Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78620
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈立言zh_TW
dc.contributor.author林蕙平zh_TW
dc.contributor.authorHui-Ping Linen
dc.date.accessioned2021-07-11T15:07:47Z-
dc.date.available2024-08-15-
dc.date.copyright2019-08-23-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation行政院農業委員會農業試驗所. (2019). 北蟲草生產技術研發成果. 行政院農業委員會農業試驗所 Retrieved from https://www.tari.gov.tw/news/index-1.asp?Parser=9,4,26,,,,920
吳心愉、張菀庭. (2017). 行政院農業委員會農業試驗所 菇類抗憂鬱之功效評估 期末報告書. Retrieved from
國立台灣大學醫學院附設醫院精神醫學部. (2015). 憂鬱情緒障礙自助手冊. 衛生福利部
衛生福利部台東醫院精神科. (2010). 心理治療簡介. 衛生福利部台東醫院精神科 Retrieved from https://www.tait.mohw.gov.tw/?aid=509&pid=50&page_name=detail&iid=230
衛生福利部統計處. (2018). 抗憂鬱藥物使用人數. Retrieved from https://dep.mohw.gov.tw/DOS/mp-113.html
Anisman, H., & Zacharko, R. M. (1990). Multiple neurochemical and behavioral consequences of stressors: implications for depression. Pharmacology & therapeutics, 46(1), 119-136.
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®):
Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.-J., Pulendran, B., & Palucka, K. (2000). Immunobiology of dendritic cells. Annual review of immunology, 18(1), 767-811.
Bangsgaard, E. O., & Ottesen, J. T. (2017). Patient specific modeling of the HPA axis related to clinical diagnosis of depression. Mathematical biosciences, 287, 24-35.
Barton, D. A., Esler, M. D., Dawood, T., Lambert, E. A., Haikerwal, D., Brenchley, C., Socratous, F., Hastings, J., Guo, L., & Wiesner, G. (2008). Elevated brain serotonin turnover in patients with depression: effect of genotype and therapy. Archives of general psychiatry, 65(1), 38-46.
Belmaker, R., & Agam, G. (2008). Major depressive disorder. New England Journal of Medicine, 358(1), 55-68.
Bessa, J., Morais, M., Marques, F., Pinto, L., Palha, J. A., Almeida, O., & Sousa, N. (2013). Stress-induced anhedonia is associated with hypertrophy of medium spiny neurons of the nucleus accumbens. Translational psychiatry, 3(6), e266.
Blizard, D. A., Takahashi, A., Galsworthy, M. J., Martin, B., & Koide, T. (2007). Test standardization in behavioural neuroscience: a response to Stanford. Journal of Psychopharmacology, 21(2), 136-139.
Block, M. L., Zecca, L., & Hong, J.-S. (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews Neuroscience, 8(1), 57.
Boche, D., Perry, V. H., & Nicoll, J. A. (2013). Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol, 39(1), 3-18.
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., McClay, J., Mill, J., Martin, J., & Braithwaite, A. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301(5631), 386-389.
Chan, A. L., Yang, T. C., Chen, J.-X., Yu, L. H., & Leung, H. W. (2006). Cost of depression of adults in Taiwan. The International Journal of Psychiatry in Medicine, 36(1), 131-135.
Chen, Y.-J., Wu, S.-Y., Chen, C.-C., Tsao, Y.-L., Hsu, N.-C., Chou, Y.-C., & Huang, H.-L. (2014). Armillaria mellea component armillarikin induces apoptosis in human leukemia cells. Journal of Functional Foods, 6, 196-204.
Chi, C.-W., Chen, C.-C., & Chen, Y.-J. (2013). Therapeutic and radiosensitizing effects of armillaridin on human esophageal cancer cells. Evidence-Based Complementary and Alternative Medicine, 2013.
Chieppa, M., Bianchi, G., Doni, A., Del Prete, A., Sironi, M., Laskarin, G., Monti, P., Piemonti, L., Biondi, A., & Mantovani, A. (2003). Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. The Journal of Immunology, 171(9), 4552-4560.
Choi, J. Y., Kim, J. Y., Kim, J. Y., Park, J., Lee, W. T., & Lee, J. E. (2017). M2 Phenotype Microglia-derived Cytokine Stimulates Proliferation and Neuronal Differentiation of Endogenous Stem Cells in Ischemic Brain. Exp Neurobiol, 26(1), 33-41.
Clark, D. A., & Coker, R. (1998). Transforming growth factor-beta (TGF-beta). The international journal of biochemistry & cell biology, 30(3), 293-298.
Courtney, L., Connor, M., & Settipani, C. A. (2011). History of cognitive-behavioral therapy (CBT) in youth. Child Adolesc Psychiatr Clin N Am, 20, 179-189.
Cryan, J. F., Valentino, R. J., & Lucki, I. (2005). Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neuroscience & Biobehavioral Reviews, 29(4-5), 547-569.
Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience, 9(1), 46.
de Pablos, R. M., Herrera, A. J., Espinosa-Oliva, A. M., Sarmiento, M., Muñoz, M. F., Machado, A., & Venero, J. L. (2014). Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation. Journal of neuroinflammation, 11(1), 34.
de Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C. G., & De Vries, J. E. (1991). Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. Journal of Experimental Medicine, 174(5), 1209-1220.
Dhabhar, F. S., Burke, H. M., Epel, E. S., Mellon, S. H., Rosser, R., Reus, V. I., & Wolkowitz, O. M. (2009). Low serum IL-10 concentrations and loss of regulatory association between IL-6 and IL-10 in adults with major depression. Journal of psychiatric research, 43(11), 962-969.
Duerr, C. U., & Fritz, J. H. (2017). Isolation of group 2 innate lymphoid cells from mouse lungs. In Innate Antiviral Immunity (pp. 253-261): Springer.
Exton, M. S. (1997). Infection-induced anorexia: active host defence strategy. Appetite, 29(3), 369-383.
Farooq, R. K., Tanti, A., Ainouche, S., Roger, S., Belzung, C., & Camus, V. (2018). A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology, 97, 120-130.
Ferguson, J. M. (2001). SSRI antidepressant medications: adverse effects and tolerability. Primary care companion to the Journal of clinical psychiatry, 3(1), 22.
