請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78611
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 忻凌偉(Ling-Wei Hsin) | |
dc.contributor.author | Ying-Heng Chen | en |
dc.contributor.author | 陳穎姮 | zh_TW |
dc.date.accessioned | 2021-07-11T15:07:12Z | - |
dc.date.available | 2024-08-29 | |
dc.date.copyright | 2019-08-29 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-13 | |
dc.identifier.citation | Part I references
1. Volmar, C.; Wahlestedt, C. Histone deacetylases (HDACs) and brain function. Neuroepigenetics, 2015, 1, 20-27. 2. Broide, R. S.; Redwine, J. M.; Aftahi, N.; Young, W.; Bloom, F. E.; Winrow, C. J. Distribution of histone deacetylases 1-11 in the rat brain. J. Mol. Neurosci.,2007, 31, 47-58. 3. Abel, T.; Zukin, R. S. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr. Opin. Pharmacol.,2008, 8, 57-64. 4. Kazantsev, A. G.; Thompson, L. M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat. Rev. Drug Discovery, 2008, 7, 854-868. 5. Swank , M. W,; Sweatt, J. D. Increased histone acetyltransferase and lysine acetyltransferase activity and biphasic activation of the ERK/RSK cascade in insular cortex during novel taste learning. J. Neurosci., 2001, 21, 3383-3391. 6. Guan, J. S.; Haggarty, S. J.; Giacometti, E.; Dannenberg, J. H.; Joseph, N.; Gao, J.; Nieland, T. J. F.; Zhou, Y.; Wang, X.; Mazitschek, R.; Bradner, J. E.; DePinho, R. A.; Jaenisch, R.; Tsai, L. –H. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 2009, 459, 55-60. 7. Sung, Y. M.; Lee, T.; Yoon, H.; DiBattista, A. M.; Song, J. M.; Sohn, Y.; Moffat, E. I.; Turner, R. S.; Jung, M.; Kim, J.; Hoe, H. S. Mercaptoacetamide-based class II HDAC inhibitor lowers Ab levels and improves learning and memory in a mouse model of Alzheimer’s disease. Exp. Neurol., 2013, 239, 192-201. 8. Fass, D. M.; Reis, S. A.; Ghosh, B.; Hennig; K. M.; Joseph, N. F.; Zhao, W. N.; Nieland, T. J.; Guan, J. S.; Kuhnle, C. E.; Tang, W.; Barker, D. D.; Mazitschek, R.; Schreiber, S. L.; Tsai, L. –H.; Haggarty, S. J. Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology, 2013, 64, 81-96. 9. Simões-Pires, C.; Zwick, V.; Nurisso, A.; Schenker, E.; Pierre-Alain, C.; Cuendet, M. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol. Neurodegener., 2013, 8, 7-22. 10. Agis-Balboa, R. C.; Pavelka, Z.; Kerimoglu, C.; Fischer, A. Loss of HDAC5 impairs memory function: implications for Alzheimer’s disease. J. Alzheimers Dis., 2013, 33, 35-44. 11.Kim, M. S.; Akhtar, M. W.; Adachi, M.; Mahgoub, M.; Bassel-Duby, R.; Kavalali, E. T.; Olson, E. N.; Monteggia, L. M. An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J. Neurosci., 2012, 32, 10879-10886. 12. Sailaja, B. S.; Cohen-Carmon, D.; Zimmerman, G.;Soreq, H.; Meshorer, E. Stress-induced epigenetic transcriptional memory of acetylcholinesterase by HDAC4. Proc. Natl. Acad. Sci. U.S.A., 2012, 109, E3687-E3695. 13. Lee, J. S. Basic Nuclear Physics and Instrumentation. In Handbook of nuclear medicine and molecular imaging: principles and clinical application; World scientific, 2012; 5–8. 14. Zhu, L.; Ploessl, K.; Kung, H. F. PET/SPECT imaging agents for neurodegenerative diseases. Chem. Soc. Rev., 2014, 43, 6683-6691. 15. Hahnen, E.; Hauke, J.; Trankle, C.; Eyupoglu, I. Y.; Wirth, B.; Blumcke, I. Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin. Investig. Drugs, 2008, 17, 169-184. 16. Tago, T.; Toyohara, J. Advances in the development of PET ligands targeting histone deacetylases for the assessment of neurodegenerative diseases. Molecules, 2018, 23, 300-326. 17. Hirvonen, J.; Terry, G. E.; Halldin, C.; Pike, V. W.; Innis, R. B. Approaches to quantify radioligands that wash out slowly from target organs. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37, 917-919. 18. Seo, Y. J.; Kang, Y.; Muench, L.; Reid, A.; Caesar, S.; Jean, L.; Wagner, F.; Holson, E.; Haggarty, S. J.; Weiss, P.; King, P.; Carter, P.; Volkow, N. D.; Fowler, J. S.; Hooker, J. M.; Kim, S. W. Image-guided synthesis reveals potent blood-brain barrier permeable histone deacetylase inhibitors. ACS Chem. Neurosci. 2014, 5, 588-596. 19. Bressi, J. C.; Jennings, A. J.; Skene, R.; Wu, Y.; Melkus, R.; Jong, R.-D.; O’Connell, S.;Grimshaw, C. E.; Navre, M.; Gangloff, A. R. Exploration of the HDAC2 foot pocket: Synthesis and SARof substituted N-(2-aminophenyl)benzamides. Bioorg. Med. Chem. Lett. 2010, 20, 3142-3145. 20. Wagner, F. F.; Weïwer, M.; Steinbacher, S.; Schomburg, A.; Reinemer, P.; Gale, J. P.; Campbell, A. J.; Fisher, S. L.; Zhao, W. –N.; Reis, S. A.; Hennig, K. M.; Thomas, M.; Müller, P.; Jefson, M. R.; Fass, D. M.; Haggarty, S. J.; Zhang, Y. –L.; Holson, E. B. Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors. Bioorg. Med. Chem. 2016, 24, 4008-4015. 21. Richardson, S. J.; Bai, A.; Kulkarni, A. A.; Moghaddam, M. F. Efficiency in drug discovery: Liver S9 fraction assay as a screen for metabolic stability. Drug Metab. Lett., 2016, 10, 83-90. 22. Abbas, A.; Gupta, S. The role of histone deacetylase in prostate cancer. Epigenetics, 2008, 3, 300-309. 23. Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18, 1414-1438. 24. Wang, L.; Zou, X.; Berger, A. D.; Twiss, C.; Peng, Y.; Li, Y.; Chiu, J.; Guo, H.; Satagopan, J.; Wilton, A.; Gerald, W.; Basch, R.; Wang, Z.; Osman, I.; Lee, P. Increased expression of histone deacetylase (HDACs) and inhibition of prostate cancer growth and invasion by HDAC inhibitor SAHA. Am. J. Transl. Res., 2009, 1, 62-71. 25. Xu, W.; Ngo, L.; Perez, G.; Dokmanovic, M.; Marks, P. A. Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. PNAS, 2006, 103, 15540-15545. 26. Qian, D. Z.; Wei, Y.; Wang, X.; Kato, Y.; Cheng, L.; Pili, R. Antitumor activity of the histone deacetylase inhibitor MS-275 in prostate cancer models. Prostate, 2007, 67, 1182-1193. 27. Patra, N.; De, U.; Kim, T. H.; Lee, Y. J.; Ahn, M. Y.; Kim, N. D.; Yoon, J. H.; Choi, W. S.; Moon, H. R.; Lee, B. M.; Kim, H. S. A novel histone deacetylase (HDAC) inhibitor MHY219 induces apoptosis via up-regulation of androgen receptor expression in human prostate cancer cells. Biomed. Pharmacother. 2013, 67, 407-415. 28. Test No. 107: Partition Coefficient (n-Octanol/Water): Shake Flask Method. In OECD Guidelines for the Testing of Chemicals, section 1; OECD publishing: Paris, 1995. 29. Test No. 117: Partition Coefficient (n-Octanol/Water): HPLC Method. In OECD Guidelines for the Testing of Chemicals, section 1; OECD publishing: Paris, 1995. 30. Test No. 123: Partition Coefficient (n-Octanol/Water): Slow-Stirring Method. In OECD Guidelines for the Testing of Chemicals, section 1; OECD publishing: Paris, 1995. 31. Juranić, I. Simple method for the estimation of pKa of amines. Croat. Chem. Acta 2014, 87, 343-347. 32. Knights, K. M.; Stresser, D. M.; Miners, J. O.; Crespi, C. L. In vitro drug metabolism using liver microsomes. Current Protocols in Pharmacology 2016, 74, 7.8.1-7.8.24. 33. Konsoula, R.; Jung, M. In vitro plasma stability, permeability and solubility of mercaptoacetamide histone deacetylase inhibitors. Int. J. Pharm. 2008, 361, 19-25. 34. Konsoula, R.; Cao, H.; Velena, A.; Jung, M. Adamantanyl-histone deacetylase inhibitor H6CAHA exhibits favorable pharmacokinetics and augments prostate cancer radiation sensitivity. Int. J. Radiation Oncology Biol. Phys. 2011, 79, 1541-1548. 35. Tsai, L.-H.; Guan, J.-S.; Haggarty, S. J.; Holson, E.; Wagner, F.; Graeff, J. The Use of CI-994 and Dinaline for the Treatment of Memory/Cognition and Anxiety Disorders. WO2011053876, 2011. 36. Kilchmann, F.; Marcaida, M. J.; Kotak, S.; Schick, T.; Boss, S. D.; Awale, M.; Gönczy, P.; Reymond, J. Discovery of a selective aurora A kinase inhibitor by virtual screening. J. Med. Chem. 2016, 59, 7188-7211. 37. Cosford, N.; Dhanya, R.; Sheffler, D. J. Metabotropic glutamate receptor negative allosteric modulators (NAMS) and uses thereof. WO2015/191630, 2015. 38. Methot, J. L.; Hoffman, D. M.; Witter, D. J.; Stanton, M. G.; Harrington, P.; Hamblett, C. L.; Siliphaivanh, P.; Wilson, K.; Hubbs, J.; Heidebrecht, R.; Kral, A. M.; Ozerova, N.; Fleming, J. C.; Wang, H.; Szewczak, A. A.; Middleton, R. E.; Hughes, B.; Cruz, J. C.; Haines, B. B.; Chenard, M.; Kenific, C. M.; Harsch, A.; Secrist, P. J.; Miller, T. A. Delayed and prolonged histone hyperacetylation with a selective HDAC1/HDAC2 inhibitor. ACS Med. Chem. Lett. 2014, 5, 340-345. 39. Li, X.; Zhang, Y.; Jiang, Y.; Wu, J.; Inks, E. S.; Chou, C. J.; Gao, S.; Hou, J.; Ding, Q.; Li, J.; Wang, X.; Huang, Y.; Xu, W. Selective HDAC inhibitors with potent oral activity against lukemia and colorectal cancer: Design, structure-activity relationship and anti-tumor activity study. Eur. J. Med. Chem. 2017, 134, 185-206. 40. Gao, S.; Zang, J.; Gao, Q.; Liang, X.; Ding, Q.; Li, X.; Xu, W.; Chou, C. J.; Zhang, Y. Design, synthesis and anti-tumor activity study of novel histone deacetylase inhibitors containing isatin-based caps and o-phenylenediamine –based zinc binding groups. Bioorg. Med. Chem. 2017, 25, 2981-2994. 41. Witter, D. J.; Harrington, P.; Wilson, K.; Chenard, M.; Fleming, J. C.; Haines, B. B.; Kral, A. M.; Secrist, P. J.; Miller, T. A. Optimization of biaryl selective HDAC 1 and 2 inhibitors (SHI-1:2). Bioorg. Med. Chem. Lett. 2008, 18, 726-731. 42. Hoffmann-La Roche, Inc. Glutamate receptor antagonists. US 6509328, 2003. 43. Moradei, O. M.; Mallais, T. C.; Frechette, S.; Paquin, I.; Tessier, P. E.; Leit, S. M.; Fournel, M.; Bonfils, C.; Trachy-Bourget, M.-C.; Liu, J.; Yan, T. P.; Lu, A.-H.; Rahil, J.; Wang, J.; Lefebvre, S.; Li, Z.; Vaisburg, A. F.; Besterman, J. M. Novel aminophenyl benzamide-type histone deacetylase inhibitors with enhanced potency and selectivity. J. Med. Chem. 2007, 50, 5543-5546. Part II references 1. Sillence, M. N. Technologies for the control of fat and lean deposition in livestock. Vet. J. 2004, 167, 242-257. 2. Department of Agriculture, Fisheries and Forestry. National Residue Survey. Nov. 2010, Australia. 3. Martínez-Navarro, J. F. Food poisoning related to consumption of illicit -agonist in liver. Lancet 1990, 336, 1311. 4. Shiu, T. C.; Chong, Y. H. A Cluster of clenbuterol poisoning associated with pork and pig offal in Hong Kong. Public Health and Epidemiology Bulltein. 2001, 10, 14-17. 5. Liu, C.; Ling, W.; Xu, W.; Chai, Y. Simultaneous determination of 20 -agonists in pig muscle and liver by high-performance liquid chromatography/ tandem mass spectrometry. J. AOAC Int. 2011, 94, 420-427 6. Antignac, J. P.; Marchand, P.; Bizec, B. L.; Andre, F. Identification of ractopamine residues in tissue and urine samples at ultra-trace level using liquid chromatography-positive electrospray tandem mass spectrometery. J. Chromatogr. B 2002, 774, 59-66. 7. Sakai, T.; Hitomi, T.; Sugaya, K.; Kai, S.; Murayama, M.; Maitani, T. Determination method for ractopamine in swine and cattle tissues using LC/MS. J. Food Hyg. Soc. Japan. 2007, 48, 144-147. 8. Freire, E. F.; Borges, K. B.; Tanimoto, H.; Nogueira, T.; Bertolini, L. C. T.; Gaitani, C.M. Development and validation of a simple method for routine analysis of ractopamine hydrochloride in raw material and feed additives by HPLC. J. AOAC Int. 2009, 92, 757-764. 9. Chang, L. Y.; Chou, S. S.; Hwang, D. F. High performance liquid chromatography to determine animal drug clenbuterol in pork, beef and hog liver. J. Food Drug Anal. 2005, 13, 163-167. 10. Juan, C.; Igualada, C.; Moragues, F.; León, N.; Mañes, J. Development and validation of a liquid chromatography tandem mass spectrometry method for the analysis of -agonists in animal feed and drinking water. J. Chromatogr. A 2010, 1217, 6061-6068. 11. Shao, B.; Jia, X.; Meng, J.; Wu, Y.; Duan, H.; Tu, X. Multi-residual analysis of 16 -agonists in pig liver, kidney and muscle by ultra performance liquid chromatography tandem mass spectrometry. Food Chem. 2009, 114, 1115-1121. 12. Baker, J. The selectivity of -adrenoceptor agonists at human 1-, 2- and 3-adrenoceptors. Br. J. Pharmacol. 2010, 160, 1048-1061. 13. Kern, C.; Meyer, T.; Droux, S.; Schollmeyer, D.; Miculka, C. Synthesis and pharmacological characterization of 2-adrenergic agonist enantiomers: zilpaterol. J. Med. Chem. 2009, 52, 1773-1777. 14. Yamamoto, Y.; Higuchi, S.; Fujihashi, T.; Shimizu, S.; Nishide, K.; Uesaka, I. The metabolic fate of o-chloro--(tert-butylaminomethyl)-benzyl alcohol hydrochloride (C-78). II. Metabolic products in the rat. Yakugaku Zasshi 1977, 97, 244-250. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78611 | - |
dc.description.abstract | Part 1 Development of histone deacetylase PET tracers as a novel research tool for Alzheimer’s disease
Alzheimer’s disease (AD) is the most common type of dementia, accounting for 60 to 80% of dementia cases. It is a progressive disease with no cure, causing severe burden to patients’ families and the society. Although a lot of effort have been made for studying AD formation and developing treatments for AD, the progression remain slow. Several studies have indicated that histone deacetylases (HDACs) might play an important role in AD formation. Hence, [18F]-labeled HDAC molecular probes have been developed for AD study through real-time in vivo visualization and quantification of the contents and activity of HDACs in brain, yet most of them exhibited poor blood-brain barrier permeability and lack of subtype-selectivity. In this thesis, a series of novel fluoroalkyl-substituted benzamide derivatives with high subtype-selectivity toward HDAC1 and HDAC2 were designed and synthesized. The physicochemical and pharmacokinetic properties were also evaluated. These compounds demonstrated potent and selective inhibition against HDAC1 (IC50 = 0.011-1.24 uM) and HDAC2 (IC50 = 0.14-2.59 uM). In addition, most of these compounds demonstrated moderate to high BBB permeability (>70%) in the PAMPA assay. 24h is a HDAC1 selective HDACI (HDAC1 IC50: 0.013 uM; HDAC2: 50% inhibition at 0.3 uM) with BBB permeability >99% and was chosen to be the imaging probe in PET study. [18F]24h was found to be able to penetrate BBB with rapid washout which can be a potential imaging tool for studying the roles HDACs play in AD. Part 2 Identification of novel beta-2 receptor agonists, mebuctopamine and buctopamine, in swine hair and feed additives beta-2 receptor agonists are often used illegally for their growth promoting effect as feed additives. Recently, a novel beta-2 receptor agonist and its metabolite have been detected in swine hair and were further identified by using triple quadrupole LC/MS/MS and nuclear magnetic spectrometry as 4-[2-(tert-butylamino)-1-hydroxyethyl]phenol (buctopamine) and 4-[2-(tert-butylamino)-1-hydroxyethyl]-2-methoxyphenol (mebuctopamine). Both compounds exhibited high hydrophilicity comparing to ractopamine and clenbuterol as well as moderate binding affinity toward beta-2 receptor with no affinity toward other subtypes and alpha adrenoceptors. This study has successfully prevented the illegal use of beta-2 receptor agonists as feed additive in livestock industry through adding these two compounds into the library of feed additives for routine drug-residue screening and further enhance and food safety in Taiwan. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:07:12Z (GMT). No. of bitstreams: 1 ntu-108-D01423103-1.pdf: 10903897 bytes, checksum: 9a2c8052dda8c500544e864865c42928 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書...................................................................................................... i
誌謝……………………………………………………………………………….. ii Content……………………………………………………………………………. iii List of Figures…………………………………………………………………….. v List of Tables………………………………………………………………...……. vi List of Charts…………………………………………………………..………….. vii List of Schemes…………………………………………………...………………. viii 中文摘要………………………………………………………………………….. ix Abstract……………………………………………………………………............ xi Abbreviation……………………………………………………………………… xiv Part 1 Development of histone deacetylase PET tracers as a novel research tool for Alzheimer’s disease Chapter 1- Introduction…………………………………………………………. 1 1.1 Histone Deacetylase and Alzheimer’s disease………………….. 1 1.2 Positron Emission Tomography and Radiotracers for HDAC….. 5 1.3 Partition Distribution and Metabolism………………………….. 11 1.4 Research Goal and Rationle…………………………………….. 13 Chapter 2- Results and Discussion…………………………………………….... 16 2.1 Method Establishment for Partition Coefficient and Metabolism………………………………………………………….. 16 2.2 Synthesis and Biological Evaluation of First Generation HDACIs……………………………………………………………... 30 2.3 Synthesis and Biological Evaluation of Second Generation HDACIs……………………………………………………………... 35 2.4 Cytotoxicity Assay……………………………………………… 41 2.5 Evaluation of Physicochemical Properties……………………… 43 2.6 In Vitro Metabolic Stability Assay of 24h………………………. 52 2.7 Positron Emission Tomography Study………………………….. 54 Chapter 3- Conclusion…………………………………………………………... 66 References………………………………………………………………………… 68 Part 2 Identification of novel 2 receptor agonists, mebuctopamine and buctopamine, in swine hair and feed additives Chapter 1- Introduction…………………………………………………………. 74 Chapter 2- Results and Discussion……………………………………………… 79 2.1 Identification of unknown ingredient in feed and swine hair…… 79 2.2 Pharmacological activities and partition coefficient……………. 82 Chapter 3- Conclusion…………………………………………………………... 86 References………………………………………………………………………… 87 Part 3 Experimental section 3.1 Commercial Reagents and Solvents………………………………… 89 3.2 Anhydrous Reagents, Solvents and Buffers………………………… 93 3.3 Instruments and Methods…………………………………………… 96 3.4 Procedures and Analytical Data…………………………………….. 108 Appendix………………………………………………………………………….. 194 | |
dc.language.iso | en | |
dc.title | 第一部份:開發組蛋白去乙醯化酶正子探針作為阿茲海默症之新穎研究工具
第二部分:豬隻毛髮暨飼料添加物中新興瘦肉精成分─甲飆妥巴胺及飆妥巴胺─之鑑別 | zh_TW |
dc.title | Part I: Development of Histone Deacetylase PET Tracers as a Novel Research Tool for Alzheimer’s Disease
Part II: Identification of Novel 2 Receptor Agonists, Mebuctopamine and Buctopamine, in Swine Hair and Feed Additives | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 顏若芳(Ruoh-Fang Yen),高志浩,劉景平,李水盛,顧記華 | |
dc.subject.keyword | 阿茲海默症,組蛋白去乙醯化?,組蛋白去乙醯化?抑制劑,血腦屏障,正子斷層造影,乙二型交感神經作用劑,瘦肉精,飼料添加物,飆妥巴胺,甲飆妥巴胺,克倫特羅,萊克多巴胺, | zh_TW |
dc.subject.keyword | Alzheimer’s disease,Histone deacetylase,Histone deacetylase inhibitors,Blood-brain barrier,Positron emission tomography,beta-2 receptor agonists,lean-meat agents,feed additive,buctopamine,mebuctopamine,clenbuterol,ractopamine, | en |
dc.relation.page | 266 | |
dc.identifier.doi | 10.6342/NTU201903537 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-29 | - |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-D01423103-1.pdf 目前未授權公開取用 | 10.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。