. by yeast fermentation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃青真;呂廷璋;陳勁初;廖辰中;邱群惠 | zh_TW |
dc.contributor.oralexamcommittee | ;;;; | en |
dc.subject.keyword | 苦瓜,3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al,酵母菌,外泌蛋白,BGL1, | zh_TW |
dc.subject.keyword | Momordica charantia,3β,7β,25-trihydroxycucurbita-5,23 (E)-dien-19-al,yeast,BGL1, | en |
dc.relation.page | 100 | - |
dc.identifier.doi | 10.6342/NTU201902141 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-07-30 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 食品科技研究所 | - |
dc.date.embargo-lift | 2029-12-31 | - |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 12.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。