Fernández-Guasti, A., Olivares-Nazario, M., Reyes, R., & Martínez-Mota, L. (2017). Sex and age differences in the antidepressant-like effect of fluoxetine in the forced swim test. Pharmacology Biochemistry and Behavior, 152, 81-89.
Fiorentino, D. F., Zlotnik, A., Mosmann, T., Howard, M., & O'garra, A. (1991). IL-10 inhibits cytokine production by activated macrophages. The Journal of Immunology, 147(11), 3815-3822.
Frank, M. G., Miguel, Z. D., Watkins, L. R., & Maier, S. F. (2010). Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain, Behavior, and Immunity, 24(1), 19-30.
Free, R. B., Clark, J., Amara, S., & Sibley, D. R. (2017). Neurotransmission in the Central Nervous System. In L. L. Brunton, R. Hilal-Dandan, & B. C. Knollmann (Eds.), Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 13e. New York, NY: McGraw-Hill Education.
Frick, L. R., Williams, K., & Pittenger, C. (2013). Microglial dysregulation in psychiatric disease. Clin Dev Immunol, 2013, 608654.
Fukui, M., Tanaka, M., Toda, H., Asano, M., Yamazaki, M., Hasegawa, G., Imai, S., Fujinami, A., Ohta, M., & Nakamura, N. (2012). The serum concentration of allograft inflammatory factor–1 is correlated with metabolic parameters in healthy subjects. Metabolism, 61(7), 1021-1025.
Gage, G. J., Kipke, D. R., & Shain, W. J. J. (2012). Whole animal perfusion fixation for rodents. (65), e3564.
Gao, J.-M., Yang, X., Wang, C.-Y., & Liu, J.-K. (2001). Armillaramide, a new sphingolipid from the fungus Armillaria mellea. Fitoterapia, 72(8), 858-864.
Gao, L. W., Li, W. Y., Zhao, Y. L., & Wang, J. W. (2009). The cultivation, bioactive components and pharmacological effects of Armillaria mellea. African Journal of Biotechnology, 8(25).
Gao, L. W., & Wang, J. W. (2012). Antioxidant potential and DNA damage protecting activity of aqueous extract from Armillaria mellea. Journal of Food Biochemistry, 36(2), 139-148.
Gazi, U., & Martinez-Pomares, L. (2009). Influence of the mannose receptor in host immune responses. Immunobiology, 214(7), 554-561.
Geng, Y., Zhu, S., Cheng, P., Lu, Z.-M., Xu, H.-Y., Shi, J.-S., & Xu, Z.-H. (2017). Bioassay-guided fractionation of ethyl acetate extract from Armillaria mellea attenuates inflammatory response in lipopolysaccharide (LPS) stimulated BV-2 microglia. Phytomedicine, 26, 55-61.
Glowinski, J., & Iversen, L. L. (1966). Regional studies of catecholamines in the rat brain‐I: the disposition of [3H] norepinephrine,[3H] dopamine and [3H] dopa in various regions of the brain. Journal of neurochemistry, 13(8), 655-669.
Gordon, S., & Martinez, F. O. (2010). Alternative activation of macrophages: mechanism and functions. Immunity, 32(5), 593-604.
Gould, T. D., Dao, D. T., & Kovacsics, C. E. (2009). The open field test. In Mood and anxiety related phenotypes in mice (pp. 1-20): Springer.
Guermonprez, P., Valladeau, J., Zitvogel, L., Théry, C., & Amigorena, S. (2002). Antigen presentation and T cell stimulation by dendritic cells. Annual review of immunology, 20(1), 621-667.
Guo, W.-J., Guo, S.-X., Yang, J.-S., Chen, X.-M., & Xiao, P.-G. (2007). Triterpenes and steroids from Armillaria mellea Vahl. ex Fr. Biochemical Systematics and Ecology, 35(11), 790-793.
Hall, C., & Ballachey, E. L. (1932). A study of the rat's behavior in a field. A contribution to method in comparative psychology. University of California Publications in Psychology.
Hamilton, M. (1960). Diagnosis and rating scale for depression. British Journal of Psychiatry, 3(3), 76-78.
Hamon, M., & Blier, P. (2013). Monoamine neurocircuitry in depression and strategies for new treatments. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 45, 54-63.
Hatcher, J., Bell, D., Reed, T., & Hagan, J. (1997). Chronic mild stress-induced reductions in saccharin intake depend upon feeding status. Journal of Psychopharmacology, 11(4), 331-338.
Hayakawa, H., Shimizu, M., Nishida, A., Motohashi, N., & Yamawaki, S. (1994). Increase in serotonin 1A receptors in the dentate gyrus as revealed by autoradiographic analysis following repeated electroconvulsive shock but not imipramine treatment. Neuropsychobiology, 30(2-3), 53-56.
Heinrichs, S. C., Menzaghi, F., Pich, E. M., Hauger, R. L., & Koob, G. F. (1993). Corticotropin-releasing factor in the paraventricular nucleus modulates feeding induced by neuropeptide Y. Brain research, 611(1), 18-24.
Hemby, S., Lucki, I., Gatto, G., Singh, A., Thornley, C., Matasi, J., Kong, N., Smith, J., Davies, H., & Dworkin, S. (1997). Potential antidepressant effects of novel tropane compounds, selective for serotonin or dopamine transporters. Journal of Pharmacology and Experimental Therapeutics, 282(2), 727-733.
Huang, L., Li, Q., Chen, Y., Wang, X., & Zhou, X. (2009). Determination and analysis of cordycepin and adenosine in the products of Cordyceps spp. African Journal of Microbiology Research, 3(12), 957-961.
Imai, Y., & Kohsaka, S. (2002). Intracellular signaling in M‐CSF‐induced microglia activation: role of Iba1. Glia, 40(2), 164-174.
Iñiguez, S. D., Warren, B. L., & Bolaños-Guzmán, C. A. (2010). Short-and long-term functional consequences of fluoxetine exposure during adolescence in male rats. Biological psychiatry, 67(11), 1057-1066.
Ito, D., Imai, Y., Ohsawa, K., Nakajima, K., Fukuuchi, Y., & Kohsaka, S. (1998). Microglia-specific localisation of a novel calcium binding protein, Iba1. Molecular brain research, 57(1), 1-9.
Jacobson, L., & Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocrine reviews, 12(2), 118-134.
