Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78250Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 游若篍(Roch-Chui Yu) | |
| dc.contributor.author | Tan-Ying wang | en |
| dc.contributor.author | 王丹穎 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:47:50Z | - |
| dc.date.available | 2025-08-15 | |
| dc.date.copyright | 2020-09-14 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78250 | - |
| dc.description.abstract | 本研究利用農業廢棄物鳳梨皮透過化學酸解法降解為醱酵碳源,並利用常壓非熱電漿(atmospheric cold plasma, ACP)來分解於酸解過程中產生之醱酵抑制物質如糠醛、羥甲基糠醛與甲酸,並將其應用於細菌纖維素(bacterial cellulose, BC)生產。由實驗結果可發現每克乾燥鳳梨皮於酸解後可獲得0.65 g可發酵糖,並產生0.012 g甲酸、0.0032 g糠醛與0.045 g 羥甲基糠醛。透過比較不同氣體ACP與功率後,可發現於空氣電漿(功率600 W)或氬氣電漿(功率200 W)處理30分鐘後,糠醛、羥甲基糠醛與甲酸可被降解至其對於BC產量的最小抑制濃度(分別為0.0125%、0.00625%與0.025%)。後將電漿解毒之鳳梨皮酸解液應用於BC生產,可發現與未解毒酸解液相比,其BC產量可由1.28 g/L提高到3.81 g/L。於BC材料特性分析結果可發現,ACP解毒鳳梨皮水解液組別之BC於材料特性上皆與一般培養液組別相同,像是於掃描式電子顯微鏡結果可發現其具備奈米網狀纖維結構,於X光繞射結果亦發現於結晶型上無差異(cellulose Iα),且於保水性上,ACP解毒鳳梨皮組別之BC亦具備高保水性(98.7%)。綜論以上,本研究透過優化ACP解毒效率,藉此降低鳳梨皮酸解過程所產生之發酵抑制物濃度,並將此解毒酸解液用於細菌纖維素生產,發現可有效提升其產量,因此除了有利降低其生產成本外,更可作為農業廢棄物再利用之用途,未來擬透過放大處理製程與解毒,以建立適合用於工業生產BC之綠色發酵製程。 | zh_TW |
| dc.description.abstract | This study aimed to release the carbon source from pineapple peel waste (PPW) by acid hydrolysis, followed by utilizing the atmospheric cold plasma (ACP) to decompose fermentation inhibitors for bacterial cellulose (BC) production. 0.65 g of fermentable sugar was obtained from per gram of dried pineapple peel, along with inhibitors, 0.012 g, 0.0032 g, and 0.0045 g of formic acid, furfural, and hydroxymethylfurfural (HMF), respectively. With optimized ACP parameters, 600 W of power with working gas of air, or power of 200W with working argon gas for 30 min, a significant reduction of inhibitors was achieved (close to the minimum inhibitory concentration for BC production). The detoxified PPW hydrolysates showed higher BC yield (3.81 g/L) compared to the conventional medium. BC from the ACP detoxification PPW hydrolysate exhibited the typical characteristics including cellulose Iα, high water content (98.79%), and ultra-fine nanofiber structure. In summary, ACP to fermentation could effectively detoxify inhibitors within PPW hydrolysate, thereby enhance BC yields with low production cost and reuse of agricultural waste. It is possible to establish a green fermentation process for the industrial scale production of BC through the use of the scale-up process and detoxification via ACP. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:47:50Z (GMT). No. of bitstreams: 1 U0001-1208202017055100.pdf: 3892963 bytes, checksum: 32c8a66a5e45e47e7d7850fb0e6fb09e (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 謝誌 i 中文摘要 iii Abstract iv Table of content v List of figure x List of table xiii 1. Introduction 1 2. Literature review 4 2.1 Bacterial cellulose 4 2.1.1 Physicochemical properties 10 2.1.2 Application of bacteria cellulose 12 2.1.3 Commercial medium available for BC production 19 2.1.4 Agro-industry waste for BC production 20 2.2 Saccharification of lignocellulose 23 2.2.1 Enzymatic hydrolysis of lignocellulose 24 2.2.2 Acid hydrolysis of lignocellulose 26 2.3 Inhibitors in the lignocellulose hydrolysates 27 2.3.1 Furfural 28 2.3.2 HMF 30 2.3.3 Formic acid 31 2.4 Removal of enzymatic and fermentation inhibitory compounds 33 2.4.1 Physical detoxification 35 2.4.2 Chemical detoxification 35 2.4.3 Biological detoxification 36 2.5 Plasma 37 2.5.1 Characters of atmospheric cold plasma 38 2.5.2 Detoxification of atmospheric cold plasma 40 3. Research objective and experimental progress. 41 3.1 Research objective 41 3.2 Experimental prodress 41 4. Material and method 42 4.1 Material 42 4.1.1 Chemical reagents 42 4.1.2 Equipments 42 4.2 Method 43 4.2.1 Microorganism 43 4.2.2 Raw materials 44 4.2.3 Characterization of pineapple peel waste 45 4.2.4 Preparation of the dried pineapple peel waste hydrolysate 45 4.2.5 Medium preparation 46 4.2.6 Culture conditions 48 4.2.7 BC harvest and calculation 49 4.2.8 Biomass measurement 49 4.2.9 Detoxification procedure 49 4.2.10 HPLC analysis 50 4.2.11 Thermogravimetric analysis (TGA) 51 4.2.12 Scanning Electron Microscope (SEM) 51 4.2.13 Mechanical properties 51 4.2.14 Fourier-transform infrared spectroscopy 52 4.2.15 X-ray diffraction 52 4.2.16 Water content 53 3.2.15 Statistical analysis 53 5. Results and discussion 54 5.1 Characterization of pineapple peel 54 5.2 Sugar content in dried pineapple peel waste (PPW) hydrolysate 54 5.3 Evaluation of the effect of fermetation inhibitors on BC production 60 5.3.1 Evaluation of the inhibitory effect of formic acid on BC production 61 5.3.2 Evaluation of the inhibitory effect of HMF on BC production 62 5.3.3 Evaluation of the inhibitory effect of furfural on BC production 63 5.4 Detoxification of pineapple peel hydrolysates 65 5.4.1 Evaluation of atmospheric cold plasma 65 5.5 BC production 71 5.6 BC characteristic 77 5.6.1 Scanning electron micrographs 77 5.6.2 Mechanical properties 79 5.6.3 Fourier-transform infrared spectroscopy 80 5.6.4 Water content 82 5.6.5Thermogravimetric analysis 80 5.6.6 X-ray diffraction 86 6. Conclusion 88 7. Reference 89 8. Appendix 106 | |
| dc.language.iso | en | |
| dc.subject | 解毒 | zh_TW |
| dc.subject | 鳳梨皮廢棄物 | zh_TW |
| dc.subject | 酸水解 | zh_TW |
| dc.subject | 常壓非熱電漿 | zh_TW |
| dc.subject | 細菌性纖維 | zh_TW |
| dc.subject | detoxification | en |
| dc.subject | pineapple peel waste | en |
| dc.subject | acid hydrolysis | en |
| dc.subject | atmospheric cold plasma | en |
| dc.subject | bacterial cellulose | en |
| dc.title | 以冷電漿處理鳳梨皮廢棄物生產細菌纖維素 | zh_TW |
| dc.title | Production of Bacterial Cellulose from Pineapple Peel Waste Using Cold Plasma Treatment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 鄭光成(Kuan-Chen Cheng) | |
| dc.contributor.oralexamcommittee | 潘崇良(Chorng-Liang Pan),周正俊(Cheng-Chun Chou),蔡國珍(Guo-Jane Tsai) | |
| dc.subject.keyword | 鳳梨皮廢棄物,酸水解,常壓非熱電漿,解毒,細菌性纖維, | zh_TW |
| dc.subject.keyword | pineapple peel waste,acid hydrolysis,atmospheric cold plasma,bacterial cellulose,detoxification, | en |
| dc.relation.page | 105 | |
| dc.identifier.doi | 10.6342/NTU202003130 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-15 | - |
| Appears in Collections: | 食品科技研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1208202017055100.pdf Restricted Access | 3.8 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
