請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/781完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡崇德 | |
| dc.contributor.author | Chih-Yu Chen | en |
| dc.contributor.author | 陳志宇 | zh_TW |
| dc.date.accessioned | 2021-05-11T05:01:06Z | - |
| dc.date.available | 2019-07-15 | |
| dc.date.available | 2021-05-11T05:01:06Z | - |
| dc.date.copyright | 2019-07-15 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-05 | |
| dc.identifier.citation | [1] Introduction to Superconductivity by Michael Tinkham (McGraw Hill; 2nd edition, 1996).
[2] For the books of Bose-Einstein condensation one can refer, for example, Bose-Einstein Condensation and Superfluidity by Lev Pitaevskii, Sandro Stringari (Oxford University Press; 1st edition, 2016) or Bose–Einstein Condensation in Dilute Gases by C.J. Pethick (Cambridge University Press; 2nd edition, 2011). [3] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell. Science., 198–201, (1995). [4] W. Kohn and D. Sherrington, Rev. Mod. Phys. 42, 1, (1970). [5] V. I. Yukalov, Theoret. and Math. Phys., 37:3 (1978), 1093–1101. [6] Hiroaki T. Ueda and Keisuke Totsuka, Phys. Rev. B 80, 014417 (2009). [7] J. Hick, F. Sauli, A. Kreisela and P. Kopietz, Eur. Phys. J. B 78, 429-437 (2010). [8] arXiv: 0904.3889v1 [cond-mat.quant-gas] (2009). [9] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940) [10] Massimo Rontani and L.J. Sham, arXiv: 1301.1726 [cond-mat.mes-hall]. [11] Xuejun Zhu, P.B. Littlewood, Mark S. Hybertsen, and T.M. Rice, Phys. Rev. Lett. 74, 1633 (1995). [12] Massimo Rontani and L.J. Sham, Phys. Rev. B 80, 075309 (2009). [13] See the relevant reviews of in Bose-Einstein Condensation, edited by A. Griffin, D.W. Snoke, and S. Stringari (Cambridge University Press, Cambridge, 1995). For even more specific reviews, see Bose-Einstein Condensation of Excitons and Biexcitons: And Coherent Nonlinear Op- tics with Excitons, by S.A. Moskalenko and D.W. Snoke (Cambridge University Press, Cambridge, 2000). [14] A.N. Kozlov and L.A. Masksimov, Soviet Phys. JETP 21, 790 (1965). [15] L.V. Keldysh and A.N. Kozlov, Soviet Phys. JETP 27, 521 (1968). [16] M. Combescot and P. Noisieres, J. Phys C: Solid State Phys, 5, 2369 (1972). [17] Y. Naveh and B. Laikhtman, Phys. Rev. Lett. 77, 900 (1996). [18] D.I. Pikulin and T. Hyart, Phys. Rev. Lett. 112, 176403 (2014). [19] K.S. Novoselov, et al., Science, 306 666 (2004). [20] C.C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011). [21] Patrick Vogt, et al., Phys. Rev. Lett. 108, 155501 (2012). [22] C.L. Kane and E.J. Mele, et al., Phys. Rev. Lett. 95, 226801 (2005). [23] Y. Yao, et al., Phys. Rev. B 75, 041401 (2007). [24] H. Min, et al., Phys. Rev. B 74, 165310 (2006). [25] Lev P. Gor’kov and Emmanuel I. Rashba, Phys. Rev. Lett. 87, 037004 (2001). [26] Ke-Chuan Weng and C. D. Hu, Sci. Rep. 6, 29919 (2016). [27] Cheng-Cheng Liu, Hua Jiang, and Yugui Yao, Phys. Rev. B 84, 195430 (2011). [28] Stewart E. Barnes, Jun’ichi Ieda, and Sadamichi Maekawa, Sci. Rep. 4, 4105 (2014). [29] Junsaku Nitta, Tatsushi Akazaki, and Hideaki Takayanagi, Phys. Rev. Lett 78, 1335 (1997). [30] P. Cudazzo, C. Attaccalite, I.V. Tokatly, A. Rubio, Phys. Rev. Lett 104, 226804 (2010). [31] Zeyu Jiang, Zhirong, Liu, and Yuanchang Li, Wenhui Duan, Phys. Rev. Lett 118, 266401 (2017). [32] E. Hanamura and H. Haug, Phys. Rep., 33 209 (1977). [33] The fact of weaker coupling strength between different bands is obtained as we calculating the V ef f . Coefficients f ’s will show this fact. The cou- pling strength of different bands is proportional to r time f which is about 0.01 times smaller than f. [34] See the classic book of Schrieffer, Theory of Superconductivity, by J.R. Schrieffer (W. A. Benjamin, Inc., 1964). [35] D. Jerome, T. M. Rice, and W. Kohn, Phys. Rev. 158, 462 (1967). [36] Basically, the formula of ground state energy can be found in many text- books. For example, Philips L.Taylor and Olle Heinonen: A Quantum Approach to Condensed Matter Physics (Cambridge University Press, Cambridge, 2002). [37] The integration area in approximation method is a π3 disk while in the numerical method is a 4π2 square. [38] L.V. Butov and A. I. Filin, Phys. Rev. B 58, 1980 (1998). [39] S. Yang, et al., Phys. Rev. Lett. 97, 187402 (2006). [40] P.G. de Gennes, Superconductivity of Metals and Alloys, (New York, 1966). [41] Monique Combescot, Odile Betbeder-Matibet, and Roland Combescot, Phys. Rev. Lett. 99, 176403 (2007). [42] Chia-Ren Hu, Phys Rev. Lett 72, 1526 (1994). [43] S. Asbrink and L-. Norrby, Acta Cryst. (1970) 26, 8. [44] B. X. Yang, T. R. Thurston, J. M. Tranquada and G. Shirane, Phys. Rev. B 39, 4343 (1989). [45] P J Brown, T Chattopadhyay, J B Forsyth, V Nunez and F Tasset, J.Phys Condens. Matter 3, 4281. [46] M. Ain, A Menelle, B M Wanklyn and E P Bertaut, J.Phys Condens. Matter 4, 5327. [47] T. Kimura, et al. Nature (London) 426, 55 (2003). [48] Alessio Filippetti and Vincenzo Fiorentini, Phys. Rev. Lett 95, 2086405 (2005). [49] Gianluca Giovannetti, et al., Phys. Rev. Lett 106, 257601 (2011). [50] Guang Jin, Kun Gao, Cuang-Can Guo, and Lixin He, Phys. Rev. Lett 108, 187205 (2012). [51] R. Villarreal et al., arXiv:1205.5299v1, 23 May (2012). [52] Pierre Toledano et al. Phys. Rev. Lett 106, 026401 (2011). [53] D.P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988). [54] Sanjoy Sarker, C. Jayaprakash, H. R. Krishnamurthy, Micheal Ma, Phys. Rev. B 40, 5028 (1989). [55] Condensed Matter Field Theory, 2nd ed. A. Altland and B. Simons, p88. [56] Ch. Ruegg, N. Cavadini, Furrer A., H.U. Gudel, K. Kramer, H. Matka, A. Wildes, K. Habicht, and P. Vorderwisch. Nature, 423:62-65, (2000). [57] S.O. Demokritov, V.E. Demidov, D. Dzyapko, G.A. Melkov, A.A. Serga, B. Hilldebrands, and Slavin A.N. Nature, 443:430 433, (2006). [58] P. Bak and J. von Boehm, Phys. Rev. B 21, 5297 (1980). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/781 | - |
| dc.description.abstract | 準粒子凝聚態在凝態物理的應用廣泛,在玻色-愛因斯坦凝聚,超導體與超流體中扮演重要角色。本論文主要分為兩部分,第二至第六章討論二維半導體中激子(exciton)的凝聚態,研究顯示一種新的混合態波函數為二維半導體激子凝聚態的基態,並提供可能的實驗量測方式。
第七至第十章研究磁振子(magnon)的凝聚態,組織現有的Schwinger-boson平均場理論,應用於氧化銅材料,以及討論動量非零之玻色-愛因斯坦凝聚態之物理意義與氧化銅中commensurate-incommensurate相變生成之可能之微觀機制。 | zh_TW |
| dc.description.abstract | In this thesis, we study the aspects of quasiparticle condensate phenomena. The Bose-Einstein condensation of quasiparticle plays an important role in many areas such as the superconductivity, superfluidity, magnons, polaritons, and of course, one of the main topic of this thesis-exciton. The exciton condensation of two-dimensional (2D) semiconductors is reports in Ch. 2-6. We start from an effective Hamiltonian of 2D semiconductors and show an interesting mixed state of exciton condensate.
The bosonization of electrons can also be a useful mathematical tool to study quantum spin systems. In Ch. 7-10, we extend the Schwinger boson mean field theory (SBMFT) method of ferromagnetic and antiferromagnetic systems. The condensation of Schwinger bosons can describe the ordering phase of spins. We study the commensurate-incommensurate phase transition of CuO as an example. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-11T05:01:06Z (GMT). No. of bitstreams: 1 ntu-108-D99222003-1.pdf: 2284569 bytes, checksum: 24f6311b408b485ceda10f68ddd48a2a (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 1 Exordium................... 5
2 Introduction of Exciton Condensate................... 9 3 Effective Hamiltonian of 2D Semiconductors.................. 11 3.1 The effective Hamiltonian without external field.............. 11 3.2 The effective Hamiltonian with external field................. 13 4 Coulomb Interaction Revisit................... 15 4.1 Spin selection rule and 2D Coulomb potential.................. 15 4.2 The form factors of cases with and without external field..... 17 5 The Gap Equation and Its Solution................... 21 5.1 Gap equation ........................... 21 5.2 Solution of gap equation................... 22 5.2.1 Numerical solutions................... 23 5.2.2 Approximate form of solutions.................... 25 6 Proposed Experiment................... 29 6.1 Luminal properties of exciton condensation................... 30 6.2 Midgap states of exciton condensation ................... 31 7 Introduction of Magnon Condensate in CuO................... 35 8 Formulation of SBMFT................... 37 8.1 Spin rotation ........................... 37 8.2 Schwinger boson mean field theory .............. 38 8.3 Free energy and SB equations.................. 42 9 Application of SBMFT to CuO...................45 9.1 The information of CuO..................... 45 9.2 Finite momentum BEC of magnon............... 48 9.3 The spin correlation function................... 49 10 The c-ic Phase Transition of CuO............. 53 11 Conclusion......... 57 | |
| dc.language.iso | en | |
| dc.subject | 孤立子 | zh_TW |
| dc.subject | 激子 | zh_TW |
| dc.subject | 二維半導體 | zh_TW |
| dc.subject | 玻色-愛因斯坦凝聚 | zh_TW |
| dc.subject | 氧化銅 | zh_TW |
| dc.subject | 磁振子 | zh_TW |
| dc.subject | 自旋 | zh_TW |
| dc.subject | exciton | en |
| dc.subject | soliton | en |
| dc.subject | commensurate-incommensurate phase transition | en |
| dc.subject | magnon | en |
| dc.subject | CuO | en |
| dc.subject | Bose-Einstein condensation | en |
| dc.subject | 2D semiconductor | en |
| dc.title | 準粒子凝聚態在二維系統與自旋有序之應用 | zh_TW |
| dc.title | Quasi-particle Condensation in Two-Dimensional System and Its Application in Spin Ordering | en |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張慶瑞,林育中,程思誠,陳繩義 | |
| dc.subject.keyword | 激子,二維半導體,玻色-愛因斯坦凝聚,氧化銅,磁振子,自旋,孤立子, | zh_TW |
| dc.subject.keyword | exciton,2D semiconductor,Bose-Einstein condensation,CuO,magnon,commensurate-incommensurate phase transition,soliton, | en |
| dc.relation.page | 62 | |
| dc.identifier.doi | 10.6342/NTU201901151 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-07-05 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 2.23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