Jeon, S. W., & Kim, Y. K. (2016). Neuroinflammation and cytokine abnormality in major depression: cause or consequence in that illness? World journal of psychiatry, 6(3), 283.
Jo, W. S., Choi, Y. J., Mm, H. J., Lee, J. Y., Nam, B. H., Lee, J. D., Lee, S. W., Seo, S. Y., & Jeong, M. H. (2010). The anti-inflammatory effects of water extract from Cordyceps militaris in murine macrophage. Mycobiology, 38(1), 46-51.
Kan, W.-C., Wang, H.-Y., Chien, C.-C., Li, S.-L., Chen, Y.-C., Chang, L.-H., Cheng, C.-H., Tsai, W.-C., Hwang, J.-C., & Su, S.-B. (2012). Effects of extract from solid-state fermented Cordyceps sinensis on type 2 diabetes mellitus. Evidence-Based Complementary and Alternative Medicine, 2012.
Karperien, A., Ahammer, H., & Jelinek, H. (2013). Quantitating the subtleties of microglial morphology with fractal analysis. Frontiers in cellular neuroscience, 7, 3.
Karperien, A. L., & Jelinek, H. F. (2015). Fractal, multifractal, and lacunarity analysis of microglia in tissue engineering. Frontiers in Bioengineering and Biotechnology, 3, 51.
Katz, R. J. (1982). Animal model of depression: pharmacological sensitivity of a hedonic deficit. Pharmacology Biochemistry and Behavior, 16(6), 965-968.
Kelley, K. W., Bluthé, R.-M., Dantzer, R., Zhou, J.-H., Shen, W.-H., Johnson, R. W., & Broussard, S. R. (2003). Cytokine-induced sickness behavior. Brain, Behavior, and Immunity, 17(1), 112-118.
Kerrigan, A. M., & Brown, G. D. (2009). C-type lectins and phagocytosis. Immunobiology, 214(7), 562-575.
Kessler, R. C. (1997). The effects of stressful life events on depression. Annual review of psychology, 48(1), 191-214.
Kettenmann, H., Hanisch, U.-K., Noda, M., & Verkhratsky, A. (2011). Physiology of microglia. Physiological reviews, 91(2), 461-553.
Kim, H. G., Shrestha, B., Lim, S. Y., Yoon, D. H., Chang, W. C., Shin, D.-J., Han, S. K., Park, S. M., Park, J. H., & Park, H. I. (2006). Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-κB through Akt and p38 inhibition in RAW 264.7 macrophage cells. European journal of pharmacology, 545(2-3), 192-199.
Kim, S. K., Im, J., Yun, C.-H., Son, J. Y., Son, C. G., Park, D. K., & Han, S. H. (2008). Armillariella mellea induces maturation of human dendritic cells without induction of cytokine expression. J Ethnopharmacol, 119(1), 153-159.
Koefer, R., Streit, W. J., Toyka, K. V., Kreutzberg, G. W., & Hartung, H.-P. (1995). Transforming growth factor-β1: a lesion-associated cytokine of the nervous system. International journal of developmental neuroscience, 13(3-4), 331-339.
Kopp, B. L., Wick, D., & Herman, J. P. (2013). Differential effects of homotypic vs. heterotypic chronic stress regimens on microglial activation in the prefrontal cortex. Physiology & behavior, 122, 246-252.
Krahn, D. D., Gosnell, B. A., Levine, A. S., & Morley, J. E. (1988). Behavioral effects of corticotropin-releasing factor: localization and characterization of central effects. Brain research, 443(1-2), 63-69.
Kreisel, T., Frank, M., Licht, T., Reshef, R., Ben-Menachem-Zidon, O., Baratta, M., Maier, S., & Yirmiya, R. (2014). Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Molecular psychiatry, 19(6), 699.
Kreutzberg, G. (1995). Microglia, the first line of defence in brain pathologies. Arzneimittel-Forschung, 45(3A), 357-360.
Kreutzberg, G. W. (1996). Microglia: a sensor for pathological events in the CNS. Trends in neurosciences, 19(8), 312-318.
Krishnan, V., Han, M. H., Graham, D. L., Berton, O., Renthal, W., Russo, S. J., Laplant, Q., Graham, A., Lutter, M., Lagace, D. C., Ghose, S., Reister, R., Tannous, P., Green, T. A., Neve, R. L., Chakravarty, S., Kumar, A., Eisch, A. J., Self, D. W., Lee, F. S., Tamminga, C. A., Cooper, D. C., Gershenfeld, H. K., & Nestler, E. J. (2007). Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell, 131(2), 391-404.
Kudryavtseva, N. N., Bakshtanovskaya, I. V., & Koryakina, L. A. (1991). Social model of depression in mice of C57BL/6J strain. Pharmacol Biochem Behav, 38(2), 315-320.
Lawson, L., Perry, V., Dri, P., & Gordon, S. (1990). Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience, 39(1), 151-170.
Lee, S., Kim, H. B., Hwang, E. S., Kim, E. S., Kim, S. S., Jeon, T. D., Song, M. C., Lee, J. S., Chung, M. C., Maeng, S., & Park, J. H. (2018). Antidepressant-like Effects of p-Coumaric Acid on LPS-induced Depressive and Inflammatory Changes in Rats. Exp Neurobiol, 27(3), 189-199.
Lee, S. J., Evers, S., Roeder, D., Parlow, A. F., Risteli, J., Risteli, L., Lee, Y., Feizi, T., Langen, H., & Nussenzweig, M. C. (2002). Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science, 295(5561), 1898-1901.
Lenzlinger, P. M., Morganti-Kossmann, M.-C., Laurer, H. L., & McIntosh, T. K. (2001). The duality of the inflammatory response to traumatic brain injury. Molecular neurobiology, 24(1-3), 169-181.
Levinson, D. F. (2006). The genetics of depression: a review. Biological psychiatry, 60(2), 84-92.
Li, B., Hou, Y., Zhu, M., Bao, H., Nie, J., Zhang, G. Y., Shan, L., Yao, Y., Du, K., Yang, H., Li, M., Zheng, B., Xu, X., Xiao, C., & Du, J. (2015). 3’-Deoxyadenosine (Cordycepin) Produces a Rapid and Robust Antidepressant Effect via Enhancing Prefrontal AMPA Receptor Signaling Pathway. International Journal of Neuropsychopharmacology, 19(4).
Li, C. Y., Chiang, C. S., Tsai, M. L., Hseu, R. S., Shu, W. Y., Chuang, C. Y., Sun, Y. C., Chang, Y. S., Lin, J. G., & Chen, C. S. (2009). Two‐sided effect of Cordyceps sinensis on dendritic cells in different physiological stages. Journal of leukocyte biology, 85(6), 987-995.
Liao, S.-C., Chen, W., Lee, M.-B., Lung, F.-W., Lai, T.-J., Liu, C.-Y., Lin, C.-Y., Yang, M.-J., & Chen, C.-C. (2012). Low prevalence of major depressive disorder in Taiwanese adults: possible explanations and implications. Psychological medicine, 42(6), 1227-1237.
Liberman, A. C., Budzinski, M. L., Sokn, C., Gobbini, R., Steininger, A., & Arzt, E. (2018). Regulatory and mechanistic actions of glucocorticoids on T and inflammatory cells. Frontiers in endocrinology, 9, 235.
Lin, Y. E., Lin, S. H., Chen, W. C., Ho, C. T., Lai, Y. S., Panyod, S., & Sheen, L. Y. (2016). Antidepressant-like effects of water extract of Gastrodia elata Blume in rats exposed to unpredictable chronic mild stress via modulation of monoamine regulatory pathways. J Ethnopharmacol, 187, 57-65.
Liu, Y.-Z., Wang, Y.-X., & Jiang, C.-L. (2017). Inflammation: the common pathway of stress-related diseases. Frontiers in Human Neuroscience, 11, 316.
Lo, H.-C., Hsu, T.-H., Tu, S.-T., & Lin, K.-C. (2006). Anti-hyperglycemic activity of natural and fermented Cordyceps sinensis in rats with diabetes induced by nicotinamide and streptozotocin. The American journal of Chinese medicine, 34(05), 819-832.
López-Rubalcava, C., & Lucki, I. (2000). Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology, 22(2), 191-199.
Lucki, I. (1997). The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behavioural pharmacology.
Lung, M.-Y., & Chang, Y.-C. (2011). Antioxidant properties of the edible basidiomycete Armillaria mellea in submerged cultures. International journal of molecular sciences, 12(10), 6367-6384.
Maes, M., Galecki, P., Chang, Y. S., & Berk, M. (2011). A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro) degenerative processes in that illness. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(3), 676-692.
McClintock, S. M., Choi, J., Deng, Z.-D., Appelbaum, L. G., Krystal, A. D., & Lisanby, S. H. (2014). Multifactorial determinants of the neurocognitive effects of electroconvulsive therapy. The journal of ECT, 30(2), 165.
McEwen, B. S., Weiss, J. M., & Schwartz, L. S. (1968). Selective retention of corticosterone by limbic structures in rat brain. Nature, 220(5170), 911.
McGeer, P. L., Kawamata, T., Walker, D. G., Akiyama, H., Tooyama, I., & McGeer, E. G. (1993). Microglia in degenerative neurological disease. Glia, 7(1), 84-92.
McKinney, W. T., & Bunney, W. E. (1969). Animal model of depression: I. Review of evidence: implications for research. Archives of general psychiatry, 21(2), 240-248.
Meyer, U., Schwarz, M. J., & Müller, N. (2011). Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacology & therapeutics, 132(1), 96-110.
Michel, T. M., Frangou, S., Thiemeyer, D., Camara, S., Jecel, J., Nara, K., Brunklaus, A., Zoechling, R., & Riederer, P. (2007). Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder—a postmortem study. Psychiatry research, 151(1-2), 145-150.
Mikita, J., Dubourdieu-Cassagno, N., Deloire, M. S., Vekris, A., Biran, M., Raffard, G., Brochet, B., Canron, M.-H., Franconi, J.-M., & Boiziau, C. (2011). Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Multiple Sclerosis Journal, 17(1), 2-15.
Miller, A. H., & Raison, C. L. (2016). The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nature reviews immunology, 16(1), 22.
Miller, W. R., & Seligman, M. E. (1975). Depression and learned helplessness in man. Journal of abnormal psychology, 84(3), 228.
Morawietz, G., Ruehl-Fehlert, C., Kittel, B., Bube, A., Keane, K., Halm, S., Heuser, A., & Hellmann, J. (2004). Revised guides for organ sampling and trimming in rats and mice–Part 3: A joint publication of the RITA) and NACAD) groups. Experimental and Toxicologic Pathology, 55(6), 433-449.
Morrison, H., Young, K., Qureshi, M., Rowe, R. K., & Lifshitz, J. (2017). Quantitative microglia analyses reveal diverse morphologic responses in the rat cortex after diffuse brain injury. Sci Rep, 7(1), 13211.
Morrison, H. W., & Filosa, J. A. (2013). A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. Journal of neuroinflammation, 10(1), 782.
Munhoz, C. D., Lepsch, L. B., Kawamoto, E. M., Malta, M. B., de Sá Lima, L., Avellar, M. C. W., Sapolsky, R. M., & Scavone, C. (2006). Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-κB in the frontal cortex and hippocampus via glucocorticoid secretion. Journal of Neuroscience, 26(14), 3813-3820.
Muscat, R., & Willner, P. (1992). Suppression of sucrose drinking by chronic mild unpredictable stress: a methodological analysis. Neuroscience & Biobehavioral Reviews, 16(4), 507-517.
Muszynska, B., Sulkowska-Ziaja, K., Wolkowska, M., & Ekiert, H. (2011). Chemical, pharmacological, and biological characterization of the culinary-medicinal honey mushroom, Armillaria mellea (Vahl) P. Kumm.(Agaricomycetideae): a review. International Journal of Medicinal Mushrooms, 13(2), 167.
Myung, C.-S., Kim, B.-T., Choi, S. H., Song, G. Y., Lee, S. Y., & Jahng, J. W. (2005). Role of neuropeptide Y and proopiomelanocortin in fluoxetine-induced anorexia. Archives of pharmacal research, 28(6), 716-721.
Nakagawa, Y., & Chiba, K. (2014). Role of microglial m1/m2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel), 7(12), 1028-1048.
Nakagawa, Y., & Chiba, K. (2015). Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacol Ther, 154, 21-35.
Nakazato, M., Murakami, N., Date, Y., Kojima, M., Matsuo, H., Kangawa, K., & Matsukura, S. (2001). A role for ghrelin in the central regulation of feeding. Nature, 409(6817), 194.
Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308(5726), 1314-1318.
Nishizawa, K., Torii, K., Kawasaki, A., Katada, M., Ito, M., Terashita, K., Aiso, S., & Matsuoka, M. (2007). Antidepressant-like effect of Cordyceps sinensis in the mouse tail suspension test. Biological and Pharmaceutical Bulletin, 30(9), 1758-1762.
Nowak, G., & Dulinski, J. (1991). Effect of repeated treatment with electroconvulsive shock (ECS) on serotonin receptor density and turnover in the rat cerebral cortex. Pharmacology Biochemistry and Behavior, 38(3), 691-694.
World Health Organization. (2008). The global burden of disease: 2004 update:
World Health Organization. (2017). Depression and other common mental disorders: global health estimates:
Pan, Y., Chen, X. Y., Zhang, Q. Y., & Kong, L. D. (2014). Microglial NLRP3 inflammasome activation mediates IL-1beta-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun, 41, 90-100.
Papp, E. A., Leergaard, T. B., Calabrese, E., Johnson, G. A., & Bjaalie, J. G. (2014). Waxholm Space atlas of the Sprague Dawley rat brain. Neuroimage, 97, 374-386.
Park, J. G., Son, Y.-J., Lee, T. H., Baek, N. J., Yoon, D. H., Kim, T. W., Aravinthan, A., Hong, S., Kim, J.-H., & Sung, G.-H. (2017). Anticancer efficacy of Cordyceps militaris ethanol extract in a xenografted leukemia model. Evidence-Based Complementary and Alternative Medicine, 2017.
Perrault, G., Morel, E., Zivkovic, B., & Sanger, D. (1992). Activity of litoxetine and other serotonin uptake inhibitors in the tail suspension test in mice. Pharmacology Biochemistry and Behavior, 42(1), 45-47.
Porsolt, R. D., Bertin, A., Blavet, N., Deniel, M., & Jalfre, M. (1979). Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. European journal of pharmacology, 57(2-3), 201-210.
Prinz, M., & Priller, J. (2014). Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nature Reviews Neuroscience, 15(5), 300.
Qi, X., Xu, H., Wang, L., & Zhang, Z. (2018). Comparison of therapeutic effects of TREK1 blockers and fluoxetine on chronic unpredicted mild stress sensitive rats. ACS chemical neuroscience, 9(11), 2824-2831.
Ramos-Hryb, A. B., Cunha, M. P., Pazini, F. L., Lieberknecht, V., Prediger, R. D., Kaster, M. P., & Rodrigues, A. L. S. (2017). Ursolic acid affords antidepressant-like effects in mice through the activation of PKA, PKC, CAMK-II and MEK1/2. Pharmacological Reports, 69(6), 1240-1246.
Randrup, A., & Braestrup, C. (1977). Uptake inhibition of biogenic amines by newer antidepressant drugs: relevance to the dopamine hypothesis of depression. Psychopharmacology (Berl), 53(3), 309-314.
Ransohoff, R. M., & Perry, V. H. (2009). Microglial physiology: unique stimuli, specialized responses. Annual review of immunology, 27, 119-145.
Rathee, S., Rathee, D., Rathee, D., Kumar, V., & Rathee, P. (2012). Mushrooms as therapeutic agents. Revista Brasileira de Farmacognosia, 22(2), 459-474.
Rénéric, J.-P., Bouvard, M., & Stinus, L. (2002). In the rat forced swimming test, chronic but not subacute administration of dual 5-HT/NA antidepressant treatments may produce greater effects than selective drugs. Behavioural brain research, 136(2), 521-532.
Rénéric, J.-P., & Lucki, I. (1998). Antidepressant behavioral effects by dual inhibition of monoamine reuptake in the rat forced swimming test. Psychopharmacology (Berl), 136(2), 190-197.
Richwine, A. F., Sparkman, N. L., Dilger, R. N., Buchanan, J. B., & Johnson, R. W. (2009). Cognitive deficits in interleukin-10-deficient mice after peripheral injection of lipopolysaccharide. Brain, Behavior, and Immunity, 23(6), 794-802.
Saijo, K., & Glass, C. K. (2011). Microglial cell origin and phenotypes in health and disease. Nature reviews immunology, 11(11), 775.
Sanacora, G., Mason, G. F., Rothman, D. L., Hyder, F., Ciarcia, J. J., Ostroff, R. B., Berman, R. M., & Krystal, J. H. (2003). Increased cortical GABA concentrations in depressed patients receiving ECT. American Journal of Psychiatry, 160(3), 577-579.
Sansone, R. A., & Sansone, L. A. (2012). Antidepressant adherence: are patients taking their medications? Innovations in Clinical Neuroscience, 9(5-6), 41.
Schlippe, A. v., & Schweitzer, J. (2013). Lehrbuch der systemischen Therapie und Beratung I. In.
Shedler, J. (2010). The efficacy of psychodynamic psychotherapy. American psychologist, 65(2), 98.
Sheng, W. S., Hu, S., Kravitz, F. H., Peterson, P. K., & Chao, C. C. (1995). Tumor necrosis factor alpha upregulates human microglial cell production of interleukin-10 in vitro. Clin. Diagn. Lab. Immunol., 2(5), 604-608.
Shin, S., Moon, S., Park, Y., Kwon, J., Lee, S., Lee, C. K., Cho, K., Ha, N. J., & Kim, K. (2009). Role of Cordycepin and Adenosine on the Phenotypic Switch of Macrophages via Induced Anti-inflammatory Cytokines. Immune Netw, 9(6), 255-264.
Siever, L. J., & Davis, K. L. (1985). Overview: toward a dysregulation hypothesis of depression. Am J Psychiatry.
Singhal, G., & Baune, B. T. (2017). Microglia: an interface between the loss of neuroplasticity and depression. Frontiers in cellular neuroscience, 11, 270.
Stahl, P. D., & Ezekowitz, R. A. B. (1998). The mannose receptor is a pattern recognition receptor involved in host defense. Current opinion in immunology, 10(1), 50-55.
Stanford, S. C. (2007). The open field test: reinventing the wheel. Journal of Psychopharmacology, 21(2), 134-136.
Steru, L., Chermat, R., Thierry, B., & Simon, P. (1985). The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl), 85(3), 367-370.
Streit, W. J., & Kreutzberg, G. W. (1987). Lectin binding by resting and reactive microglia. Journal of neurocytology, 16(2), 249-260.
Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic epidemiology of major depression: review and meta-analysis. American Journal of Psychiatry, 157(10), 1552-1562.
Swardfager, W., Herrmann, N., Dowlati, Y., Oh, P. I., Kiss, A., Walker, S. E., & Lanctôt, K. L. (2009). Indoleamine 2, 3-dioxygenase activation and depressive symptoms in patients with coronary artery disease. Psychoneuroendocrinology, 34(10), 1560-1566.
Tang, J., Yu, W., Chen, S., Gao, Z., & Xiao, B. (2018). Microglia polarization and endoplasmic reticulum stress in chronic social defeat stress induced depression mouse. Neurochemical research, 1-10.
Tang, Y., & Le, W. (2016). Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol Neurobiol, 53(2), 1181-1194.
Taylor, P. R., Gordon, S., & Martinez-Pomares, L. (2005). The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends in immunology, 26(2), 104-110.
Tianzhu, Z., Shihai, Y., & Juan, D. (2014). Antidepressant-like effects of cordycepin in a mice model of chronic unpredictable mild stress. Evid Based Complement Alternat Med, 2014, 438506.
Tianzhu, Z., Shihai, Y., & Juan, D. (2014). Antidepressant-like effects of cordycepin in a mice model of chronic unpredictable mild stress. Evidence-Based Complementary and Alternative Medicine, 2014.
Tremblay, M.-È., Lowery, R. L., & Majewska, A. K. (2010). Microglial interactions with synapses are modulated by visual experience. PLoS biology, 8(11), e1000527.
Tremblay, M.-È., Stevens, B., Sierra, A., Wake, H., Bessis, A., & Nimmerjahn, A. (2011). The role of microglia in the healthy brain. Journal of Neuroscience, 31(45), 16064-16069.
Tynan, R. J., Naicker, S., Hinwood, M., Nalivaiko, E., Buller, K. M., Pow, D. V., Day, T. A., & Walker, F. R. (2010). Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun, 24(7), 1058-1068.
van Praag, H. M., & Korf, J. (1973). Cerebral monoamines and depression: An investigation with the probenecid technique. Archives of general psychiatry, 28(6), 827-831.
Vashist, S. K., & Schneider, E. M. (2014). Depression: An Insight and Need for Personalized Psychological Stress Monitoring and Management. Journal of Basic and Applied Sciences, 10, 177-182.
Vaz, J. A., Barros, L., Martins, A., Santos-Buelga, C., Vasconcelos, M. H., & Ferreira, I. C. (2011). Chemical composition of wild edible mushrooms and antioxidant properties of their water soluble polysaccharidic and ethanolic fractions. Food Chemistry, 126(2), 610-616.
Wake, H., Moorhouse, A. J., Miyamoto, A., & Nabekura, J. (2013). Microglia: actively surveying and shaping neuronal circuit structure and function. Trends in neurosciences, 36(4), 209-217.
Walker, F. R., Nilsson, M., & Jones, K. (2013). Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets, 14(11), 1262-1276.
Walsh, R. N., & Cummins, R. A. (1976). The open-field test: a critical review. Psychological bulletin, 83(3), 482.
Basic Books. (2008). Comprehensive guide to interpersonal psychotherapy:
Willner, P. (1984). The validity of animal models of depression. Psychopharmacology (Berl), 83(1), 1-16.
Willner, P. (2005). Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology, 52(2), 90-110.
American Psychiatric Publishing, Inc. (2004). Introduction to supportive psychotherapy:
Wu, S.-J., Tsai, J.-Y., Lai, M.-N., & Ng, L.-T. (2007). Armillariella mellea shows anti-inflammatory activity by inhibiting the expression of NO, iNOS, COX-2 and cytokines in THP-1 cells. The American journal of Chinese medicine, 35(03), 507-516.
Wu, W., Zheng, Y.-l., Tian, L.-p., Lai, J.-b., Hu, C.-c., Zhang, P., Chen, J.-k., Hu, J.-b., Huang, M.-l., & Wei, N. (2017). Circulating T lymphocyte subsets, cytokines, and immune checkpoint inhibitors in patients with bipolar II or major depression: a preliminary study. Scientific reports, 7, 40530.
Xie, J.-W., Huang, L.-F., Hu, W., He, Y.-B., & Wong, K. P. (2010). Analysis of the main nucleosides in Cordyceps sinensis by LC/ESI-MS. Molecules, 15(1), 305-314.
Xu, N., Tang, X.-H., Pan, W., Xie, Z.-M., Zhang, G.-F., Ji, M.-H., Yang, J.-J., Zhou, M.-T., & Zhou, Z.-Q. (2017). Spared nerve injury increases the expression of microglia M1 markers in the prefrontal cortex of rats and provokes depression-like behaviors. Frontiers in neuroscience, 11, 209.
Yamagishi, N., Omata, Y., AOKI-YOSHIDA, A., Moriya, N., Goto, T., Toyoda, A., Aoki, R., Suzuki, C., & Takayama, Y. J. J. A. R. Q. J. (2019). Comparison of Gut Tight Junction Gene Expression in C57BL/6J and BALB/c Mice After Chronic Social Defeat Stress. 53(1), 41-46.
Yan, H., Zhu, D., Xu, D., Wu, J., & Bian, X. (2008). A study on Cordyceps militaris polysaccharide purification, composition and activity analysis. African Journal of Biotechnology, 7(22).
Yan, H.-C., Cao, X., Das, M., Zhu, X.-H., & Gao, T.-M. (2010). Behavioral animal models of depression. Neuroscience bulletin, 26(4), 327-337.
Yankelevitch-Yahav, R., Franko, M., Huly, A., & Doron, R. (2015). The forced swim test as a model of depressive-like behavior. JoVE (Journal of Visualized Experiments)(97), e52587.
Yirmiya, R. (1996). Endotoxin produces a depressive-like episode in rats. Brain research, 711(1-2), 163-174.
Yirmiya, R., Rimmerman, N., & Reshef, R. (2015). Depression as a microglial disease. Trends Neurosci, 38(10), 637-658.
Yu, H. M., Wang, B.-S., Huang, S. C., & Duh, P.-D. (2006). Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. Journal of Agricultural and Food Chemistry, 54(8), 3132-3138.
Zavastin, D. E., Mircea, C., Aprotosoaie, A. C., Gherman, S., Hancianu, M., & Miron, A. (2015). Armillaria mellea: phenolic content, in vitro antioxidant and antihyperglycemic effects. Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi, 119(1), 273-280.
Zhang, M., Dai, W., Liang, J., Chen, X., Hu, Y., Chu, B., Pan, M., Dong, Z., & Yu, S. (2013). Effects of UCMS-induced depression on nociceptive behaviors induced by electrical stimulation of the dura mater. Neuroscience letters, 551, 1-6.
Zhang, T., Du, Y., Liu, X., Sun, X., Cai, E., Zhu, H., & Zhao, Y. (2019). Study on antidepressant-like effect of protoilludane sesquiterpenoid aromatic esters from Armillaria Mellea. Natural product research, 1-4.
Zhao, X., Cao, F., Liu, Q., Li, X., Xu, G., Liu, G., Zhang, Y., Yang, X., Yi, S., Xu, F., Fan, K., & Ma, J. (2019). Behavioral, inflammatory and neurochemical disturbances in LPS and UCMS-induced mouse models of depression. Behav Brain Res, 364, 494-502.
Zhong, S., Pan, H., Fan, L., Lv, G., Wu, Y., Parmeswaran, B., Pandey, A., & Soccol, C. R. (2009). Advances in Research of Polysaccharides in Cordyceps Species. Food Technology & Biotechnology, 47(3).
Zhou, X., Spittau, B., & Krieglstein, K. (2012). TGFβ signalling plays an important role in IL4-induced alternative activation of microglia. Journal of neuroinflammation, 9(1), 210.
Zhu, J.-S., Halpern, G. M., & Jones, K. (1998). The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis Part I. The Journal of alternative and complementary medicine, 4(3), 289-303.
Ziebell, J. M., Adelson, P. D., & Lifshitz, J. (2015). Microglia: dismantling and rebuilding circuits after acute neurological injury. Metabolic Brain Disease, 30(2), 393-400.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78620-
dc.description.abstract根據世界衛生組織統計資料指出,全球有超過三億人口罹患憂鬱症 (depression),並預測2030年憂鬱症將成為全球疾病負擔之首。此外,台灣地區常見精神疾病盛行率自1990年11.5%上升至2010年23.8%,且衛生福利部統計2017年服用抗憂鬱藥物已高達127萬人,憂鬱症對患者生活品質及社會成本負擔已不容忽視。然而,抗憂鬱藥物之副作用、症狀緩解率低等因素,導致服藥依順性低下。由此可知,治療憂鬱症之藥物無法滿足目前醫藥需求,積極建立具有實證之輔助與替代療法確有其必要性,例如:以食療為基礎所進行的抗憂鬱保健食品研發,即為本研究之主軸。北蟲草 (Cordyceps militaris) 為冬蟲夏草之近緣種,其活性成分與冬蟲夏草相似,傳統用於治療疲倦、乏力、呼吸系統、腎臟與心臟疾病等,市場上逐漸取代與應用;蜜環菌 (Armillaria mellea) 在傳統漢方中有治療失眠、鎮靜、抗驚厥等效用。文獻指出兩者皆能抑制發炎反應,且於動物實驗中呈現抗憂鬱功效。腦部因壓力造成發炎被認為是憂鬱症的成因之一,雖然過去多數神經與精神疾病研究著重在神經細胞本身的功能障礙或缺損,近年研究指出,於神經元周圍負責支持作用的膠質細胞 (glia cell) 被認為與神經精神疾病的病理致病原因息息相關。其中,微膠細胞 (microglia) 為大腦中監督協調與執行者,負責神經元與其他腦細胞環境中的發炎反應、保護作用及修復功能等,研究指出腦部微膠細胞受不同環境刺激後,可活化成促發炎因子分泌之M1型及抑制發炎與促神經保護之M2型。當M1/M2不平衡即可能造成腦部血清素與多巴胺路徑相關之神經網絡連結與功能失調,引起情緒沮喪、喪失樂趣等憂鬱症狀。故本研究採用急性壓力之強迫游泳試驗 (forced swimming test, FST) 與慢性壓力之慢性不可預期溫和壓力 (unpredictable chronic mild stress, UCMS) 動物模式探討北蟲草與蜜環菌複方液態膳食補充品之抗憂鬱功效。結果顯示,給予大鼠複方補充品於FST試驗期間,不會影響體重、攝食、飲水量及開放空間試驗之總移動距離、穿越次數與待在中央區域時間,且可顯著降低FST不泳動時間;此外,介入複方補充品可改善UCMS造成的體重、攝食與飲水量下降,並顯著提升大鼠糖水偏好程度。分析大鼠腦部神經傳導物質,顯示介入複方補充品可降低FST後大鼠海馬迴中血清素代謝率與前額葉皮質多巴胺代謝率及UCMS後大鼠前額葉皮質、海馬迴血清素與多巴胺代謝率。酵素連結免疫吸附法分析結果顯示其具有降低UCMS後血清皮質固酮濃度,並於免疫組織化學染色海馬迴中離子鈣結合銜接分子1 (ionized calcium binding adapter molecule 1, Iba-1) 分析其形態學變化,具有降低微膠細胞活化態的效果,於西方墨點法中結果亦顯示複方補充品可降低M1型相關促發炎細胞激素表現量,且增加抗發炎之介白素10 (interlekin, IL-10)、乙型轉化生長因子 (transforming growth factor beta,TGB-β) 以及M2型分化簇CD206 (mannose receptor) 表現量。綜合上述結果,北蟲草與蜜環菌複方液態膳食補充品可藉由平衡M1/M2 微膠細胞平衡狀態、降低發炎反應、調節神經傳導物質及改善大鼠類憂鬱行為,達抗憂鬱之功效。zh_TW
dc.description.abstractMajor depressive disorder (MDD) is a heterogeneous mental disease characterized by low mood, loss of interest and pleasure in normally enjoyable activities. The World Health Organization (WHO) ranks MDD as the third leading cause of disability worldwide and projects that by 2030, it will jump to the first place. However, due to the unpleasant side effects, MDD patients tend to have low compliance of taking antidepressants. Thus, the treatment of depression deserves greater attention by public health officials in order to avoid the already significant burden of this disease on both patients and society. Seeking for alternative approach such as dietary therapy to prevent the incidence of depression or ameliorate the disorder which concept is similar to preventive medicine will be an urgent issue. Cordyceps militaris which contains similar constituents and functions of Cordyceps sinensis has been used as a folk medicine for the treatment of fatigue, asthenia after severe illness, renal dysfunction, respiratory and heart disease for a long time. Armillaria mellea is also widely used in traditional Chinese medicine for the treatment of dizziness, headache, neurasthenia, insomnia, and convulsant. Many studies showed that both of these Chinese herbal medicines could exert anti-inflammatory and anti-depressive effects. Notably, chronic inflammation is now considered to be central to the pathogenesis of major depression. Recent studies also indicate that impairment of the normal structure and function of microglia caused by inflammatory activation can lead to depression and associated impairments in neuroplasticity and neurogenesis. Microglia cells are the resident mononuclear phagocytes in the central nervous system (CNS), also the major orchestrator of the brain inflammatory response, displaying functional polarization states similar to macrophages. M1 polarized microglia can produce pro-inflammatory cytokines and mediators. In contrast, M2 polarized microglia tends to produce anti-inflammatory cytokine and express several receptors that are implicated in inhibiting inflammation and restoring homeostasis. The imbalance between M1 and M2 polarization states was suggested to contribute to dysfunction of neural network, activities of monoamine neurons and symptoms in major depressive disorder. Therefore, the aim of this study is to investigate the antidepressive effects of the liquid dietary supplement of Cordyceps militaris and Armillaria mellea formula in acute and chronic stress animal models. The results of forced swimming test (FST) showed that four weeks of treatment could significantly decrease the immobility time of rats in FST (p<0.05) and ameliorate the turnover rate of serotonin in hippocampus and dopamine turnover rate in prefrontal cortex (p<0.05). On the other hand, unpredictable chronic mild stress (UCMS) showed that after four weeks of treatment the sucrose preference of rats in dose group was significantly higher than negative control group (p<0.05). Further analysis of open field test (OFT) showed that rats treated with liquid dietary supplement of Cordyceps militaris and Armillaria mellea formula have higher total travel distance, crossing number and time in center area when compared to the negative control (p<0.05). In addition, liquid dietary supplement of Cordyceps militaris and Armillaria mellea formula also ameliorate the turnover rate of serotonin and dopamine in hippocampus and in prefrontal cortex and corticosterone level in serum (p<0.05). Moreover, I examined the microglial activation and morphology by Iba-1 IHC staining in the hippocampus. The microglia in the stressed rats markedly exhibited the activated M1 phenotype characterized by enlarged cell bodies, hyporamified and fewer processes. Comparatively, medium and high dose group could improve this status. Results of Western blot analysis indicated that treatment of liquid dietary supplement of Cordyceps militaris and Armillaria mellea formula had significant lower M1 type related protein expression of proinflammatory cytokines like IL-1β and TNF-α in hippocampus and higher M2 type antiinflammatory cytokines IL-10, TGF-β and CD206 expression. In summary, my research demonstrated the liquid dietary supplement of Cordyceps militaris and Armillaria mellea formula reversed depression-like behavior in acute stress and chronic stress animal models, which may be mediated by the regulation of monoamine neurotransmitters turnover rate in prefrontal cortex and hippocampus, cytokine production and the phenotypic switch from M1 to M2 microglia in hippocampus. These results revealed the liquid dietary supplement of Cordyceps militaris and Armillaria mellea formula could be a potential complementary and alternative medicine for prevention and treatment of depression.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:07:47Z (GMT). No. of bitstreams: 1
ntu-108-R06641037-1.pdf: 5837698 bytes, checksum: 2f188ba0ef50165c5488dfc14d9dba9c (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract IV
目次 VII
圖次 IX
表次 XII
縮寫表 XIII
第一章 前言 1
第二章 文獻回顧 2
第一節 憂鬱症 2
第二節 北蟲草 20
第三節 蜜環菌 24
第四節 微膠細胞與憂鬱症 27
第三章 研究假說及研究目的 30
第四章 實驗架構 32
第五章 實驗材料與方法 34
第一節 實驗材料 34
第二節 實驗儀器與設備 39
第三節 實驗方法 43
第四節 統計分析方法 65
第六章 結果 66
第一節 強迫游泳試驗模式結果 66
第二節 不可預期慢性溫和壓力試驗模式 69
第七章 討論 100
第一節 體重、攝食量及飲水量 100
第二節 開放空間試驗 101
第三節 強迫游泳試驗之水中不泳動時間 102
第四節 糖水偏好試驗 103
第五節 腦部單胺類神經傳導物質分析 104
第六節 血清皮質固酮濃度 106
第七節 免疫組織化學染色分析-海馬迴中微膠細胞之形態學變化 107
第八節 M1/M2型微膠細胞相關蛋白質表現量 110
第八章 結論 116
第九章 未來研究方向 118
第十章 參考文獻 120
第十一章 附錄 137
-
dc.language.isozh_TW-
dc.title北蟲草與蜜環菌複方液態膳食補充品於急性與慢性壓力動物模式之抗憂鬱功效評估zh_TW
dc.titleThe antidepressant-like effects of liquid dietary supplement of Cordyceps militaris and Armillaria mellea formula in acute and chronic stress animal modelsen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡宗明;陳碩菲zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword憂鬱症,北蟲草,蜜環菌,M1/M2微膠細胞,發炎,強迫游泳試驗,不可預期慢性溫和壓力試驗,zh_TW
dc.subject.keyworddepression,Cordyceps militaris,Armillaria mellea,M1/M2 microglia,inflammation,forced swimming test,unpredictable chronic mild stress,en
dc.relation.page192-
dc.identifier.doi10.6342/NTU201903374-
dc.rights.note未授權-
dc.date.accepted2019-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2024-08-23-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
5.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved