Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78294
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林君榮(Chun-Jung Lin)
dc.contributor.authorTing-Hsuan Wangen
dc.contributor.author王庭萱zh_TW
dc.date.accessioned2021-07-11T14:49:50Z-
dc.date.available2025-08-16
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.citationADAPT Research Group Lyketsos CG, Breitner JC, Green RC, Martin BK, Meinert C, Piantadosi S, Sabbagh M. Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology. 2007;68:1800-1808.
Aisen PS. The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol. 2002;1:279-284.
Al-Bataineh MM, van der Merwe D, Schultz BD, Gehring R. Tumor necrosis factor alpha increases P-glycoprotein expression in a BME-UV in vitro model of mammary epithelial cells. Biopharm Drug Dispos. 2010;31:506-515.
Alafuzoff I., Overmyer M., Helisalmi S., Soininen H. Lower counts of astroglia and activated microglia in patients with Alzheimer's disease with regular use of non-steroidal anti-inflammatory drugs. J. Alzheimers Dis. 2000;2:37-46.
Ali MM, Ghouri RG, Ans AH, Akbar A, Toheed A. Recommendations for Anti-inflammatory Treatments in Alzheimer's Disease: A Comprehensive Review of the Literature. Cureus. 2019;11:e4620.
Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimer’s Dementia. 2018;14:367-429.
Andrew RJ, Fernandez CG, Stanley M, et al. Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer's disease. Proc Natl Acad Sci U S A. 2017;114:E9665-74.
Argaw AT, Zhang Y, Snyder BJ, Zhao ML, Kopp N, et al. IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol. 2006;177:5574-5584.
Astry B, Venkatesha SH, Moudgil KD. Temporal cytokine expression and the target organ attributes unravel novel aspects of autoimmune arthritis. Indian J Med Res. 2013;138:717-731.
Bedner P, Dupper A, Hüttmann K, Müller J, Herde MK, Dublin P, et al. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain. 2015;138:1208-22.
Bauer B, Hartz AM, Miller DS. Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol Pharmacol. 2007;71:667-675.
Bauer B, Yang X, Hartz AM, et al. In vivo activation of human pregnane X receptor tightens the blood-brain barrier to methadone through P-glycoprotein up-regulation. Mol Pharmacol. 2006;70:1212-1219.
Beard CM, Kokman E, Kurland L. Rheumatoid arthritis and susceptibility to Alzheimer's disease. The Lancet. 1991;337:1426.
Blamire AM, Anthony DC, Rajagopalan B, Sibson NR, Perry VH, et al. Interleukin-1beta -induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J Neurosci. 2000;20:8153-8159.
Bolmont T, Haiss F, Eicke D, et al. Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci. 2008;28:4283-4292.
Bolton SJ, Anthony DC, Perry VH. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience. 1998;86:1245-1257.
Breitner JC, Zandi PP. Do nonsteroidal antiinflammatory drugs reduce the risk for Alzheimer’s disease? N Engl J Med. 2001;345:1567-1568.
Chang KH, Hsu YC, Hsu CC, et al. Prolong Exposure of NSAID in Patients With RA Will Decrease the Risk of Dementia: A Nationwide Population-Based Cohort Study. Medicine (Baltimore). 2016;95:e3056.
Cicala C, Ianaro A, Fiorucci S, et al. NO-naproxen modulates inflammation, nociception and downregulates T cell response in rat Freund's adjuvant arthritis. Br J Pharmacol. 2000;130:1399-1405.
Crowson CS, Matteson EL, Myasoedova E, et al. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum. 2011;63:633-639.
Efstathiou M, Settas L. The effect of non-steroidal anti-inflammatory drugs on matrix metalloproteinases levels in patients with osteoarthritis. Mediterranean Journal of Rheumatology. 2017;28:133.
Efthymiou AG, Goate AM. Late onset Alzheimer's disease genetics implicates microglial pathways in disease risk. Mol Neurodegener. 2017;12:43.
El Khoury J, Luster AD. Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications. Trends Pharmacol Sci. 2008;29:626-632.
Eraga SO, Arhewoh MI, Chibuogwu RN, Iwuagwu MA. A comparative UV− HPLC analysis of ten brands of ibuprofen tablets. Asian Pacific Journal of Tropical Biomedicine. 2015;5:880-4.
Eriksen, JL, Sagi SA, Smith TE, Weggen S, Das P, McLendon DC, Ozols VV, Jessing KW, Zavitz KH, Koo EH, Golde TE. NSAIDs and enantiomers of flurbiprofen target gamma- secretase and lower Abeta 42 in vivo. J Clin Invest. 2003;112:440-9.
Ferraccioli G, Bracci-Laudiero L, Alivernini S, Gremese E, Tolusso B, De Benedetti F. Interleukin-1β and interleukin-6 in arthritis animal models: roles in the early phase of transition from acute to chronic inflammation and relevance for human rheumatoid arthritis. Mol Med. 2010;16:552-557.
Godfrey RG, de la Cruz S. Effect of ibuprofen dosage on patient response in rheumatoid arthritis. Arthritis Rheum. 1975;18:135-137.
Gunaydin C, Bilge SS. Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level. Eurasian J Med. 2018;50:116-121.
Hallenbeck JM. The many faces of tumor necrosis factor in stroke. Nat Med. 2002;8:1363-1368.
Halliday GM, Shepherd E, McCann H, Reid WG, Grayson DA, Broe GA, Kril JJ. Effect of anti-inflammatory medications on neuropathological findings in Alzheimer disease. Arch Neurol. 2000;57,831-83610.
Hanisch, UK, and Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 2007;10,1387-1394.
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. Journal of Cell Biology. 2018;217:459-72.
Hemonnot A-L, Hua J, Ulmann L, Hirbec H. Microglia in Alzheimer Disease: Well-Known Targets and New Opportunities. Frontiers in Aging Neuroscience. 2019;11.
Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, Jardanhazi-Kurutz D, Walter J, Kirchhoff F, Hanisch UK, Kummer MP. Proc Natl Acad Sci U S A. 2010;107:6058-63.
Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C, O'Banion K, Klockgether T, Van Leuven F, Landreth GE. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain 2005;128:1442-1453.
Hudson BI, Lippman ME. Targeting RAGE Signaling in Inflammatory Disease. Annual Review of Medicine. 2018;69:349-64.
Ikuta H, Kawase A, Iwaki M. Stereoselective Pharmacokinetics and Chiral Inversion of Ibuprofen in Adjuvant-induced Arthritic Rats. Drug Metab Dispos. 2017;45:316-324.
Imbimbo BP, Solfrizzi V, Panza F. Are NSAIDs useful to treat Alzheimer's disease or mild cognitive impairment? Front Aging Neurosci. 2010;2:19.
Jiao H, Wang Z, Liu Y, Wang P, Xue Y. Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult. J Mol Neurosci. 2011;44:130-139.
Kandimalla KK, Curran GL, Holasek SS, Gilles EJ, Wengenack TM, Poduslo JF. Pharmacokinetic analysis of the blood-brain barrier transport of 125I-amyloid beta protein 40 in wild-type and Alzheimer's disease transgenic mice (APP,PS1) and its implications for amyloid plaque formation. J Pharmacol Exp Ther. 2005;313:1370-8.
Kao YH, Chern Y, Yang HT, Chen HM, Lin CJ. Regulation of P-glycoprotein expression in brain capillaries of Huntington’s disease transgenic mice and its impact on brain availability of antipsychotic agents hrisperidone and paliperidone. J Cereb Blood Flow Metab 2016,36:1412-1423.
Kirkby NS, Chan MV, Zaiss AK, et al. Systematic study of constitutive cyclooxygenase-2 expression: Role of NF-κB and NFAT transcriptional pathways. Proc Natl Acad Sci U S A. 2016;113:434-439.
Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J Neurosci. 2005;25:8843-8853.
Klareskog L, Catrina AI, Paget S. Rheumatoid arthritis. Lancet. 2009;373:659-672.
Korani M, Jamshidi M. The Effect of Aqueous Extract of Trachyspermum ammiSeeds and Ibuprofen on Inflammatory Gene Expression in the Cartilage Tissue of Rats with Collagen-Induced Arthritis. J Inflamm Res. 2020;13:133-139.
Kosaka S, Tazawa M. Alpha1-antichymotrypsin in rheumatoid arthritis. Tohoku J Exp Med. 1976;119:369-375.
Krause DL, Müller N. Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer's disease. Int J Alzheimers Dis. 2010;2010:732806.
Laflamme N, Lacroix S, Rivest S. An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci. 1999;19:10923-10930.
Lanz TA, Schachter JB. Demonstration of a common artifact in immunosorbent assays of brain extracts: development of a solid-phase extraction protocol to enable measurement of amyloid-beta from wild-type rodent brain. J Neurosci Methods. 2006;157:71-81.
Lécuyer MA, Kebir H, Prat A. Glial influences on BBB functions and molecular players in immune cell trafficking. Biochim Biophys Acta. 2016;1862:472-482.
Li X, DuBois DC, Almon RR, Jusko WJ. Effect of Disease-Related Changes in Plasma Albumin on the Pharmacokinetics of Naproxen in Male and Female Arthritic Rats. Drug Metab Dispos. 2017;45(5):476-483.
Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA, Cole GM. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J Neurosci. 2000; 20:5709-5714.
Lin CH, Hsu KW, Chen CH, Uang YS, Lin CJ. Differential changes in the pharmacokinetics of statins in collagen-induced arthritis rats. Biochem Pharmacol. 2017;142:216-228.
Lin JH, Cocchetto DM, Duggan DE. Protein binding as a primary determinant of the clinical pharmacokinetic properties of non-steroidal anti-inflammatory drugs. Clin Pharmacokinet. 1987;12:402-432.
Liu DY, Lon HK, Wang YL, DuBois DC, Almon RR, Jusko WJ. Pharmacokinetics, pharmacodynamics and toxicities of methotrexate in healthy and collagen-induced arthritic rats. Biopharm Drug Dispos. 2013;34:203-214.
Liu J, Zhou F, Chen Q, et al. Chronic inflammation up-regulates P-gp in peripheral mononuclear blood cells via the STAT3/Nf-κb pathway in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice. Sci Rep. 2015;5:13558.
Liu YW, Zhu X, Zhang L, et al. Cerebroprotective effects of ibuprofen on diabetic encephalopathy in rats. Pharmacol Biochem Behav. 2014;117:128-136.
Lleo A, Galea E, and Sastre M. Molecular targets of non-steroidal anti-inflammatory drugs in neurodegenerative diseases. Cell. Mol. Life Sci. 2007;64,1403-1418.
Lopes RS, Cardoso MM, Sampaio AO, et al. Indomethacin treatment reduces microglia activation and increases numbers of neuroblasts in the subventricular zone and ischaemic striatum after focal ischaemia. J Biosci. 2016;41:381-394.
Luftschein S, Bienenstock H, Varady JC, Stitt FW. Increasing dose of naproxen in rheumatoid arthritis: use with and without corticosteroids. J Rheumatol. 1979;6:397-404.
Márquez Loza A, Elias V, Wong CP, Ho E, Bermudez M, Magnusson KR. Effects of ibuprofen on cognition and NMDA receptor subunit expression across aging. Neuroscience. 2017;344:276-292.
Mazumder MK, Bhattacharya P, and Borah A. Inhibition of matrix metalloproteinase-2 and 9 by Piroxicam confer neuroprotection in cerebral ischemia: an in silico evaluation of the hypothesis. Medical hypotheses. 2014;83,697-701.
McGeer PL, McGeer EG. The amyloid cascade inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol. 2013;126:479-497.
McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiologic studies. Neurology. 1996;47:425-432.
McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205-19.
McKee AC, Carreras I, Hossain L, et al. Ibuprofen reduces Abeta, hyperphosphorylated tau and memory deficits in Alzheimer mice. Brain Res. 2008;1207:225-236.
Mesches MH, Gemma C, Veng LM, et al. Sulindac improves memory and increases NMDA receptor subunits in aged Fischer 344 rats. Neurobiol Aging. 2004;25:315-324.
Mohammed NA, Abd El-Aleem SA, El-Hafiz HA, McMahon RF. Distribution of constitutive (COX-1) and inducible (COX-2) cyclooxygenase in postviral human liver cirrhosis: a possible role for COX-2 in the pathogenesis of liver cirrhosis. J Clin Pathol. 2004;57:350-4.
Morales I, Guzmán-Martínez L, Cerda-Troncoso C, Farías GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Frontiers in Cellular Neuroscience. 2014;8.
Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27-31.
Netland EE, Newton JL, Majocha RE, Tate BA. Indomethacin reverses the microglial response to amyloid beta-protein. Neurobiol Aging .1998;19:201-204.
Nishioku T, Yamauchi A, Takata F, Watanabe T, Furusho K, Shuto H, Dohgu S, Kataoka Y. Disruption of the blood-brain barrier in collagen-induced arthritic mice. Neurosci Lett. 2010;482:208-211.
Nisticò R, Mori F, Feligioni M, Nicoletti F, Centonze D. Synaptic plasticity in multiple sclerosis and in experimental autoimmune encephalomyelitis. Philos Trans R Soc Lond B Biol Sci. 2013;369:20130162.
Ozturk Bilgin O, Kumbul Doguc D, Altuntas I, Sutcu R, Delibas N. Effects of Subchronic Treatment with Ibuprofen and Nimesulide on Spatial Memory and NMDAR Subunits Expression in Aged Rats. Iran J Pharm Res. 2013;12:877-885.
Park SM, Shin JH, Moon GJ, Cho SI, Lee YB, Gwag BJ. Effects of collagen-induced rheumatoid arthritis on amyloidosis and microvascular pathology in APP/PS1 mice. BMC Neurosci. 2011;12:106.
Policicchio S, Ahmad AN, Powell JF, Proitsi P. Rheumatoid arthritis and risk for Alzheimer’s disease: a systematic review and meta-analysis and a Mendelian Randomization study. Scientific Reports. 2017;7:12861.
Pomilio C, Pavia P, Gorojod RM, et al. Glial alterations from early to late stages in a model of Alzheimer's disease: Evidence of autophagy involvement in Aβ internalization. Hippocampus. 2016;26:194-210.
Reynolds PMg, Whorwell PJ. A single-blind crossover comparison of fenoprofen, ibuprofen and naproxen in rheumatoid arthritis. Current Medical Research and Opinion. 1974;2:461-464.
Ridgley LA, Anderson AE, Pratt AG. What are the dominant cytokines in early rheumatoid arthritis?. Curr Opin Rheumatol. 2018;30:207-214.
Safiri S, Kolahi AA, Hoy D, et al. Global, regional and national burden of rheumatoid arthritis 1990-2017: a systematic analysis of the Global Burden of Disease study 2017. Ann Rheum Dis. 2019;78:1463-1471.
Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2010;376:1094-1108.
Shin SY, Katz P, Wallhagen M, Julian L. Cognitive impairment in persons with rheumatoid arthritis. Arthritis Care Res. 2012;64:1144-50.
Solomon DH, Goodson NJ, Katz JN, et al. Patterns of cardiovascular risk in rheumatoid arthritis. Ann Rheum Dis. 2006;65:1608-1612.
Truettner JS, Alonso OF, Dietrich WD. Influence of therapeutic hypothermia on matrix metalloproteinase activity after traumatic brain injury in rats. J Cereb Blood Flow Metab. 2005;25:1505-1516.
Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell. 1996;87:1327-1338.
Tyagi E, Fiorelli T, Norden M, Padmanabhan J. Alpha 1-Antichymotrypsin, an Inflammatory Protein Overexpressed in the Brains of Patients with Alzheimer's Disease, Induces Tau Hyperphosphorylation through c-Jun N-Terminal Kinase Activation. Int J Alzheimers Dis. 2013;2013:606083.
Van den Ouweland FA, Franssen MJ, van de Putte LB, Tan Y, van Ginneken CA, Gribnau FW. Naproxen pharmacokinetics in patients with rheumatoid arthritis during active polyarticular inflammation. Br J Clin Pharmacol. 1987;23:189-193.
Verheijen J, Sleegers K. Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends in Genetics. 2018;34:434-47.
Verkhratsky A, Zorec R, Rodríguez JJ, Parpura V. Astroglia dynamics in ageing and Alzheimer's disease. Current opinion in pharmacology. 2016;26:74-9.
Wang H, Chen F, Du YF, et al. Targeted inhibition of RAGE reduces amyloid-β influx across the blood-brain barrier and improves cognitive deficits in db/db mice. Neuropharmacology. 2018;131:143-153.
Wang Y, Jin S, Sonobe Y, et al. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes. PLoS One. 2014;9:e110024.
Weekman EM and Wilock DM. Matrix Metalloproteinase in Blood-Brain Barrier Breakdown in Dementia. J Alzheimers Dis. 2016;49:893-903.
Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, Findlay KA, Smith TE, Murphy MP, Bulter T, Kang DE, Marquez-Sterling N, Golde TE, Koo EH. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature. 2001;414:212-216.
Wei ST, Sun YH, Zong SH, Xiang YB. Serum Levels of IL-6 and TNF-α May Correlate with Activity and Severity of Rheumatoid Arthritis. Med Sci Monit. 2015;21:4030-4038.
Winblad B, Amouyel P, Andrieu S. Defeating Alzheimer's disease and other dementias: a priority for European science and society. Lancet Neurol. 2016;15:455-532.
Wu KC, Lin CJ. The regulation of drug-metabolizing enzymes and membrane transporters by inflammation: Evidences in inflammatory diseases and age-related disorders. Journal of Food and Drug Analysis. 2019;27:48-59.
Yamagata K, Tagami M, Takenaga F, Yamori Y, Itoh S. Hypoxia-induced changes in tight junction permeability of brain capillary endothelial cells are associated with IL-1beta and nitric oxide. Neurobiol Dis. 2004;17:491-499.
Yilmaz B, Asci A, Erdem AF. HPLC method for naproxen determination in human plasma and its application to a pharmacokinetic study in Turkey. J Chromatogr Sci. 2014;52:584-589.
Zenaro E, Piacentino G, Constantin G. The blood-brain barrier in Alzheimer's disease. Neurobiol Dis. 2017;107:41-56.
Zhang S, An Q, Wang T, Gao S, Zhou G. Autophagy- and MMP-2/9-mediated Reduction and Redistribution of ZO-1 Contribute to Hyperglycemia-increased Blood-Brain Barrier Permeability During Early Reperfusion in Stroke. Neuroscience. 2018;377:126-137.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78294-
dc.description.abstract根據流行病學的發現,類風濕關節炎病人發生阿茲海默症的機率較高,而長期服用非類固醇消炎藥,例如:ibuprofen可降低類風濕關節炎病人中併發阿茲海默症的機率,但是使用naproxen並無此現象。目前,關於類風濕關節炎患者使用非類固醇消炎藥,與阿茲海默症發生率之間之可能原因則尚不明確。因此,本研究利用膠原蛋白誘發關節炎動物模型,口服給予兩種不同之非類固醇消炎藥物:ibuprofen及naproxen,評估其血中藥動特性,並比較及其改善神經發炎與對於血腦屏障運輸β-類澱粉蛋白之影響差異。結果顯示,在藥物動力學方面,ibuprofen或naproxen在關節炎大鼠的血中濃度及其對照組間並無顯著差異。在神經發炎方面,ibuprofen和naproxen皆能顯著減少星狀細胞的活化;但在神經微膠細胞,ibuprofen較能顯著降低其活化之現象,而naproxen則相對無助益。在血腦屏障方面,給予ibuprofen可顯著恢復因RA所降低之ZO-1蛋白表現,但是naproxen對此現象則無改善效果,顯示非類固醇消炎藥對於保護血腦屏障的緊密程度存在不同效果。此外,RA所造成大鼠大腦微血管所表達之β-類澱粉運輸蛋白 (包括RAGE與P-gp) 表現之改變,也顯著因著使用ibuprofen而顯著減緩,然而服用naproxen所造成之影響有限;進一步的實驗結果顯示,β-類澱粉蛋白較容易從周邊進入海馬迴堆積之現象,在給予ibuprofen後顯著下降,naproxen則無明顯改善。綜合上述,我們的研究顯示ibuprofen和naproxen緩解神經發炎之程度不同,對於β-類澱粉蛋白在類風濕關節炎大鼠模型中的血腦屏障運輸之影響亦有差異。zh_TW
dc.description.abstractRheumatoid arthritis (RA) has been associated with the occurrence of Alzheimer’s disease (AD) in epidemiological studies. Long-term administration of nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen in patients with RA was associated with a decreased incidence of AD. However, the administration of naproxen was considered less effective in reducing the incidence of AD. The underlying link between NSAIDs treatment and the incidence of AD in RA remains elusive. The present study was aimed to investigate the pharmacokinetics of ibuprofen and naproxen, including their effects on neuroinflammation and BBB transfer of Aβ in CIA rats. As a result, the plasma concentrations of ibuprofen or naproxen were comparable between CIA and control rats. As for neuroinflammation, while both ibuprofen and naproxen reduced astrogliosis, the administration of ibuprofen, but not naproxen, can ameliorate microgliosis. Moreover, the expression of tight junction proteins, zona-occludin (ZO-1), at brain microvessels was also improved by ibuprofen, but not by naproxen. In terms of Aβ-transporting proteins, changes of receptor for advanced glycation end products (RAGE) and P-glycoprotein (P-gp) in CIA rats were reversed by ibuprofen treatment, whereas the effects of naproxen were to a lesser extent. Also, the increased levels of Aβ in the hippocampus of CIA rats were reduced by the treatment with ibuprofen, but not by naproxen. In conclusion, these findings showed the differential effects of ibuprofen and naproxen in alleviating the neuroinflammation and BBB transfer of Aβ in animals with RA.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:49:50Z (GMT). No. of bitstreams: 1
U0001-0808202022405000.pdf: 2577311 bytes, checksum: a90dc46564ea2fdc7ca8bb34827244f6 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsTABLE OF CONTENTS
誌謝 i
中文摘要 iii
ABSTRACT iv
TABLE OF CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Rheumatoid arthritis (RA) 1
1.2 The incidence of Alzheimer’s disease (AD) in RA patients treated with NSAIDs 1
1.3 NSAIDs and neuroinflammation: Effects on microglia function 2
1.4 Transportation of amyloid beta (Aβ) at the blood-brain barrier 4
Chapter 2 Objectives 8
Chapter 3 Materials and methods 10
3.1 Induction of collagen induced arthritis (CIA) rat 10
3.2 NSAIDs administration 11
3.3 Pharmacokinetics study of NSAIDs 11
3.4 Quantification of plasma concentration of NSAIDs 12
3.4.1 Sample preparation for HPLC analysis 12
3.4.2 HPLC conditions 12
3.4.3 WINONLIN analysis 13
3.5 Quantification of IL-1β, IL-6, and TNF-α in plasma 14
3.6 RNA extraction 15
3.6.1 Extraction RNA from brain tissue 15
3.6.2 Quality control 16
3.7 Reverse transcription-quantitative polymerase chain reaction, RT-qPCR 16
3.7.1 Reverse transcription (RT) 16
3.7.2 Real time-quantitative polymerase chain reaction (RT-qPCR) 17
3.8 Perfusion fixation of the rat brain 18
3.9 Immunofluorescence 18
3.10 Kinetic of human amyloid beta 1-42 (Aβ42) 20
3.10.1 Monomerize of human Aβ42 20
3.10.2 Intravenous administration of human Aβ42 20
3.11 Brain influx of human amyloid beta 1-42 (Aβ42) 21
3.11.1 Extraction of Aβ42 in the brain 21
3.11.2 Quantification of Aβ42 in the brain 21
3.12 Statistical analysis 22
Chapter 4 Results 26
4.1 Pharmacokinetics of ibuprofen and naproxen in CIA rats 26
4.2 The effects of ibuprofen and naproxen on disease symptoms of CIA rats 26
4.3 The effects of ibuprofen and naproxen on neuroinflammation in CIA rats 27
4.4 The effects of ibuprofen and naproxen on BBB integrity in CIA rats 28
4.5 Ibuprofen and naproxen alter the expression of amyloid beta (Aβ) carriers in CIA rats 28
4.6 Effects of ibuprofen and naproxen treatment on amyloid beta (Aβ) influx across BBB in CIA rats 29
Chapter 5 Discussion 39
Chapter 6 Conclusion 45
References 46
LIST OF FIGURES
Figure 1.1 Microglia functional balance influenced by multiple micro-environment factors. 6
Figure 1.2 The amyloid-beta (Aβ) transport system at the blood-brain barrier 7
Figure 1.3 The aim of the study 9
Figure 3.1 Experimental study design 23
Figure 3.2 Flow chart of enzyme-linked immunosorbent assay (ELISA) 24
Figure 4.1 Pharmacokinetics of ibuprofen and naproxen in collagen-induced arthritis (CIA) rats 31
Figure 4.2 Effects of ibuprofen (Ibu) and naproxen (Nap) treatments on paw volume, body weight, and plasma levels of proinflammatory cytokines in CIA rats and controls 32
Figure 4.3 Effects of ibuprofen (Ibu) and naproxen (Nap) treatments on brain mRNA levels of proinflammatory cytokines in CIA rats and controls 33
Figure 4.4 Effects of Ibuprofen (Ibu) and naproxen (Nap) treatments on microgliosis and astrogliosis in CIA rats 34
Figure 4.5 Effects of ibuprofen (Ibu) and naproxen (Nap) treatments on BBB integrity in CIA rats 35
Figure 4.6 Effects of ibuprofen (Ibu) and naproxen (Nap) treatments on the expression of RAGE and P-gp in CIA rats 36
Figure 4.7 Effects of ibuprofen (Ibu) and naproxen (Nap) treatments on brain influx of Aβ42 in controls and CIA rats. 37
LIST OF TABLES
Table 3.1 Primary sequences for RT-qPCR analysis. 25
Table 4.1 Noncompartmental pharmacokinetic parameters of ibuprofen and naproxen after oral administration at 30 mg/kg in controls and CIA rats. 38
dc.language.isoen
dc.subject膠原蛋白誘發關節炎zh_TW
dc.subject神經微膠細胞活化zh_TW
dc.subjectβ-類澱粉蛋白zh_TW
dc.subject非類固醇消炎藥zh_TW
dc.subject血腦屏障zh_TW
dc.subjectβ-amyloiden
dc.subjectBlood-brain-barrieren
dc.subjectMicrogliosisen
dc.subjectCollagen-induced arthritisen
dc.subjectNSAIDsen
dc.title非類固醇消炎藥對於神經發炎以及血腦屏障類澱粉蛋白之運輸在類風溼性關節炎大鼠中之影響之探討zh_TW
dc.titleThe effects of NSAIDs on neuroinflammation and blood-brain-barrier transfer of beta-amyloid in rheumatoid arthritis ratsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳儀莊(Yi-Juang Chern),姚宗珍(Chung-Chen Yao),孔繁璐(Fan-Lu Kung)
dc.subject.keyword膠原蛋白誘發關節炎,非類固醇消炎藥,神經微膠細胞活化,β-類澱粉蛋白,血腦屏障,zh_TW
dc.subject.keywordCollagen-induced arthritis,NSAIDs,Microgliosis,β-amyloid,Blood-brain-barrier,en
dc.relation.page67
dc.identifier.doi10.6342/NTU202002694
dc.rights.note有償授權
dc.date.accepted2020-08-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
dc.date.embargo-lift2025-08-16-
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
U0001-0808202022405000.pdf
  未授權公開取用
2.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved