Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78689
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁俞文
dc.contributor.authorChao-Yi Chienen
dc.contributor.author簡肇毅zh_TW
dc.date.accessioned2021-07-11T15:12:24Z-
dc.date.available2022-06-30
dc.date.copyright2019-08-15
dc.date.issued2019
dc.date.submitted2019-08-02
dc.identifier.citation1. Ahn, J., Kwon, T., Park, H., Kim, K. Purification of peptide fractions with anticomplementary activity from red ginseng (Panax ginseng, CA Meyer). In Peptide Science—Present and Future, Springer: 1999, pp 421-423.
2. Ando, T., Muraoka, T., Yamasaki, N., Okuda, H. Preparation of anti-lipolytic substance from Panax ginseng. Planta medica 1980, 38 (01), 18-23.
3. Attele, A. S., Wu, J. A., Yuan, Chun-Su. Ginseng pharmacology: multiple constituents and multiple actions. Biochemical Pharmacology 1999, 58 (11), 1685-1693.
4. Azmir, J., Zaidul, I., Rahman, M., Sharif, K., Mohamed, A., Sahena, F., Jahurul, M., Ghafoor, K., Norulaini, N., Omar, A. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering 2013, 117 (4), 426-436.
5. Cai, Yi-Zhong, Sun, M., Xing, J., Luo, Q., Corke, H. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life sciences 2006, 78 (25), 2872-2888.
6. Chebil, L., Humeau, C., Anthoni, J., Dehez, F., Engasser, JM., Ghoul, M. Solubility of flavonoids in organic solvents. Journal of chemical & engineering data 2007, 52 (5), 1552-1556.
7. Chemat, F., Rombaut, N., Sicaire, Anne-Gaelle., Meullemiestre, A., Anne-Sylvie Fabiano-Tixier, Abert-vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics sonochemistry 2017, 34, 540-560.
8. Chemat, F., Vian, M. A., Cravotto, G. Green extraction of natural products: concept and principles. International Journal of Molecular Science 2012, 13 (7), 8615-8627.
9. Cheng, H., Li, S., Fan, Y., Gao, X., Hao, M., Wang, J., Zhang, X., Tai, G., Zhou, Y. Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells. Medical Oncology 2011, 28 (1), 175-181.
10. Cho WC, Chung, WS., Lee SK., Leung, Albert W.N., Cheng C.H.K., Yue, K.K.M. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. European Journal of Pharmacology 2006, 550 (1-3), 173-179.
11. CHOI, KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. 2008, 29 (9), 1109-1118.
12. Christensen, LP., Jensen M., Kidmose U. Simultaneous determination of ginsenosides and polyacetylenes in American ginseng root (Panax quinquefolium L.) by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry 2006, 54 (24), 8995-9003.
13. Church, F. C., Swaisgood, H. E., Porter, D. H., Catignani G.L. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science 1983, 66 (6), 1219-1227.
14. Das, D., Sato, M., Ray, P., Maulik, G., Engelman, R., Bertelli, A., Bertelli, A. Cardioprotection of red wine: role of polyphenolic antioxidants. Drugs under experimental and clinical research 1999, 25 (2-3), 115-120.
15. De Castro, M. L., Priego-Capote, F. Soxhlet extraction: Past and present panacea. Journal of Chromatography A 2010, 1217 (16), 2383-2389.
16. De Whalley C.V., Rankin S.M., Hoult, J.R., Jessup, W., Leake, D.S. Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. Biochemical pharmacology 1990, 39 (11), 1743-1750.
17. Dias, A., Santos, P., Seabra, I., Seabra, I.J., Junior R.N.C., Braga, M.E.M., De Sousa H.C. Spilanthol from Spilanthes acmella flowers, leaves and stems obtained by selective supercritical carbon dioxide extraction. The Journal of Supercritical Fluids 2012, 61, 62-70.
18. Du, R., Qiao, X., Zhao, F., Song, Q., Zhou, Q., Wang, Y., Pan, L., Han, Y., Zhou, Z. Purification, characterization and antioxidant activity of dextran produced by Leuconostoc pseudomesenteroides from homemade wine. Carbohydrate Polymers 2018, 198, 529-536.
19. Eskilsson, C.S., Björklund, E.J. Analytical-scale microwave-assisted extraction. Journal of Chromatography A 2000, 902 (1), 227-250.
20. Ferreira, I. C., Baptista, P., Vilas-Boas, M., Barros, L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chemistry 2007, 100 (4), 1511-1516.
21. Fotakis, G., Timbrell, J.A. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters 2006, 160 (2), 171-177.
22. Fridman, A. Plasma chemistry. Cambridge university press: 2008.
23. Fu, P., Wang, W., Gao, Q., Jiang, R., Zhong, C., Jiao, L., Zhang, D. Chemical properties and anti-tumor activity of polysaccharides from roots of Panax ginseng. Baiqiuen Yike Daxue Xuebao 1994, 20 (5), 439-441.
24. Goldstein, B. Ginseng: its history, dispersion, and folk tradition. 1975, 3 (03), 223-234.
25. Hao, Jin-yu., Han, W., Xue, Bo-yong., Deng, X.J.S., Technology, P. Microwave-assisted extraction of artemisinin from Artemisia annua L. 2002, 28 (3), 191-196.
26. Hatami, T., Johner, J.C., Zabot, G.L., Meireles, M.A. Supercritical fluid extraction assisted by cold pressing from clove buds: Extraction performance, volatile oil composition, and economic evaluation. 2019, 144, 39-47.
27. Huang, Hsiao-Wen, Hsu, Chiao-Ping, Yang, Binghuei Barry, Wang, Chung-Yi. Technology, Advances in the extraction of natural ingredients by high pressure extraction technology. 2013, 33 (1), 54-62.
28. Ismail, A., Marjan, Z.M., Foong, C.W. Total antioxidant activity and phenolic content in selected vegetables. 2004, 87 (4), 581-586.
29. Jeon, B.H., Kim, C.S., Park, K.S., Lee, J.W., Park, J.B., Kim, K.J., Kim, S.H., Chang, S.J., Nam, K.Y. Effect of Korea red ginseng on the blood pressure in conscious hypertensive rats. 2000, 35 (3), 135-141.
30. Jin, Hyun-O, Kim, Ung-Jin., Yang, Deok-Chun. Effect of nutritional environment in ginseng field on the plant growth of ginseng (Panax ginseng CA Meyer). 2009, 33 (3), 234-239.
31. Johner, J.C., Hatami, T., Meireles, M.A. Developing a supercritical fluid extraction method assisted by cold pressing for extraction of pequi (Caryocar brasiliense). 2018, 137, 34-39.
32. Jovanovski, E., Jenkins, A., Dias, A.G., Peeva, V., Sievenpiper, J., Arnason, J.T., Rahelic, D., Josse, R.G., Vuksan, V.J. Effects of Korean red ginseng (Panax ginseng CA Mayer) and its isolated ginsenosides and polysaccharides on arterial stiffness in healthy individuals. 2010, 23 (5), 469-472.
33. Jui-Yang Wang. Studies on the Feasibility and Effectiveness of Atmospheric Cold Plasma Used in Extracting Ginsenosides from Ginseng. Master Thesis 2018, National Taiwan University.
34. Jung, Chang-Hwa., Seog, Ho-Moon., Choi, In-Wook, Chao, H.Y. Antioxidant activities of cultivated and wild Korean ginseng leaves. 2005, 92 (3), 535-540.
35. Jung, Chang-Hwa, Seog, Ho-Moon, Choi, In-Wook, Chao, H.Y. Technology, Antioxidant properties of various solvent extracts from wild ginseng leaves. 2006, 39 (3), 266-274.
36. Kapás, Á., András, C.D., Dobre, T.G., Vass, E., Székely, G., Stroescu, M., Lányi, S., Ábrahám, B. The kinetic of essential oil separation from fennel by microwave assisted hydrodistillation (MWHD). Sci. Bull. Ser. B 2011, 73, 113-120.
37. Keum, YS., Park, KK., Lee, JM., Chun, K.S., Park, J.H., Lee, S.K., Kwon, H., Surh, Y.J. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. 2000, 150 (1), 41-48.
38. Kim, Hyun-Joo, Yong, Hae In, Park, S., Kim, K., Choe, W., Jo, C. Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. 2015, 47, 451-456.
39. Kim, H.S., Lee, E.H., Ko, S.R., Choi, K.J., Park, J.H., Im, D.S. Effects of ginsenosides Rg 3 and Rh 2 on the proliferation of prostate cancer cells. 2004, 27 (4), 429.
40. Kim, S.N., Ha, Y.W., Shin, H., Son, S.H., Wu, S.J., Kim, Y.S. Simultaneous quantification of 14 ginsenosides in Panax ginseng CA Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control. 2007, 45 (1), 164-170.
41. Kim, Y. K., Guo, Q., Packer, L. J. T. Free radical scavenging activity of red ginseng aqueous extracts. 2002, 172 (2), 149-156.
42. Kim, Y. S., Kang, K. S., Kim, S. I. Study on antitumor and immunomodulating activities of polysaccharide fractions fromPanax ginseng: Comparison of effects of neutral and acidic polysaccharide fraction. Archives of Pharmacal Research 1990, 13 (4), 330-337.
43. Kitts, D., Hu, C. Efficacy and safety of ginseng. 2000, 3 (4a), 473-485.
44. Klayman, D. L. Qinghaosu (artemisinin): an antimalarial drug from China. 1985, 228 (4703), 1049-1055.
45. Koo, HN., Jeong, HJ., Choi, IY., An, H.J., Moon, P.D., Kim, S.J., Jee, S.Y., Um, J.Y., Hong, S.H., Shin, S.S. Mountain grown ginseng induces apoptosis in HL-60 cells and its mechanism have little relation with TNF-α production. 2007, 35 (01), 169-182.
46. Kovačević, D. B., Putnik, P.,Dragović-Uzelac, V., Pedisić, S., Jambrak, A.R., Herceg, Z. Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry 2016, 190, 317-323.
47. Krol, ES., Liebler, DC. Photoprotective actions of natural and synthetic melanins. 1998, 11 (12), 1434-1440.
48. Latif, S., Anwar, F. Aqueous enzymatic sesame oil and protein extraction. 2011, 125 (2), 679-684.
49. Lee, S. Privatization of state infrastructure. 1996.
50. Lee, YS., Cha, BY., Yamaguchi, K., Choi, S.S., Yonezawa, T., Teruya, T., Nagai, K., Woo, J.T. Effects of Korean white ginseng extracts on obesity in high-fat diet-induced obese mice. 2010, 62 (4), 367-376.
51. Li, Thomas S.C. Asian and American ginseng—a review. 1995, 5 (1), 27-34.
52. Liang, D., Zhou, Q., Gong, W., Wang, Y., Nie, Z., He, H., Li, J., Wu, J., Wu, C., Zhang, J. Studies on the antioxidant and hepatoprotective activities of polysaccharides from Talinum triangulare. Journal of ethnopharmacology 2011, 136 (2), 316-321.
53. Liu, Jun-jun, Gasmalla, M. A. A., Li, P., Yang, R. Enzyme-assisted extraction processing from oilseeds: Principle, processing and application. Technologies, E. 2016, 35, 184-193.
54. Liu, XL., Xi, QY., Yang, L., Li, H.Y., Jiang, Q.Y., Shu, G., Wang, S.B., Gao, P., Zhu, X.T., Zhang, Y.L. The effect of dietary Panax ginseng polysaccharide extract on the immune responses in white shrimp, Litopenaeus vannamei. Fish & shellfish immunology 2011, 30 (2), 495-500.
55. Loewald, H. W. Sublimation: Inquiries into theoretical psychoanalysis. Yale University Press: 1988.
56. Lois, R., Buchanan, B. B. Severe sensitivity to ultraviolet radiation in an Arabidopsis mutant deficient in flavonoid accumulation. Planta 1994, 194 (4), 504-509.
57. Lu, JM., Yao Q., Chen, C. Ginseng compounds: an update on their molecular mechanisms and medical applications. 2009, 7 (3), 293-302.
58. Lu, X., Laroussi, M., Puech, V. Technology, On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. 2012, 21 (3), 034005.
59. Luo, D., Fang, B. Structural identification of ginseng polysaccharides and testing of their antioxidant activities. Carbohydrate Polymers 2008, 72 (3), 376-381.
60. Martin, J., Martin, M., Bernays, E. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores. Journal of Chemical Ecology 1987, 13 (3), 605-621.
61. Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S.I., Lee, Y. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. 2005, 339 (1), 69-72.
62. Misra, N., Patil, S., Moiseev, T., Bourke, P., Mosnier, J., Keener, K., Cullen, P. In-package atmospheric pressure cold plasma treatment of strawberries. 2014, 125, 131-138.
63. Misra, N., Schlüter, O., Cullen, P. J. Cold plasma in food and agriculture: Fundamentals and applications. Academic Press: 2016.
64. Misra, N. The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends in Food Science & Technology 2015, 45 (2), 229-244.
65. Mustafa, A., Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica chimica acta 2011, 703 (1), 8-18.
66. Ni, W., Zhang, X., Wang, B., Chen, Y., Han, H., Fan, Y., Zhou, Y., Tai, G. Antitumor activities and immunomodulatory effects of ginseng neutral polysaccharides in combination with 5-fluorouracil. Journal of medicinal food 2010, 13 (2), 270-277.
67. Ozgen, M., Reese, R. N., Tulio, A. Z., Scheerens, J. C., Miller, A. R. Modified 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2, 2 ‘-diphenyl-1-picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry 2006, 54 (4), 1151-1157.
68. Paik, W., Liddy, E. D., Liddy, J. H., Niles, I. H., Allen, E. E. Information extraction system and method using concept relation concept (CRC) triples. Google Patents: 2000.
69. Pare, J. J., Sigouin, M., Lapointe, J. Microwave-assisted natural products extraction. Google Patents: 1991.
70. Park, EY., Kim, MH., Kim, EH., Lee, EK., Park, IS., Yang, DC., Jun, HS. Efficacy comparison of Korean ginseng and American ginseng on body temperature and metabolic parameters. 2014, 42 (01), 173-187.
71. Park, J. D., Rhee, D. K., Lee, Y. H. Biological activities and chemistry of saponins from Panax ginseng CA Meyer. Phytochemistry Reviews 2005, 4 (2-3), 159-175.
72. Patel, P. N., Patel, K. M., Chaudhary, D. S., Parmar, K. G., Patel, H. A., Kansagra, C. D., Sen, D. D. Extraction of herbal aroma oils from solid surface. 2011, 2 (08), 1-10.
73. Patist, A., Bates, D. Ultrasonic innovations in the food industry: From the laboratory to commercial production. 2008, 9 (2), 147-154.
74. Patras, A., Brunton, N. P., O'Donnell, C., Tiwari, B. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology 2010, 21 (1), 3-11.
75. Posener Eyal, Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Mu’alem, A. S. A. Ginseng: Market-Driven Memory Allocation.
76. Proestos, C., Komaitis, M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT – Food Science and Technology 2008, 41 (4), 652-659.
77. Puri, M., Sharma, D., Barrow, C. Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology 2012, 30 (1), 37-44.
78. Redfern, J., Kinninmonth, M., Burdass, D., Verran, J. Using soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties. Journal of Microbiology & Bbiology Education 2014, 15 (1), 45.
79. Sen, S., Querques, M. A., Chakrabarti, S. North American Ginseng (Panax quinquefolius) prevents hyperglycemia and associated pancreatic abnormalities in diabetes. Journal of Medicinal Food 2013, 16 (7), 587-592.
80. Shin, Byong-Kyu, Kwon, Sung Won, Park, Jeong Hill. Chemical diversity of ginseng saponins from Panax ginseng. Journal of Ginseng Research 2015, 39 (4), 287-298.
81. Sun, Bai-Shen, Gu, Li-Juan, Fang, Zhe-Ming, Wang, C.Y., Wang, Z., Lee, M.R., Li, Z., Li, J.J., Sung, C.K. Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC–ELSD. Journal of Pharmaceutial and Biomedical Analysis 2009, 50 (1), 15-22.
82. Sun, C., Chen, Y., Li, X., Tai, G., Fan, Y., Zhou, Y. Anti-hyperglycemic and anti-oxidative activities of ginseng polysaccharides in STZ-induced diabetic mice. Food & function 2014, 5 (5), 845-848.
83. Sun, Y. Structure and biological activities of the polysaccharides from the leaves, roots and fruits of Panax ginseng CA Meyer: an overview. Carbohydrate Polymers 2011, 85 (3), 490-499.
84. Suslick, K. Effects of ultrasound on surfaces and solids. Advances in sonochemistry 1990, 1, 197-230.
85. Thirumdas, R., Sarangapani, C., Annapure, U. S. Cold plasma: a novel non-thermal technology for food processing. Food Biophysics 2015, 10 (1), 1-11.
86. Vilkhu, K., Mawson, R., Simons, L., Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innovative Food Science & Emerging Technologies 2008, 9 (2), 161-169.
87. Wu, JM., Wang, ZR., Hsieh, TC., Bruder, JL., Zou, JG., Huang, YZ. Mechanism of cardioprotection by resveratrol, a phenolic antioxidant present in red wine. International Journal of Molecular Medicine 2001, 8 (1), 3-17.
88. Wu, J., Zhong, J.-J. Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects. Journal of Biotechnology 1999, 68 (2-3), 89-99.
89. Yagi, A., Akita, K., Ueda, T., Okamura, N., Itoh, H. Effect of a peptide from Panax ginseng on the proliferation of baby hamster kidney-21 cells. Planta medica 1994, 60 (02), 171-174.
90. Yagi, A., Ishizu, T., Okamura, N., Noguchi, S., Itoh, H. Growth of cultured human bronchiogenic epithelioid CCD-14 Br cells and dermal fibroblasts, NB1 RGB treated with ginseng tetrapeptide and its isomer. Planta medica 1996, 62 (02), 115-118.
91. Yoon, M., Lee, H., Jeong, S., Kim, J. J., Nicol, C. J., Nam, K. W., Kim, M., Cho, B. G., Oh, G. T. Peroxisome proliferator‐activated receptor α is involved in the regulation of lipid metabolism by ginseng. British Journal of Pharmacology 2003, 138 (7), 1295-1302.
92. Yoon, S. H., Han, E. J., Sung, J. H., Chung, S. H. Anti-diabetic effects of compound K versus metformin versus compound K-metformin combination therapy in diabetic db/db mice. Biological and Pharmaceutical Bulletin 2007, 30 (11), 2196-2200.
93. Yun, TK. Brief introduction of Panax ginseng CA Meyer. 2001, 16 (Suppl), S3.
94. Zhao, G., Chen, X., Wang, L., Zhou, S., Feng, H., Chen, W. N., Lau, R. Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresource Technology 2013, 128, 337-344.
95. Zuorro, A., Maffei, G., Lavecchia, R. Optimization of enzyme-assisted lipid extraction from Nannochloropsis microalgae. Journal of the Taiwan Institute of Chemical Engineers 2016, 67, 106-114.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78689-
dc.description.abstract當人參(ginseng, Panax ginseng)開始被發現具有醫學療效及健康保護的作用以後,除了在許多成果研究上的投入與驗證,也伴隨著其市場價值的提升,其中原因主要來自人參根部中的生物活性成分:人參皂苷、多醣體、胜肽類以及酚類化合物等。然而礙於人參細胞壁結構相對堅硬,在傳統萃取上影響溶劑滲透以致效果不彰且費時耗能,進而開始有許多研究致力於提升萃取效率,關於微波、超音波等技術已被使用於輔助人參活性成分的萃取,但此些過程亦有研究指出許多人參中天然化合物是熱不穩定的,在熱加工過程中可能裂解。故本研究著手於電漿輔助萃取技術並探討此一新興加工未來應用之可行性,其中電漿為物質的第四態,組成中涵蓋氣體原子、分子、陰陽離子、自由基等狀態,利用上述具強氧化性質之成分得以與標的物表面產生化學鍵結變化達成表面改質效果,期望常溫大氣電漿得以對人參造成相對應的細胞壁結構破壞以促進萃取溶劑滲透效果,藉此獲得更多生物活性成分。
綜上所述,本研究可分為三部分:第一部分是分別以有機溶劑及水相萃取方法所得之兩類粗萃液進行總醣、胜肽、總酚的定量分析,數據上顯示電漿處理確實有助提升醣類、胜肽及酚類化合物的萃取率,且每類中之電漿處理組別對比控制組都有著顯著差異。第二部分是對兩類粗萃液進行能力分析,當中電漿處理組在抗氧化能力及還原力方面有著顯著提升的效果,推論是由於生物活性成分含量上升所致,而在兩類萃取方法比較下,有機溶劑萃取的整體效果在酚類、抗氧化能力及還原力上都明顯高出水相萃取15 ~ 30%;而在細胞存活率測試上,有機及水相萃取液兩類之間所得結果截然不同,數據間表明有機粗萃液對於HepG2具有顯著抑制殺滅的功效,而水相萃取液則能有效促進HepG2的生長多達250%。
最後第三部分是透過研究成果進行總結,其實驗結果均如出一轍地表明常溫大氣電漿在未來萃取上的正面意義—具潛力發展為常溫大氣電漿輔助萃取法,有利萃取效率提升,對未來極有可能成為萃取上的新興輔助技術。
zh_TW
dc.description.abstractWhen Ginseng (Panax ginseng) was found to have medical efficacy and health protection, in addition to the investment and verification in many results research, it also accompanied its market value improvement. As result of its richness of ginsenosides, ginseng polysaccharides, ginseng peptides and phenolic compounds, ginseng have been reported to possess many biofunctionalities. Due to the relatively hard cell wall structure of ginseng, the influence of solvent penetration on traditional extraction is ineffective, time-consuming and energy-intensive. Thus, many researches had focuses on the application of novel technologies, such as microwave and ultrasonic, to enhance the extraction efficiency of bioactive component from ginseng. However, more studies has also indicated that many natural compounds in ginseng were readily degraded when there are heating involved in process. Therefore, this study will explore the feasibility to apply of the non-thermal plasma to assisted the extraction of ginseng bioactives. Plasma is the fourth state of matter, which covers several states such as gas atoms, molecules, anions, cations, and free radicals. Thereby, the above-mentioned composition having strong oxidizing properties is used to cause a chemical bond change with the surface of the target to achieve surface modification. We expect that cold atmospheric plasma could cause damage to the ginseng cell wall structure and, thus, to improve the penetration effect of the extracting solvent, thereby obtaining more of bioactive constituents.
In summary, the study can be divided into three parts. The first part is the quantitative analysis of total sugar, peptide and total phenol by two kinds of crude extracts obtained by organic solvent and aqueous phase extraction methods. The data show that plasma treatment can improve the extraction efficiency of sugars, peptides and phenolic compounds. There are significant differences between the plasma treatment group and control group.The second part is the capacity analysis of the two types of crude extracts. Among them, the plasma treatment group has a significant improvement in antioxidant capacity and reducing power. The inference is due to the increase in the content of biological active ingredients. Compared with the two types of extraction methods, the extraction efficiency of organic solvents is significantly higher than that of aqueous phase extraction in phenols, antioxidant capacity and reducing power by 15 ~ 30%. In the cell viability test, the results obtained between the organic and aqueous extracts were completely different. The data showed that the organic crude extract had a significant killing effect on HepG2, while the aqueous extract could effectively promote the growth of HepG2. The last part is a summary of the research results. The experimental results show the potential of Atmospheric cold plasma in future extraction. It will develop into the Atmospheric cold plasma assisted extraction method, which will improve the extraction efficiency and will become an emerging assistive technology for extraction in the future.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:12:24Z (GMT). No. of bitstreams: 1
ntu-108-R06641010-1.pdf: 3288025 bytes, checksum: 0ba65904111492e210c17776d87e3683 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 I
中文摘要 III
ABSTRACT IV
目錄 VI
圖目錄 IX
表目錄 X
第一章 前言 1
第二章 文獻回顧 2
2.1 人參 2
2.1.1 人參簡介 2
2.1.2 人參分類 2
2.1.3 生物活性成分 6
2.1.4 高麗參概述 12
2.2 萃取 13
2.2.1 萃取概述 13
2.2.2 傳統萃取法 17
2.2.3 非傳統萃取法 21
2.2.4 不同萃取技術之比較 25
2.3 電漿 27
2.3.1 電漿概述 27
2.3.2 常溫大氣電漿的機制 28
2.3.3 常溫大氣電漿的來源 30
2.3.4 常溫大氣電漿的應用 33
2.3.5 常溫大氣電漿的限制 36
2.3.6 常溫大氣電漿的展望 37
第三章 實驗架構 38
3.1 常溫大氣電漿對人參之前處理 38
3.2 常溫大氣電漿輔助人參萃取之研究 39
第四章 材料與方法 40
4.1 實驗材料 40
4.1.1 新鮮人參 40
4.1.2 試藥與溶劑 40
4.2 儀器與設備 41
4.3 實驗方法 43
4.3.1 人參前處理 43
4.3.2 常溫大氣電漿處理 43
4.3.3 人參樣品之有機溶劑萃取 43
4.3.4人參樣品之水相溶劑萃取 44
第五章 結果與討論 47
5.1 常溫大氣電漿輔助人參有機溶劑萃取之研究 47
5.1.1 總酚類物質定量分析 47
5.1.2 DPPH自由基清除能力分析 49
5.1.3 赤血鹽還原力測試 51
5.1.4 HepG2之MTT測試 53
5.2 常溫大氣電漿輔助人參水相萃取之研究 55
5.2.1 粗萃物含量 55
5.2.2 總醣含量分析 57
5.2.3 總胜肽含量分析 59
5.2.4 總酚類物質定量分析 61
5.2.5 DPPH自由基清除能力分析 63
5.2.6 赤血鹽還原力測試 63
5.2.7 HepG2之MTT測試 66
第六章 結論 68
第七章 未來展望 69
第八章 參考文獻 70
dc.language.isozh-TW
dc.title以常溫大氣電漿前處理輔助人參萃取之研究zh_TW
dc.titleAtmospheric Cold Plasma Pretreatment in Assisting
the Extraction of Ginseng
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳瑞碧,沈賜川,鄭光成,吳宗信
dc.subject.keyword新興輔助萃取技術,常溫大氣電漿,人參萃取,人參生物活性成分,zh_TW
dc.subject.keywordEmerging auxiliary extraction technology,Atmospheric cold plasma,Ginseng extraction,Ginseng bioactive components,en
dc.relation.page77
dc.identifier.doi10.6342/NTU201902480
dc.rights.note有償授權
dc.date.accepted2019-08-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R06641010-1.pdf
  目前未授權公開取用
3.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved