請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78671
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭如忠 | zh_TW |
dc.contributor.author | 黃昱翔 | zh_TW |
dc.contributor.author | Yu-Hsiang Huang | en |
dc.date.accessioned | 2021-07-11T15:11:11Z | - |
dc.date.available | 2024-08-12 | - |
dc.date.copyright | 2019-08-14 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Anastas, P., Eghbali N. Green Chemistry: Principles and Practice. Chem Soc Rev 2010, 39 (1), 301-12.
2. Stokes, K.; McVenes, R.; Anderson, J. M., Polyurethane elastomer biostability. Journal of Biomaterials Applications 1995, 9 (4), 321-354. 3. Geyer, R.; Jambeck, J. R.; Law, K. L., Production, use, and fate of all plastics ever made. Science Advances 2017, 3 (7), e1700782. 4. Achilias, D.; Roupakias, C.; Megalokonomos, P.; Lappas, A.; Antonakou, Ε., Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials 2007, 149 (3), 536-542. 5. Al-Salem, S.; Lettieri, P.; Baeyens, J., Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management 2009, 29 (10), 2625-2643. 6. Elmaghor, F.; Zhang, L.; Fan, R.; Li, H., Recycling of polycarbonate by blending with maleic anhydride grafted ABS. Polymer 2004, 45 (19), 6719-6724. 7. Montaudo, G.; Puglisi, C.; Samperi, F., Thermal decomposition processes in polycarbonates. Polymer Degradation and Stability 1989, 26 (3), 285-304. 8. Gobin, K.; Manos, G., Thermogravimetric study of polymer catalytic degradation over microporous materials. Polymer Degradation and Stability 2004, 86 (2), 225-231. 9. Antonakou, E.; Achilias, D., Recent advances in polycarbonate recycling: A review of degradation methods and their mechanisms. Waste and Biomass Valorization 2013, 4 (1), 9-21. 10. Hata, S.; Goto, H.; Yamada, E.; Oku, A., Chemical conversion of poly (carbonate) to 1, 3-dimethyl-2-imidazolidinone (DMI) and bisphenol A: a practical approach to the chemical recycling of plastic wastes. Polymer 2002, 43 (7), 2109-2116. 11. Lin, W.-H.; Guo, Y.-S.; Dai, S. A., An efficient one-pot synthesis of aliphatic diisocyanate from diamine and aiphenyl carbonate. Journal of the Taiwan Institute of Chemical Engineers 2015, 50, 322-327. 12. Wu, C.-H.; Chen, L.-Y.; Jeng, R.-J.; Dai, S. A., 100% atom-economy efficiency of recycling polycarbonate into versatile intermediates. ACS Sustainable Chemistry & Engineering 2018, 6 (7), 8964-8975. 13. Porter, M., Rubber processing and production organization. By PK Freakley, Plenum Press, New York, 1985. pp. xv+ 455, price£ 60.34. ISBN 0‐306‐41745‐6. British Polymer Journal 1986, 18 (6), 403-403. 14. Furukawa, M.; Mitsui, Y.; Fukumaru, T.; Kojio, K., Microphase-separated structure and mechanical properties of novel polyurethane elastomers prepared with ether based diisocyanate. Polymer 2005, 46 (24), 10817-10822. 15. Szycher, M., Szycher's Handbook of Polyurethanes. CRC press: 1999. 16. Szycher, M., Szycher's Handbook of Polyurethanes. CRC press: 2012. 17. Boretos, J. W.; Pierce, W. S., Segmented polyurethane: a new elastomer for biomedical applications. Science 1967, 158 (3807), 1481-1482. 18. Dodiuk, H.; Goodman, S. H., Handbook of Thermoset Plastics. William Andrew: 2013. 19. Janik, H.; Sienkiewicz, M.; Kucinska-Lipka, J., Polyurethanes. In Handbook of Thermoset Plastics, Elsevier: 2014; pp 253-295. 20. Brinker, C. J.; Scherer, G. W., Sol-gel Science: the Physics and Chemistry of Sol-Gel Processing. Academic press: 2013. 21. Verdolotti, L.; Lavorgna, M.; Lamanna, R.; Di Maio, E.; Iannace, S., Polyurethane-silica hybrid foam by sol–gel approach: Chemical and functional properties. Polymer 2015, 56, 20-28. 22. Chung, Y.-C.; Kang, K. S.; Chun, B. C., Lateral sol–gel cross-linking of polyurethane using the a grafted triethoxysilyl group. Journal of Sol-Gel Science and Technology 2014, 72 (3), 543-552. 23. Lee, T.; Kwon, S.; Kim, B., Biodegradable sol–gel coatings of waterborne polyurethane/gelatin chemical hybrids. Progress in Organic Coatings 2014, 77 (6), 1111-1116. 24. Jeon, H. T.; Jang, M. K.; Kim, B. K.; Kim, K. H., Synthesis and characterizations of waterborne polyurethane–silica hybrids using sol–gel process. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007, 302 (1-3), 559-567. 25. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L., Silica-like malleable materials from permanent organic networks. Science 2011, 334 (6058), 965-968. 26. Brutman, J. P.; Delgado, P. A.; Hillmyer, M. A., Polylactide vitrimers. ACS Macro Letters 2014, 3 (7), 607-610. 27. Snyder, R. L.; Fortman, D. J.; De Hoe, G. X.; Hillmyer, M. A.; Dichtel, W. R., Reprocessable acid-degradable polycarbonate Vitrimers. Macromolecules 2018, 51 (2), 389-397. 28. Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R., Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. Journal of the American Chemical Society 2015, 137 (44), 14019-14022. 29. Chandrasekaran, S. R.; Avasarala, S.; Murali, D.; Rajagopalan, N.; Sharma, B. K., Materials and energy recovery from e-waste plastics. ACS Sustainable Chemistry & Engineering 2018, 6 (4), 4594-4602. 30. Beneš, H.; Paruzel, A.; Trhlíková, O.; Paruzel, B., Medium chain glycerides of coconut oil for microwave-enhanced conversion of polycarbonate into polyols. European Polymer Journal 2017, 86, 173-187. 31. Seeni Meera, K. M.; Murali Sankar, R.; Jaisankar, S. N.; Mandal, A. B., Physicochemical studies on polyurethane/siloxane cross-linked films for hydrophobic surfaces by the sol–gel process. The Journal of Physical Chemistry B 2013, 117 (9), 2682-2694. 32. Fidalgo, A.; Ilharco, L. M., The defect structure of sol–gel-derived silica/polytetrahydrofuran hybrid films by FTIR. Journal of Non-Crystalline Solids 2001, 283 (1-3), 144-154. 33. Chen, T. K.; Chui, J. Y.; Shieh, T. S., Glass transition behaviors of a Polyurethane hard segment based on 4, 4 ‘-diisocyanatodiphenylmethane and 1, 4-butanediol and the calculation of microdomain composition. Macromolecules 1997, 30 (17), 5068-5074. 34. Ping, P.; Wang, W.; Chen, X.; Jing, X., The influence of hard‐segments on two‐phase structure and shape memory properties of PCL‐based segmented polyurethanes. Journal of Polymer Science Part B: Polymer Physics 2007, 45 (5), 557-570. 35. Fu, B. X.; Hsiao, B. S.; White, H.; Rafailovich, M.; Mather, P. T.; Jeon, H. G.; Phillips, S.; Lichtenhan, J.; Schwab, J., Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer. Polymer International 2000, 49 (5), 437-440. 36. Alexandru, M.; Cazacu, M.; Cristea, M.; Nistor, A.; Grigoras, C.; Simionescu, B. C., Poly (siloxane‐urethane) crosslinked structures obtained by sol‐gel technique. Journal of Polymer Science Part A: Polymer Chemistry 2011, 49 (7), 1708-1718. 37. Cao, W.; Hunt, A. J., Improving the visible transparency of silica aerogels. Journal of Non-crystalline Solids 1994, 176 (1), 18-25. 38. Jiang, X.; Tang, X.; Tang, L.; Zhang, B.; Mao, H., Synthesis and formation mechanism of amorphous silica particles via sol–gel process with tetraethylorthosilicate. Ceramics International 2019, 45 (6), 7673-7680. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78671 | - |
dc.description.abstract | 高分子為每日生活不可或缺的材料,然而高分子不易處理與回收的理由造成環境汙染。由於環保意識的抬頭,綠色化學在近幾年的發展中,逐漸受到重視,為了能夠提升材料的永續性,本論文研究出一系列的新回收方法,不僅能夠以將近98%以上的效率進行回收,並進一步合成出可被分解再利用的熱固性樹脂材料。本論文使用廢棄高分子為原料,進行胺解使廢棄高分子再生為一具有反應性的中間體。不同於現有的高分子回收方法,本論文使用胺類將廢棄高分子分解為不同的具有反應性的中間體,過程中並無需使用觸媒,免去純化的複雜步驟,並且在低於80 ℃的環境下,無高溫高壓的安全疑慮。將此具有反應性的中間體導入與數種化合物與軟段進行之兩步法合成,再經由溶液凝膠法轉化為一熱固性樹脂,進行結構與性質的探討。通過反應中間體之熱裂解模擬實驗中得知,本研究經由胺解廢棄高分子所得之產物鍵結在220oC的加熱條件下會發生裂解,所以我們可以選擇適當的醇類溶劑與其進行反應,使熱固性的塑料也能被特定的溶劑分解,以此達到熱固性樹酯回收再利用以及使其更容易分解回收的目標。 | zh_TW |
dc.description.abstract | The versatility of polymer is married to the disposal issues when it comes to sustainability in our daily life. As a result, the significance of green chemistry have drawn much attention in terms of structure and properties design in recent years. Comparing to the usual method processing in high temperature and the disadvantage of low yield, polymers were recycled into versatile intermediates efficiently in this study. The success of the useful intermediates was based on an efficient aminolysis process via amine carbonylation reaction in the absence of catalysts under mild conditions. As a result, the intermediates were able to re-connect with another polymer, while acting as reaction sites for sol-gel reaction toward making composites. Furthermore, this polymer networks possessed covalent adaptably networks via the model pyrolysis reaction. Consequently, these polymer network were cracked into pieces and compress-molded into the original shape again. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:11:11Z (GMT). No. of bitstreams: 1 ntu-108-R06549010-1.pdf: 3900674 bytes, checksum: d2f43a83c5a36a9fef2889f84b3fc451 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 X 壹、 緒論 1 貳、文獻回顧 2 2.1 循環材料與高分子 2 2.2 綠色化學原則 4 2.3聚碳酸酯回收 6 2.3.1 聚碳酸酯簡介 6 2.3.2聚碳酸酯回收方法 8 2.4 回收聚碳酸酯至聚氨酯 9 2.4.1聚氨酯簡介 9 2.4.2 聚氨酯之原料與特性15 11 2.4.3 胺解法回收聚碳酸酯至聚氨酯 15 2.4.4 交聯型聚氨酯合成 16 2.4.5 溶液凝膠法 18 2.4.6 以Sol-gel進行交聯之聚氨酯 19 2.5 可加工之熱固性材料—Vitrimer 23 2.6 研究動機 29 參、實驗內容 31 3.1 藥品及溶劑 31 3.2 實驗儀器 35 3.3 實驗流程圖 37 3.4 合成步驟 40 3.4.1 以3-氨基丙基三乙氧基矽烷消化聚碳酸酯形成胺基甲酸酯 40 3.4.2 以聚碳酸酯消化產物為反應中間體合成聚氨酯 40 3.4.3 胺基甲酸酯熱裂解之研究 45 3.4.4 交聯型聚氨酯溶劑測試 45 3.4.5 交聯型聚氨酯熱壓再塑形 45 肆、結果與討論 46 4.1 消化聚碳酸酯之研究 46 4.2 溶液凝膠法之溶劑選擇 48 4.3 回收聚氨酯性質分析 49 4.3.1 TGA熱重分析 49 4.3.1 DSC微差掃描熱分析 51 4.3.3 回收聚氨酯拉伸性質分析 54 4.3.4 添加TEOS之回收聚氨酯拉伸性質分析 55 4.3.5 回收聚氨酯之接觸角/吸水性分析 57 4.3.6 添加TEOS之穿透度分析 59 4.3.7 回收聚氨酯混摻奈米矽粒子 60 4.4 熱固性聚氨酯之回收研究 61 4.3.1聚碳酸酯消化產物熱裂解研究模型 61 4.3.2 Vitrimer溶解性測試 63 4.3.3 聚氨酯再塑形測試 66 4.5 利用消化聚碳酸酯之產物當作軟段 68 伍、結論與未來展望 70 陸、參考文獻 71 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用高分子回收以及溶膠凝膠法合成之熱固性樹脂 | zh_TW |
dc.title | Preparation of Thermosetting Resin via Polymer Recycling and Sol-Gel Process | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 戴憲弘;吳建欣;陳英孝 | zh_TW |
dc.contributor.oralexamcommittee | ;; | en |
dc.subject.keyword | 高分子回收,胺解,熱固性樹脂,綠色化學,溶膠凝膠法, | zh_TW |
dc.subject.keyword | Polymer,Recycling,Aminolysis,Polymer composites,Green chemistry,Sol-gel process, | en |
dc.relation.page | 73 | - |
dc.identifier.doi | 10.6342/NTU201902691 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-07 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
dc.date.embargo-lift | 2024-08-14 | - |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 3.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。