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中文摘要 

 

 準粒子凝聚態在凝態物理的應用廣泛，在玻色-愛因斯坦凝聚，超導體與超流

體中扮演重要角色。本論文主要分為兩部分，第二至第六章討論二維半導體中激

子（exciton）的凝聚態，研究顯示一種新的混合態波函數為二維半導體激子凝聚

態的基態，並提供可能的實驗量測方式。  

第七至第十章研究磁振子（magnon）的凝聚態，組織現有的 Schwinger-boson

平均場理論，應用於氧化銅材料，以及討論動量非零之玻色-愛因斯坦凝聚態之物

理意義與氧化銅中 commensurate-incommensurate相變生成之可能之微觀機制。 

關鍵字：激子、二維半導體、玻色-愛因斯坦凝聚、氧化銅、磁振子、自旋、孤立

子 
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ABSTRACT 

 

 In this thesis, we study the aspects of quasiparticle condensate phenomena. The 

Bose-Einstein condensation of quasiparticle plays an important role in many areas such 

as the superconductivity, superfluidity, magnons, polaritons, and of course, one of the 

main topic of this thesis-exciton. The exciton condensation of two-dimensional (2D) 

semiconductors is reports in Ch. 2-6. We start from an effective Hamiltonian of 2D 

semiconductors and show an interesting mixed state of exciton condensate.  

The bosonization of electrons can also be a useful mathematical tool to study quantum 

spin systems. In Ch. 7-10, we extend the Schwinger boson mean field theory (SBMFT) 

method of ferromagnetic and antiferromagnetic systems. The condensation of 

Schwinger bosons can describe the ordering phase of spins. We study the 

commensurate-incommensurate phase transition of CuO as an example. 

Key words: exciton, 2D semiconductor, Bose-Einstein condensation, CuO, magnon, 

commensurate-incommensurate phase transition, soliton 
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Chapter 1

Exordium

Cooper pairs and Bose-Einstein condensation (BEC) are two very profound
quantum states. They have common properties and important differences.
The former is the origin of the celebrated superconductivity and BEC is the
cause of fascinating superfluidity. On the other hand, the fact that Cooper
pairs are formed by fermions and BEC are composed of bosons engenders
far-reaching different physical consequences.

Let’s start with superconductors [1]. The physical properties of supercon-
ductivity can be described microscopically by BCS theory. In BCS theory,
a key idea is electron–electron will form a pair (Cooper pair) in supercon-
ductors. More precisely, two electrons near Fermi surface can form pairs via
electron-phonon interaction as temperature is lower than some critical value
Tc.

Bose-Einstein condensation (BEC) of bosons is a state of matter which a
large fraction of bosons occupy the lowest quantum state. This phenomena is
first predicted by S.N. Bose in 1924 and later extended by A. Einstein in 1924
to 1925. The experimental discovery of BEC in dilute gas at low tempera-
ture in 1995 by W. Ketterle, E. Cornell and C. Wieman [2, 3]. In condensate
state, microscopic quantum phenomena, particularly wave-function interfer-
ence, become apparent macroscopically. We can say the condensation of
bosons is "conventional" since the statistical and spin nature of boson allows
the condensation phase. On the other hand, fermions cannot occupy the
ground sate with a great amount because the Pauli exclusion principle.

In general, the wave-function of BEC centers at zero momentum since
intuitively zero momentum is the lowest energy state. The finite momentum
BEC of strongly interacting Bose system is discussed by Yukalov [5]. This
phenomena has also been discussed in the past decade in magnon system,
see for example, [6, 7]. That is, the condensate state occurs at some finite
k = k0. Its properties of breaking U(1) symmetry of Helium III is discussed

5
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in the work of Bunkov and Volovik [8]. In the article of Kohn and Sherrington
[4], they classified bosons in two types. Quoting results are shown in Table
1.1 and Table 1.2.

Apart from the conventional BEC of bosons, the quasi-particles as bosons
have more complex and interesting contents, especially for the type 2 con-
densates. It allows possibility of the finite momentum Bose-Einstein con-
densation which is usually to be zero. We keep Table 1.1 of single boson
for comprehensiveness however we will focus on the condensation of quasi-
particles summarized in Table 1.2. One needs to bear in mind that some
systems may display both type 1 and type 2 mixed situation. For exam-
ple the crystalline superconductor may be viewed as type 1 bosons (Cooper
pair), in a condensate of type 2 bosons (the normal host crystal).

Looking back to the magnon system [6, 7]. One more question rises: Are
magnons type 2 bosons? In the work of J. Hick et. al., they derived an
effective boson Hamiltonian to describing the lowest magnon band of YIG,
see Appendix of ref. [7]. They used method developed by Holstein and Pri-
makoff in 1940 which can be found in original paper or other literature [9].
Such boson derived from spins leads no superfluidity but its condensation of-
fers a view point in dealing magnetic ordering system. The Schwinger boson
mean field theory (SBMFT), a method of dealing with electron spins, also
applies similar idea as that which we are going to use of Holstein-Primakoff
bosonization.

The main purpose of this thesis is to present condensation of type 2 bosons
on the platform of real physical systems. The exciton condensation of two-
dimensional (2D) semiconductors is reported in PART II. We start from an
effective Hamiltonian of 2D semiconductors and show an interesting mixed
state of exciton condensate. In PART III, we extend the SBMFT of ferro-
magnetic and antiferromagnetic systems. The bosonization of electron spins
can also be a useful mathematical tool to study quantum spin systems. BEC
of Schwinger bosons can describe the ordering phase of spins. We also study
the commensurate-incommensurate phase transition of CuO as an example.
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single bosons type 1 type 2

examples
4He atoms, exciton

tightly bounded fermions

nature complexes of even number particle-hole bound
of real fermions complexes

form of Green’s
functions and density

matrices

singular as functions singular as functions
of momentum of momentum
sum variables difference variables

momentum properties carry may or may not carry
mechanical momentum mechanical momentum

Table 1.1: Copy from Table 1 of Kohn and Sherrington’s review article [4]. The
properties of two types of single bosons

condensed states type 1 type 2
example He II excitonic phase

type of additional
order

off-diagonal diagonal
long-range order long-range order

superfluidity yes no
form of Green’s

functions and density
matrices

macroscopic singularities macroscopic singularities
as functions of momentum as functions of momentum

sum variables difference variables

Table 1.2: Copy from Table 2 of Kohn and Sherrington’s review article [4]. The
properties of two types of condensate states.
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Chapter 2

Introduction of Exciton
Condensate

Electrons in semiconductors can form quasi-particle states. The binding of
an electron and a hole by attractive Coulomb interaction gives rise to an
exciton. If the density is high enough, the overlap of excitons becomes signif-
icant. At low-enough temperature they form condensate and their collective
behaviors such as Andreev reflection [10], superradiance [11] and Josephson
tunneling [12] are similar to those of the Cooper pairs in superconductors.

The investigation of condensed phase of excitons has made great progress
in the past few decades [13]. The theoretical scheme for condensation phase
and collective behaviors was constructed by pioneer works of Kozlov et al.
[14, 15]. They pointed out in a crystal with closely-lying bands the Coulomb
interaction became important. At low temperature, the density of excitons
can be very high. Once condensed, the gap function ∆k becomes finite and
the system enters a BCS-like state. Later, the theory of exciton condensa-
tion in bulk germanium and silicon is discussed by the work of M. Combescot
and P. Nozières [16]. Their results were in good agreement with experiments
in aspects of ground state energy and critical density. The two-dimensional
(2D) exciton instability in an InAs-GaSb-based system has been reported
by Naveh and Laikhtman [17]. They formulated the gap equation of exci-
ton condensation in their case I where electrons and holes are separated and
compared it with that of BCS theory. They also discussed how electric field
effects the density of condensation. The electron-hole system of InAs-GaSb
bi-layers is also discussed recently by Pikulin and Hyart [18]. They study
small tunneling and large tunneling between layers in which the systems dis-
play s-wave exciton condensation and quantum spin Hall (QSH) insulator
property, respectively. This QSH insulator phase exhibits topological non-
trivial property with p-wave exciton parameter. Despite these interesting

9
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properties, however, the exciton condensation in single-layer materials is still
an issue which needs more investigation.

After the discovery of graphene [19], more and more 2D materials have
been synthesized. Silicene (2D silicon) and germanene (2D germanium)
[20, 21] will be discussed in this work. These low-bulked honeycomb ma-
terials have topological properties related to QSH effect. The existence of
QSH effect in 2D system was first proposed by Kane and Mele in graphene
[22]. They showed the band gap can be opened by spin-orbit coupling (SOC).
However, the first order SOC is shown to be rather weak in subsequent works
[23, 24]. Hence the QSH effect of graphene can only happen at incredibly low
temperature. On the other hand, low-bulked 2D semiconductors of heavier
elements have much stronger SOC [20, 23]. Furthermore, it was shown that
p-wave superconductivity could be stable in a 2D system with Rashba inter-
action [25, 26]. These works give us motivation to study the combination of
exciton condensation and 2D semiconductors.

In chapter 2-6, we will discuss some interesting physical results owing to
SOC. We also take one step further to discuss the system under effect of
external electric field. Our study shows that the SOC, intrinsic or extrin-
sic, plays an important role in exciton condensation in 2D materials. The
latter clearly favors the mixed states of s-wave and p-wave. Chapter 2-6 is
organized as follows. Chapter 2 is the introduction of exciton condensation
of semiconductors. In Ch.3, we discuss the effective Hamiltonian considering
SOC and Rashba interaction. It gives the theoretical basis of this paper. In
Ch.4, we discuss the Coulomb interaction in details. The consideration of
spin configurations and characters of bands are of great importance. In Ch.5,
we derive the gap equation of exciton condensation, which is the central equa-
tion of exciton condensaiton. We then show that the exciton condensation
should be formed in p-wave-like state due to the mixed state nature of spins.
Experiments are proposed to verify such state in Ch.6.
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Chapter 3

Effective Hamiltonian of 2D
Semiconductors

In this chapter, we demonstrate the effective Hamiltonian of silicene and
germanene. The cases with and without external electric field are presented
in part A. and part B, respectively. The band structures and eigenstates are
also calculated. Silicene and germanene have honeycomb crystal structure
from top view which is similar to graphene. They have a zig-zag geometry
from side view. That is, the sublattice A and B are not coplanar but they
are still 2D systems. In the work of C.C. Liu et al. [27], they proposed an
effective low energy Hamiltonian of 2D semiconductors.

3.1 The effective Hamiltonian without external
field

The obtained Hamiltonian around K in crystal momentum space for low-
energy states (φ1↑, φ1↓, φ4↑, φ4↓) is

Hband
0 = (ε1 − λ2nd

so )I4 +

(
h11 vFk+I2

vFk−I2 −h11

)
, (3.1)

where

h11 = −λsoσz − aλR(kyσx − kxσy), (3.2)

I4 and I2 are 4× 4 and 2× 2 identity matrices, respectively. σi is the Pauli
matrix for spins and a is the lattice constant of 2D semiconductors. Eq. (3.1)

11
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is in the representation of the low-energy states φ1 and φ4

|φ1〉 = u11

∣∣pAz 〉+ u21

∣∣sA〉+
u31√

2
(
∣∣pBx 〉− i ∣∣pBy 〉),

|φ4〉 = u11

∣∣pBz 〉− u21

∣∣sB〉− u31√
2

(
∣∣pAx 〉+ i

∣∣pAy 〉), (3.3)

where u11, u21 and u31 are normalized coefficients. One can find details in
Ref. [27] and we here simply treat them as coefficients of linear combination
of states. Superscripts A and B denote two sublattices of the honeycomb
lattice. The complete basis are the direct product of orbitals and spins∣∣φ1(4)

〉
⊗ |↑ (↓)〉. λR is the strength of internal Rashba interaction, λso =

λ1st
so + λ2nd

so where λ1st
so and λ2nd

so are the two kinds of spin-orbit interactions
considered in (25) and (30) of Ref. [27]. vF is the Fermi velocity and the
relation to the tight-binding potentials are given by (22) of Ref. [27].

Silicene and germanene have different physical properties from graphene
due to the low-buckled geometry. The most important is it gives rise to
two directions of SOC. One lies on the honeycomb plane, which appears
in graphene as well. The other is perpendicular to the plane in the form of
−it1µij(~σ× ~d0

ij)z, see (4) of Ref. [27]. The other geometry induced interaction
is the intrinsic Rashba interaction aλR, which is much weaker than the SOC,
see Eq. (39) of [27]. In this work, we first simplify the notations by letting
r ≡ aλR and λ ≡ λso to avoid unnecessary complications. The degenerate
eigenvalues of Hband

0 are ±εk where

εk =
√

(r2 + v2
F )k2 + λ2. (3.4)

As we can see from Eq.(3.4), 2λ represents the energy gap between valence
band and conduction band at momentum K. The band gap Eg is 2λ. With
eigenvalues given by Eq. (3.4), we have four eigenvectors

b1

b2

a1

a2

 =
1√
Mk


Ak Bk 1 0
0 1 −B∗k A∗k
Ck −Ak 0 1
1 0 −A∗k Ck




φ1↑
φ1↓
φ4↑
φ4↓

 , (3.5)

where
Ak =

εk − λ
vFk−

Bk =
irk+

vFk−
Ck =

−ir
vF

, (3.6)

andMk = [(εk−λ)2 +k2(r2 +v2
F )]/(kvF )2 is nothing but the normalization of

eigenvectors. b1 and b2 are conduction bands since they both have energy +εk
whilst a1 and a2 are valence bands which are of energy −εk. Thus we have
a band structure with two degenerate conduction bands and two degenerate
valence bands, see FIG. 3.1(a) where the parameters of germanene are used.
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Figure 3.1: (a) Two-fold degeneracy in valence and conduction bands without
external field. (b)Minus mode (bands 1, green) and plus mode (bands 2, blue)
with external field R = 1.2vF .

3.2 The effective Hamiltonian with external field
Now we consider the system in an external electric field Ez ẑ which is per-
pendicular to the 2D xy plane. The induced Rashba interaction becomes
R(kyσx − kxσy), where R is the Rashba parameter which is proportional to
Ez [28]. In the example given in FIG. 3.1(b), R = 1.2vF means that we need
an electric field of energy about 0.92eV per lattice cite of germanene [27],
which is 0.23eV·Å. In practice, we can reach this by adding a gate voltage
in the magnitude of order 10V [29]. One can see the change of the Rashba
constant due to the gate voltage. Though the effect depends on properties of
materials, the order of magnitude should be the same and it is very promis-
ing to achieve in laboratory. With the basis (φ1↑, φ1↓, φ4↑, φ4↓)

T , the effective
Hamiltonian at K point is

Hband
1 = (ε1 − λ2nd

so )I4 +

(
h11 vFk+I2

vFk−I2 h′11

)
, (3.7)

where h11 = −λsoσz − R(kyσx − kxσy), and h′11 = λsoσz − R(kyσx − kxσy).
In contrast to the effective Hamiltonian without external field, the lower
right hand corner is not −h11. The difference is caused by the formation
of Rashba interaction. The Rashba interaction of the case without external
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field is intrinsic, which has opposite directions on A and B sites. The Rashba
interaction due to the external field, on the contrary, has the same direction
on A and B sites and it can be much stronger than the intrinsic one. The
external field breaks the mirror symmetry of internal Rashba interaction.
The eigenvalues of Hamiltonian (3.7) are ±ε1k with

ε1k =
√
λ2 + k2(R− vF )2, (3.8)

and ±ε2k with

ε2k =
√
λ2 + k2(R + vF )2. (3.9)

The degeneracy is lifted, see FIG. 3.1(b). The bands with R+vF and R−vF
are in blue and green, respectively. The band 1, with ε1k, has the smaller
magnitude. Only at k = 0, the bottoms of two conduction bands and tops of
two valence bands touch each other, and the energy gap is still of magnitude
2λ at k = 0. We then solve for the eigenvectors. For energy ±ε1k,

b′1 =
1

n1


−ik(R− vF )
k+
k

(ε1k + λ)
ik−
k

(ε1k + λ)
−k(R− vF )

 , a′1 =
1

n1


i(ε1k + λ)
k+(R− vF )
ik−(R− vF )
ε1k + λ

 . (3.10)

For energy ±ε2k, we have

b′2 =
1

n2


−ik(R + vF )
k+
k

(ε2k + λ)
ik−
k

(ε2k + λ)
k(R + vF )

 , a′2 =
1

n2


−i(ε2k + λ)
−k+(R + vF )
ik−(R + vF )
ε2k + λ

 . (3.11)

Similar to ai and bi before, b′i and a′i correspond to conduction band and va-
lence band states, respectively. The normalization factor is ni = 2

√
εik(εik + λ).

Hence, in the tight-binding model, the Hamiltonian with external field can
still be diagonalized.
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Chapter 4

Coulomb Interaction Revisit

4.1 Spin selection rule and 2D Coulomb poten-
tial

In this section, we first discussed the Coulomb interaction in a 2D system
and paid special attention to spin configurations. Analogous to the interact-
ing fermions in BCS theory, where the interaction leads to Cooper pairs in
superconductors, attractive Coulomb interaction between electrons and holes
plays a crucial role in forming the exciton condensate state. We consider a
comprehensive Hamiltonian of an electronic system

Hi = Hband
i + V (4.1)

where Hband
i is the effective Hamiltonian in Eq. (3.1) or Eq. (3.7) under the

representation of basis (φ1↑, φ1↓, φ4↑, φ4↓)
T . Index i = 0 and i = 1 represent

the cases without and with external field, respectively. The Coulomb term is

V =
1

2

∑
ijmn

∑
k,k′,q

∑
σσ′

〈k + q, i;k′, j|Vq|k′ − q,m;k, n〉 c†i,k+q,σc
†
j,k′−q,σ′cm,k′,σ′cn,k,σ.

(4.2)
Operator c’s represent φ1 or φ4 with i, j, m and n being either 1 or 4, (see
Eq. (3.3)), and σ and σ′ are spin indices. The effective two-dimensional
Coulomb potential in momentum space [30] is

Vq =
2πe2

|q|(1 + 2πα2D|q|)
, (4.3)

where α2D is the 2D polarizability caused by electron screening of bands.
The magnitude of α can be calculated by Eq. (10) of Ref. [31]

α2D =
e2

2π

(
− 1

Eg + x

) ∣∣∣xM
0
. (4.4)

15
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xM is the energy of the state at the first Brillouin zone boundary. For ger-
manene, xM ≈ 25Eg in the case without external field. On the other hand,
xM is about 6.25Eg for band 1 and much larger (∼50 times) than Eg for band
2 as R = 1.2vF , see FIG. 3.1(b).

Same as the work in Ref. [32], we only consider the Coulomb interac-
tion between even numbers of the electrons in valence bands and conduction
bands. That is, terms like b†a†aa or b†a†bb are omitted since they contribute
little to exciton pairing. In our 2D system described byHband

i the eigenvectors
are spin mixed states and Coulomb interaction doesn’t change spins. Hence,
we start with the Coulomb interaction in φ representation then extract out
the coefficients of operators b†a†ab, b†a†ba because the spin configurations are
clearer in φ representation. Eq. (4.2) in momentum space is written in the
second quantization form

1

2

∑
ijmn

∑
k,k′,q,σσ′

V ijmn
q ((1− δσσ′)c†i,k+q,σc

†
j,k′−q,σ′cm,k′,σ′cn,k,σ+

δσσ′c
†
i,k+q,σc

†
j,k′−q,σ′cn,k′,σ′cm,k,σ),

(4.5)

In (4.5), the first term is the direct term and the second contains the exchange
term. The possible spin configurations (σσ′σ′σ) are (↑↑↑↑), (↓↓↓↓), (↑↓↓↑)
and (↓↑↑↓). Coulomb interaction in momentum representation for direct
terms and exchange terms are proportional to (|k− k′| + 2πα2D|k− k′|2)−1

and (|k− k′ + q| + 2πα2D|k− k′ + q|2)−1, respectively. Since the screening
effect is dominant, electrons with all parallel spins give negligible contribu-
tion since direct and exchange terms approximately cancel each other. In
summery, only spin configurations (↑↓↓↑) and (↓↑↑↓) survive.

Furthermore, the overlap of wavefunction φ1 and φ4 is small accord-
ing to Eq. (3.3). This is owing to the small overlap of |pz〉 and |px〉 +
i |py〉 orbitals and that between wave functions of different sublattices (A
and B). The summations such as

∑
k,k′,q V

1114
q φ†1,k+q↑φ

†
1,k′−q↓φ1,k′↓φ4,k↑ or∑

k,k′,q V
1414
q φ†1,k+q↑φ

†
4,k′−q↓φ1,k′↓φ4,k↑ can be dropped. Thus, with above ar-

guments, we simply consider eight sets of integrations. They are (φ†1↑, φ
†
1↓, φ1↓, φ1↑)

T ,
(φ†1↑, φ

†
4↓, φ4↓, φ1↑)

T , (φ†4↑, φ
†
1↓, φ1↓, φ4↑)

T , and (φ†4↑, φ
†
4↓, φ4↓, φ4↑)

T and the four
others with ↑ and ↓ exchanges.
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4.2 The form factors of cases with and without
external field

According to Eq. (3.5), the inverse transformation of operators φi,σ with
respect to a and b are

φ1↑
φ1↓
φ4↑
φ4↓

 =
1√
Dkk


(εk − λ)k− 0 irk2 vFk

2

−irk2
− vFk

2 −(εk − λ)k− 0
vFk

2 −irk2
+ 0 −(εk − λ)k+

0 (εk − λ)k+ vFk
2 irk2




b1

b2

a1

a2

 ,

(4.6)
where Dk = (εk− λ)2 + k2(r2 + v2

F ). A similar equation can be found for the
case with external electric field.

We substitute (4.6) into (4.5) and consider the pairing in the same band.
That is, terms with b†1a

†
1a1b1 or b†2a

†
2a2b2 are kept but terms as b†1a

†
1a1b2 are

excluded. This is because the pairing between different bands is much weaker
than that between the same band [33]. The effect of multi-band leads to a
form factor f(k,k′,q). As a result, the second quantized Coulomb interaction
is of the form

1

2

∑
k,k′

[
Vqa

†
k+qa

†
k′−qak′ak + Vqb

†
k+qb

†
k′−qbk′bk + 2f(k,k′,q)Vqb

†
k+qa

†
k′−qak′bk

]
,

(4.7)
where the form factor f(k,k′,q) will be given below in Eqs. (4.10), (4.12)
and (4.13). Form factor is not considered in most of the previous works
[32, 35]. However, in the case of 2D semiconductors they are important. It
has profound effect in determining the forms of the solutions of the gap equa-
tion as shown in next section. We treat f × V as the effective interaction.
In the condensed phase, which is the main purpose of this article, a strong
correlation between the k conduction electrons and −k valence holes is ex-
pected. The e-h pairings with zero center-of-mass velocity have the lowest
possible kinetic energy. The same approximation is also used in calculation
of superconductivity. Hence, we can replace k′ by k for further simplification:

1

2

∑
k,k′,q

[
Vqa

†
k+qa

†
k′−qak′ak + Vqb

†
k+qb

†
k′−qbk′bk + Vqf(k,k′,q)b†k+qa

†
k′−qak′bk

]
≈ 1

2

∑
k,p

[
Vqa

†
ka
†
pakap + Vqb

†
kb
†
pbkbp + 2f(k,p)Vqb

†
ka
†
pakbp

]
,

(4.8)
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where k− p = q. Thus we have the two-dimensional exciton Hamiltonian
(without external electric field)

H0 =
∑
k

εvk(a1ka
†
1k+a2ka

†
2k) + εck(b†1kb1k + b†2kb2k)

+
∑
k,p

Vk−pf0(k,p)(b†1ka
†
1pa1kb1p + b†2ka

†
2pa2kb2p),

(4.9)
where we consider interband interaction only and absorb the intraband inter-
action into the band shapes which are obtained by the effective Hamiltonian
(3.1). The explicit expression of the form factor f0 without external field is

f0(k,p) =
(εk − λ)2(εp − λ)2 + k2p2v4

F + 2v2
F (εk − λ)(εp − λ)k · p

[(εk − λ)2 + k2(r2 + v2
F )][(εp − λ)2 + p2(r2 + v2

F )]
. (4.10)

Notice that in Hamiltonian (4.9), the band labeled 1 and 2 are decoupled so
that we can diagonalize the bands separately. They still possess the two-fold
degeneracy.

Similarly, in order to discuss the excitons under external field, we express
φ’s in terms of a′ and b′.

φ1↑
φ1↓
φ4↑
φ4↓

 =
1

4


ik(R−vF )n1

ε1(ε1+λ)
−in1

ε1

ik(R+vF )n2

ε2(ε2+λ)
in2

ε2
k−n1

kε1

k−(R−vF )n1

ε1(ε1+λ)
k−n2

kε2

k−(R+vF )n2

ε2(ε2+λ)
−ik+n1

kε1

−ik+(R−vF )n1

ε1(ε1+λ)
ik+n2

kε2

−ik+(R+vF )n2

ε2(ε2+λ)
−k(R−vF )n1

ε1(ε1+λ)
n1

ε1

k(R+vF )n2

ε2(ε2+λ)
n2

ε2




b′1
a′1
b′2
a′2

 .

(4.11)
Here we dropped the indices of k. By the same approximations, we have the
form factor

f1 =
kp

2ε1kε1p

[
(R− vF )2 +

(
(R− vF )4

(ε1k + λ)(ε1p + λ)
+

(ε1k + λ)(ε1p + λ)

k2p2

)(
k · p

2

)]
,

(4.12)
for band 1 and

f2 =
kp

2ε2kε2p

[
(R + vF )2 +

(
(R + vF )4

(ε2k + λ)(ε2p + λ)
+

(ε2k + λ)(ε2p + λ)

k2p2

)(
k · p

2

)]
(4.13)

for band 2. We consider only the valence band 1 and conduction band 1
because they have the smaller band gap and larger density of states near
Fermi surface. The resulting Hamiltonian with external field is,

H1 =
∑
k

εvka
′
1ka
′†
1k + εckb

′†
1kb
′
1k +

∑
k,p

Vk−pf1(k,p)b′†1ka
′†
1pa
′
1kb
′
1p. (4.14)
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It is important to point out that the form factor contains a term with angular
dependence. The solutions of the gap equations can be anisotropic because
of its presence.
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Chapter 5

The Gap Equation and Its
Solution

We derive the gap equation analogous to BCS theory in superconductors.
It turns out that there are three types of solutions distinguished by the
symmetric property in k-space. We showed the lowest energy state is the
mixture of symmetric and anti-symmetric solutions.

5.1 Gap equation
When electron-hole pairs form in a system, it is natural to consider the
commutation relation between pairs. The excitons behave like bosons as the
mean distance between two excitons is much larger than the extension of
excitons [32]. In the condensed phase, on the other hand, electrons and holes
are to be treated separately as fermions and BCS states prevails. The BCS
ground state [34] is

|ΨBCS〉 =
∏
k

(uk + vkc
†
kc
†
−k) |Φ〉 , (5.1)

where c†kc
†
−k is a Cooper pair operator which create an electron pair in mo-

mentum space near Fermi surface.
Let |Φ〉 be the state with full valence band and empty conduction band

and replace e-e pair with e-h pair in the ground state [35]. The wave function
of exciton condensate is

|Ψex〉 =
∏
k

(u∗k − v∗kb
†
kak) |Φ〉 . (5.2)

where b†kak is the creation operator of e-h pair. It is also instructive to see
the form of quasi-particle excitation. For excitons, excitations can be defined

21
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as αk = ukak − vkbk, and βk = v∗kak + u∗kbk. Comparing with the BCS
theory, we can easily find the analogous Bogoliubov quasi-particle operators
γk = ukck− vkc†−k, γ−k = ukc−k + vkc

†
k. The coefficient uk and vk satisfy the

condition |uk|2 + |vk|2 = 1 in both exciton condensation and superconductor
cases. Similar to the BCS theory, we minimize the total energy with respect
to uk and vk and the results are

uk =

[
1

2

(
1 +

ξk
Ek

)]1/2

, vk =

[
1

2

(
1− ξk

Ek

)]1/2

, (5.3)

where
ξk = (εck − εvk)/2, E2

k = ξ2
k + ∆2

k. (5.4)

Using the effective Coulomb potential given by Hamiltonian (4.9), the self
consistent gap equation at zero temperature can be determined as

∆k =
∑
p

fi(k,p)Vk−p
∆p

2
√
ξ2
p + |∆p|2

, (5.5)

where i = 0, 1 are for the case without or with external field.

5.2 Solution of gap equation

We have derived the gap equation in the last subsection. More explicitly, we
have an integral equation as

∆(kx, ky) =
1

(2π)2

∫
B.Z.

fi(k,p)Vk−p
∆(px, py)

2
√
ξ2
k + ∆2(px, py)

dpxdpy. (5.6)

The domain of integration is over the first Brillouin zone instead of an ar-
tificial cutoff introduced in the work of Kozlov and Maksimov [14]. In their
work, case B of part 3, they assumed the gap remains a constant value ∆(0)
for p < p1, the cutoff. They also argued that ∆(p) decreased rapidly as
p > p1. Determining of p1 is based on dispersion relation which is a rela-
tively simple band structure ε(p) = p2/2. Let ∆(0) = p2

1/2 and solving for
p1 leads to p1 =

√
2∆(0). There is no reason to set any cut-off momentum

here since the dispersion relation here is close to being linear. The gap ∆
does not behave as Kozlov and Masksimov [14] had assumed. It will be even
clearer in the solution level which we will see later.
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5.2.1 Numerical solutions

We solve the integral equation with the following recipe. First we give a
specific value kyi and a trial ∆ and evaluate the integration. This will give
a rough curve of ∆(kx) versus kx, called ∆0(kx). Second we feed the ∆0(kx)
back into integration and repeat the processes. We can start with trial wave
functions with different symmetries in region kx = [−π

a
, π
a
], then do the it-

eration. Finally the output function will converge to a form with enough
accuracy, which is set as 10−3 in this work. We apply the same process for
the case with external field. The region of ky = [−π

a
, π
a
] is divided by 33 in-

tervals. We did the iteration to get ∆(kx) for every kyi. The grids are 33×33
in the first Brillouin zone. Momentum kx and ky are centered at k = 0 which
is the K point of germanene and silicene.

Parameters are given in [27] for germanene. The length is measured for
lattice constant a ≈ 4Å. Energy is in unit of Fermi velocity times k, where
vF ≈ 4.57 × 10−5 cm/s. λ, half of band energy gap, is 46meV and internal
Rashba interaction r is 10.7meV for gemanene. By Ref. [31], in the case
without external field xM = 25Eg thus α0

2D ≈ e2

2πEg
(1

1
− 1

26
) × 2 = 48.07Å,

where the factor of 2 is the number of degenarate bands, see FIG. 3.1(a). As
for the case with external field α1

2D ≈ e2

2πEg
[(1

1
− 1

7.25
) + 1] = 46.55Å, where

the first term comes form band 1 and the second term comes from band 2,
see FIG. 3.1(b). Examples of symmetric and anti-symmetric iterations are
shown in FIG. 5.1. The red curve is the initial one and the black curve is the
final result.

For a comprehensive consideration, the ground state can be either purely
symmetric or anti-symmetric but also the linear combination of them. In or-
der to give a complete physical pictures, we give three contour plots of gap
functions in the first Brillouin zone in FIG. 5.2. and FIG. 5.3. Apparently,
the symmetric solution is nodeless. The antisymmetric one has a node line.
Interestingly, the gap function of the mixed solution almost vanishes in left
half plane. It is equally possible that its magnitude is vanishingly small in
either upper or lower half plane.

Now the question occurs: which solution gives the lowest energy? To an-
swer this, we have calculated the energy of each solution. The wave function
of exciton condensed state is similar to BCS theory. The form of energy can
be deduced from the BCS theory [36] which reads

E =
∑
k

[
εk(1 + 2xk)− (

1

4
− x2

k)1/2∆k

]
, (5.7)
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-3 -2 -1 1 2 3
kx

0.1
0.2
0.3
0.4
0.5

Dkx

(a) symmetric solution

-3 -2 -1 1 2 3
kx

-0.4

-0.2

0.2

0.4

Dkx

(b) anti-symmetric solution

Figure 5.1: For ky = 0.2, the iteration processes (red curve → black curve)
of (a) symmetric and (b) anti-symmetric solution of ∆(kx) without eternal
field.

where xk = ± εk

2
√
ε2k+∆2

k

. We insert ∆k obtained from the integral equation

into Eq. (5.7). In the three cases, the anti-symmetric ∆k state has the high-
est energy thus it cannot be the condensation state. Another possible form of
solution, ∆0(kx + iky), which is common in considering p-wave superconduc-
tors is also considered. This solution gives energy comparable to that of the
antisymmetric state. Thus it cannot be the condensation either. We found
the energy of mixed solution is slightly lower than the symmetric one. Defin-
ing a parameter η ≡ (Es − Em)/Em, where superscript s and m stand for
symmetric and mixed, respectively. ηint ≈ 0.006 when only intrinsic Rashba
interaction is considered. However, ηex ≈ 0.03 as an external electrical field
R = 1.2vF is applied. We can see the energy difference is not significant
when there is no external field. It is more advantageous to the mixed wave
state by applying electric field. In short, the mixed state is the ground state
of exciton condensation under external electrical field.

We plot the diagram of ∆ versus band gap (Eg = 2λ) of semiconduc-
tor, see FIG. 5.4. The red curve is the case without external field while the
black one is the case with external field. The bandwidth of germanene is also
pointed out in FIG. 5.4. The regions under the curves are where the conden-
sation states are stable. This diagram shows that the exciton condensation
state is the ground state of the system thus the e-h pairs can, in principle,
survive for a long time. As we estimated before, α0

2D > α1
2D, thus the 2D

Coulomb potential with external field is stronger. This leads to a larger ∆
for germanene.
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Figure 5.2: The contours of symmetric (a) symmetric, (b) anti-symmetric,
and (c) mixed solutions without external field for germanene.

Figure 5.3: The contours of (a) symmetric, (b) anti-symmetric, and (c) mixed
solutions with external field R = 1.2vF for germanene.

5.2.2 Approximate form of solutions

To give a clearer picture, we try an approximation solution of ∆(k) ≈ ∆0(k)+
∆1(k) cos θk where θk = tan−1(ky/kx). This can show us the amplitudes of
the s-wave and p-wave in the mixed state. Then the integral equation in
polar coordinate is

∆0(k)+∆1(k) cos θk =
1

π3

∫ 2π

0

∫ π

0

V (k, θk; p, θp)f1(k, θk; p, θp)K(p, θp)pdpdθp,

(5.8)
where the integration kernel K(p, θp) = ∆0(p)+∆1(p) cos θp

2
√
ε2p+(∆0(p)+∆1(p) cos θp)2

. Coulomb

potential V and form factor f1 can be found in Eq. (4.3) and Eq. (4.12),
respectively. Our first equation is given by integrating θk over 0 to 2π and
solving ∆0 for a given k. More specifically,

∆0 =
1

π3(2π)

∫ 2π

0

∫ 2π

0

∫ π

0

V (k, θk; p, θp)f1(k, θk; p, θp)K(p, θp)pdpdθpdθk

(5.9)
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0.5 1 2
2 Λ

0.5

1

D

Ge

with E HblackL

without E HredL

Figure 5.4: The diagram of ∆ at (kx, ky) = (0.2, 0) for different semiconductor
band gap 2λ.

0.742 0.744 0.746
D0
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0.3

0.35

D1

(a)

0.889 0.89 0.891 0.892 0.893 0.894
D0

0.35

0.4

D1

(b)

Figure 5.5: The green curve is plotted with Eq. (5.9) and blue curve is plotted
with Eq. (5.10). Intersection of two curves is the solution of (∆0,∆1). (a)
(kx, ky) = (0.35, 0.2) (b) (kx, ky) = (0.8, 0.6)

Then we multiply cos θk on both side of Eq. (5.8) and perform an integration
1

2π

∫
dθk, which leads to

∆1 =
2

π3(2π)

∫ 2π

0

∫ 2π

0

∫ π

0

V (k, θk; p, θp)f1(k, θk; p, θp)K(p, θp) cos θkpdpdθpdθk.

(5.10)
Now we have two coupled equations for ∆0 and ∆1. For a given set of (kx, ky),
there will be two curves from Eq. (5.9) and Eq. (5.10). The intersection is
the solution. For example in FIG. 5.5(a), (kx, ky) = (0.35, 0.2), the numerical
results of Eq. (5.9) (green) and Eq. (5.10) (blue) are shown. These two curves
intersect at point (∆0,∆1) = (0.744, 0.305). Our approximate gap ∆0 +
∆1 cos θk = 0.744 + 0.305 cos(tan−1 0.2

0.35
) ≈ 1.01. This should be compared

with the iteration result for (kx, ky) = (0.35, 0.2) of mixed state solution
in FIG.5.6 (purple), where the numerical result is ∆ ≈ 1.05, the accuracy
is reasonable and the difference comes from the integration boundary [37].
Another example is in FIG. 5.5(b), (kx, ky) = (0.8, 0.6) and solved (∆0,∆1) =
(0.892, 0.37). ∆0 +∆1 cos θk = 0.892+0.37 cos(tan−1 0.6

0.8
) ≈ 1.19 which is also
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-0.5 0.4 0.8 1.2 1.6
kx

0.3

0.6

0.9

1.2

D

Figure 5.6: Numerical mixed state solution of ∆ as ky = 0.2 (purple) and
ky = 0.6 (black) for germanene.

close to the numerical result ∆ ≈ 1.23, see FIG. 5.6 (black). The amplitude
of p-wave type (anti-symmetric) solution if exists is usually much smaller
than that of the s-wave (symmetric) solution in superconductors. Here the
magnitude of ∆0 and ∆1 are comparable in this 2D system with external
field. Hence, the mixed state has significant symmetric and antisymmetric
parts.
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Chapter 6

Proposed Experiment

Exciton condensate can be observed in various ways. The most commonly
used is the optical method. L.V. Butov and A.I. Filin [38] used photolu-
minescence to investigate the exciton condensate in quantum well systems.
They found superradiance due to the coherence of the condensed exciton
states in contrast to normal excitons. One can also observe the condensate
by interference of lights emitted from an array of beads of condensate [39] or
two traps connected by Josephson tunneling of coherent excitons [12].

The transport measurement can also provide evidence of exciton con-
densate. Although exciton current is not charged, one can turn to thermal
conductivity for the onset of condensation. Rontani and Sham [12] applied
Bogoliubov-de Gennes equation [40] to a semimetal-semiconductor structure
and calculated the transmission coefficient. They found that the thermal
conductivity as a function of temperature exhibits activation behavior with
the activation energy being the energy gap of the exciton condensate on the
semimetal side. Applying their theory to our system, we found that the
s-wave condensate should also have this property. On the other hand, the
mixed state does not have any activation energy because its energy gap is
vanishingly small for kx < 0.

The mixed state we found has other interesting properties. One of them
is the existence of midgap state in a sNp structure in which a semimetal layer
in normal state is sandwiched between two semimetal layers, one in s-wave
state and the other in mixed state. Therefore, in subsection A we show that
the excitons in germanene or silicene are a mixture of bright and dark exci-
tons and hence, can be detected with optical methods. In subsection B we
derived the wave function and energy of the midgap states. Thus, in addi-
tion to the experimental methods of superradiance and optical interference
mentioned above, our result can also be verified by looking for the midgap
states.
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6.1 Luminal properties of exciton condensation

In the previous work of Ref. [41], Combescot et al. provided a rule of
Bose-Einstein condensation in semiconductors. They first define bright and
dark excitons by their optical properties. Bright excitons have total angular
momentum 1 so they may be coupled with photons while dark excitons with
total angular momentum 2 cannot. The configuration of our 2D system is
more complex than those discussed by M. Combescot et al. [41]. The spin
3/2 and 1/2 states are mixed in both conduction and valence band. Hence
it needs a finer treatment. Consider the case without external field.

Let’s look at the coefficients in (3.6). Since r � vF , functions with
coefficients Bk and Ck can be neglected. Coefficient Ak approaches zero
as k → 0 and increases monotonically to 1 for increasing k and has to be
considered. Also, the s-orbital doesn’t provide any effect as discussed by
Combescot et al. [41]. We consider the functions of |φ1〉 and |φ4〉 as

∣∣φ1↑(↓)
〉
∼
[
u11

∣∣pAz 〉+
u31√

2
(
∣∣pBx 〉− i ∣∣pBy 〉)]⊗ |↑〉 (|↓〉),∣∣φ4↑(↓)

〉
∼
[
u11

∣∣pBz 〉− u31√
2

(
∣∣pAx 〉+ i

∣∣pAy 〉)]⊗ |↑〉 (|↓〉), (6.1)

The simplified compositions of conduction and valence bands are

b1 ∼ Ak |φ1↑〉+ |φ4↑〉 a1 ∼ −Ak |φ1↓〉+ |φ4↓〉 ,
b2 ∼ |φ1↓〉+ A∗k |φ4↓〉 a2 ∼ |φ1↑〉 − A∗k |φ4↑〉 .

(6.2)

We then relabel the |p〉 ⊗ |σ〉 states as |l, lz〉 |s, sz〉. For example, |φ1↑〉 in
(6.1) can be written as

|φ1↑〉 ∼ u11 |1, 0〉
∣∣1

2
, 1

2

〉
A

+ u31 |1,−1〉
∣∣1

2
, 1

2

〉
B

= u11

(√
2
3

∣∣3
2
, 1

2

〉
A
−
√

1
3

∣∣1
2
, 1

2

〉
A

)
+ u31

(√
1
3

∣∣3
2
, −1

2

〉
B
−
√

2
3

∣∣1
2
, −1

2

〉
B

)
,

(6.3)
where |l, lz〉 |s, sz〉 is written as linear combinations of |j,m〉 in the second
line. j andm are total angular momentum and azimuthal angular momentum
numbers, respectively. Consider the pairing of channel 1 in (6.2), this gives
the configuration

(1 + Ak)u11

[√
2
3

∣∣3
2
, 1

2

〉
A
−
√

1
3

∣∣1
2
, 1

2

〉
A

]
+ u31

[
Ak

√
1
3

∣∣3
2
, −1

2

〉
B
− Ak

√
2
3

∣∣1
2
, −1

2

〉
B
−
∣∣3

2
, 3

2

〉
B

] (6.4)
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Figure 6.1: sNp structure consisting of a normal slab in the yz plane having
a thickness d between semiconductors with s-wave and p-wave.

for conduction band, and

(1− Ak)u11

[√
2
3

∣∣3
2
, −1

2

〉
A
−
√

1
3

∣∣1
2
, −1

2

〉
A

]
− u31

[
Ak

√
1
3

∣∣3
2
, −3

2

〉
B

+
√

1
3

∣∣3
2
, 1

2

〉
B

+
√

2
3

∣∣1
2
, 1

2

〉
B

] (6.5)

for valance band.
The overlap between distinct sublattices is negligible. Taking sublattice

B as an example,
∣∣3

2
,−3

2

〉
in Eq. (6.5) is a valence electron with orbital state

lz = −1 and spin state σ = −1
2
, which can also be viewed as a spin 3

2
hole. It

may pair with other states on B sublattice. A bright exciton forms as it pairs
with

∣∣3
2
,−1

2

〉
in Eq. (6.4), i.e. state with lz = 1 and σ = −1

2
whilst pairing

with
∣∣3

2
, 3

2

〉
gives rise a dark exciton [41]. We show that the bright and dark

excitons are mixed naturally due to SOC. Hence, in each case, the exciton
condensate can be observed with optical methods. Similar conclusion can be
applied to condensate with external electric field. This property makes 2D
semiconductors being good candidates of revealing exciton condensation.

6.2 Midgap states of exciton condensation

We discuss another possible way to probe the existence of exciton condensa-
tion by analyzing the midgap state. Analogous to the superconductor-normal
metal-superconductor system, in FIG. 6.1, we set up an sNp sandwich system
where s, N, and p represent the symmetric condensation state, semimetal,
and mixed condensation state, respectively. The s-wave condensation can
come from any semiconductors with desired property and the p-wave con-
densation denotes germanene. The midgap state resides in the N layer and
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its wave function decreases exponentially in regions |x| > d/2. This issue is
studied by solving the Bogoliubov-de Gennes equation [40] which reads

−i~vF
d

dx
u(x) + ∆(k,x)v(x) = εu(x)

∆(k,x)u(x) + i~vF
d

dx
v(x) = εv(x),

(6.6)

with
∆(k,x) = ∆s, x < −d/2

= 0, −d/2 < x < d/2

= ∆p, x > d/2.

In the case of kx > 0 and assuming ε < |∆| we have the solution for region
−d/2 < x < d/2 (∆ = 0) as(

u(x)
v(x)

)
= A

[
eiλNx

(
1
0

)
+ aeiλNx

(
0
1

)]
, (6.7)

where λN = ε(~vF )−1. The solution for two sides are(
u(x)
v(x)

)
P

= ce−λpx
(
ũp
ṽp

)
(6.8)

and (
u(x)
v(x)

)
S

= c′e−λsx
(
ũs
ṽs

)
, (6.9)

where λs(p) =
√
|∆s(p)|2 − ε2/~vF , ũs(p) = 1√

2
(1 + i

√
|∆s(p)|2 − ε2/ε)1/2,

and ṽs(p) = 1√
2
(1− i

√
|∆s(p)|2 − ε2/ε)1/2. Continuity of wave function at two

interfaces x = ±d/2 gives us

ae−iλNd = ṽp/ũp, aeiλNd = ũs/ṽs.

Thus we have the bound state condition

e2iλNd =
ũp
ṽp

ũs
ṽs
. (6.10)

This condition is similar to that of the case in d-wave superconductors [42].
For definiteness, define sinα = ε/|∆s| and sin β = ε/|∆p| with the domain of
α and β being [−π

2
, π

2
]. Inserting the explicit expression of ũ and ṽ, we have

e2iλNd =

[
(sinα + i cosα)(sin β + i cos β)

(sinα− i cosα)(sin β − i cos β)

]1/2

,
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Figure 6.2: The midgap state energy versus kx for (a) sNp and (b) sNs
structures.

which leads to

ε = ~ωF
[
−1

2

(
sin−1 ε

|∆s|
+ sin−1 ε

|∆p|

)
+ π(l +

1

2
)

]
, (6.11)

where l is an integer and ωF ≡ d(~vF )−1 is the inverse of time needed for
a particle moves from one end of N region to the other. We can obtain the
solution for kx < 0 by similar calculation which reads,

ε = ~ωF
[
−1

2

(
sin−1 ε

|∆s|
+ sin−1 ε

|∆p|

)
+ π(l − 1

2
)

]
. (6.12)

On the other hand, for the sNs structure, binding energy ε′ can be derived
by a similar way which reads

ε′ = ~ωF
[
− sin−1 ε′

|∆s|
+ π(l ± 1

2
)

]
. (6.13)

In FIG. 6.2, we sketch the energy solution ε and ε′ versus momentum kx for
a given ky0 in the case with external field.

The midgap state energy for sNp structure becomes vanishingly small for
kx < 0 while that of sNs structure is finite in the entire range of kx. This
is because |∆p| approaches zero when kx become more negative (FIG. 5.6).
Since |ε| < |∆p|, |ε| is also small whilst ε′ in sNs structure has to be finite due
to the term l ± 1

2
in Eq. (6.13). For |∆p| approaching zero, Eq. (6.11) can

be simplified to − sin−1 ε
|∆p| ± π = 0. The plus sign (l = 0) gives a solution

ε = 0+ while the minus sign (l = −1) gives a solution ε = 0−. A similar
argument can be made for Eq. (6.12) which gives ε = 0− as (l = 0) and
ε = 0+ for l = 1, respectively. In both cases, the magnitude of ε is closed to
that of |∆p|. There is no solution in region l > 1 or l ≤ −1 for which the
equation is positive definite and negative definite, respectively. On the other
hand, ε′ in Eq. (6.13) remains finite as kx < 0.

Unlike that in superconductors, the electron-hole paired quasiparticle is
charge neutral. We cannot measure the midgap states via conductivity or
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any electromagnetic experiments. The midgap states should be measured by
any technique which is sensitive to the energy dependence of the density of
states such as thermal conductivity. Though in FIG. 6.2(a) the energy of the
mid-gap state vanishes in the −kx region, it is equally likely that it vanishes
in the −ky region. In sNp structure, the interface can be perpendicular
to either x- or y-direction. The zero-energy midgap states should exist in
one of two cases. If thermal conductance measurements are taken at low
temperature, the case without zero-energy midgap state will show activation
behavior and the other with zero-energy mid-gap state will exhibit finite
thermal conductance.
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Chapter 7

Introduction of Magnon
Condensate in CuO

Materials that exhibit several primary ferroic order parameters are called
multiferroics. They include, for example, magnetic orders, ferroelectricity,
ferroelasticity, etc. Among them, magnetic orders and ferroelectricity inter-
est physicist mainly because of the magnetoelectric effect. Multiferroics often
are transition metal oxides such as TbMnO3,HoMn2O5,LuFe2O4 and what
we will discuss here, cupric oxide (CuO). For the potential of applications,
it is desirable to have high critical temperature and strong electric-magnetic
coupling. Cupric oxide is a good candidate.

The study of CuO started quite early. The lattice structure was analyzed
by Asbrink and Norrby [43]. In the late 80’s and early 90’s more experi-
mental results were reported [44, 45, 46]. Their works are the measurement
of susceptibility and the study of magnetic structure via neutron scattering.
Two transition temperatures had been found, TN1 = 213K is the phase tran-
sition temperature from colinear spin to spiral spin phase whist TN2 = 230K
is the transition temperature from spiral spin phase to paramagnetic phase.
In the early 2000, CuO again attracted people’s attention after the discovery
of multiferroicity of CuO by T. Kimura et al. [47]. The spiral spin configu-
ration and hence, the multiferroic phase occurs in the temperature range of
20K.

The theoretical research is an interesting topic even nowadays. Filippetti
and Fiorentini [48] use first-principle self-interaction-free-density-functional
approach to study the magnetic ordering in CuO. Their conclusion is that
low-dimensional approach is not enough for the ground state of CuO. Three
dimensional exchange interactions are necessary. Giovannetti et al. [49] fo-
cused on the multiferroics of CuO. Guang Jin et al. [50] discussed the origin
of multiferroicity of CuO. Although the multiferroics is not the subject of this
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paper, their results gave a more clear picture of the strength of exchange.
A detailed discussion of the phases of CuO can be found in the paper by
R. Villarreal et al. [51]. Pierre Toledano et al. [52] achieved progresses,
especially they gave a possible configuration of spins. We will eleborate their
work later. As shown in the first-principle calculations, CuO has very com-
plex spin couplings. Ref. [48] introduced five coupling constants in order to
reach realistic spin configuration and electronic structure. Here, we choose
the analytical calculation which is complementary to numerical analysis and
can provide additional physical insight. The computation method we use
is the Schwinger boson mean-field theory (SBMFT) [53]. It is able to han-
dle complicated exchange interaction. It has advantage over the well-known
Holstein-Primakoff transformation, in that we can account for chosen order
parameters and the effect of their interplay.

We applied SBMFT to spiral spin configuration and introduced two order
parameters. By diagonalizing the Hamiltonian we found excitation energy
and Bose-Einstein condensations at finite momenta. When the approach
was applied to CuO, we were able to obtain magnetic magnetic suscepti-
bility measured in Ref. [45]. The concept of entropy is used in the work
of Guang Jin et al. [50] to discuss the origin of ferroeletricity. According
to their calculation, the effect of entropy in clear is a large enough lattice.
We also demonstrate that the entropy plays a crucial role in commensurate-
incommensurate (c− ic) phase transition. Our model offers a more intuitive
picture in dealing with entropy.

Chapter 7-10 are organized as follow. Chapter 7 is the introduction of
magnons in CuO. In Ch.8, we generalized spin rotation idea and introduced
Schwinger boson (SB) method. Ch.9 is the application of the SB method
to CuO, including the construction of spin configurations, the calculation of
BEC momentum, and the magnetic susceptibility as well. We give a scenario
of commensurate-incommensurate phase transition in Ch.10.
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Chapter 8

Formulation of SBMFT

8.1 Spin rotation
We consider a system of interacting spins. The spins form a lattice with
basis and there can be more than one spin in the basis. Our spin interaction
system is described by the quantum Heisenberg model

H =
∑

<ni,mj>

Jni,mjSni · Smj + Dni ,mj · (Sni × Smj ). (8.1)

The indices n and m indicate the position of unit cells whose origins are at
Rn and Rm, respectively. i and j label the atoms in a cell. The magni-
tude of interacting spin pairs is described by Jni,mj, and the sign of Jni,mj
indicates the direction preference: positive (negative) Jni,mj for antiferro-
magnetic (ferromagnetic) coupling. The second term is the DM interaction
and we let Dni ,mj = Dεni ,mj ŷ. Notation εni,mj is a sign tensor which equals
to 1 as i < j and -1 otherwise. We take the DM interaction of CuO to be
along the direction of spiral axis because this is lowest energy state. The DM
interaction here is one kind of anisotropy and one can consider other kinds
of anisotropic interactions as well, if necessary. An additional anisotropic
exchange coupling such as KSyi S

y
j has similar effect.

Since the Hamiltonian can contain quite a few exchange coupling con-
stants, the spin configuration can be complicated, e.g. ferromagnetic state,
Neel states, canted spin state and spiral spin state. One way to treat these
situations is to have local coordinates. The spin orientations vary from site
to site. However, we can assign the z−axis in each local coordinate to be
the preferred direction of the local spins. This way, the development can be
made clearer. The price to pay is that one have to deal with the relative
orientation between local coordinates. This method can be applied to Neel
state, spiral states and canted spins if sublattices are introduced.
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Consider the i-th spin operator in the n-th unit cell Sni . It is rotated
about y-axis which is the spiral axis by an angle q · αni with the operator
Uni = exp(−iq ·RniS

y
ni) , where q is the magnetic modulation vector which

can be identified by experiments such as neutron scattering. The rotated
Hamiltonian is

H ′ = UHU † =
∑

Jni,mj S
′
ni · S′mj + Dni ,mj · (S′ni × S′mj ),

where
S′r = UrSrU

†
r = R̂(q · r)Sr,

and U = ΠUn.i. Here R̂(q · r) is a SO(3) operator. In this circumstance,
the spiral spin state becomes purely ferromagnetic. Replacing the position
vector r by αni,mj ≡ Rni − Rmj , the relative position vector of two atoms,
the expression of the inner product of spins after rotation leads to

S′ni · S′mj = (S x
niS

y
niS

z
ni)

 cos(q ·αni,mj) 0 − sin(q ·αni,mj)
0 1 0

sin(q ·αni,mj) 0 cos(q ·αni,mj)

 Sxmj
Symj
Szmj



=− sin(q ·αni,mj)[S
x
niS

z
mj − SzniSxmj] + cos(q ·αni,mj)[S

x
niS

x
mj − SzniSzmj]

+ SyniS
y
mj.

(8.2)
Hence, the Hamiltonian can be rewritten as

H ′ =
∑

<ni,mj>

(Dni,mj − Jni,mj) sin(q ·αni,mj)(S
x
niS

z
mj − SzniSxmj)

+ Jni,mj
[
cos(q ·αni,mj)(S

x
i S

x
j − Szi Szj ).+ SyniS

y
mj

] (8.3)

This is the rotated effective Hamiltonian, and the form of rotating around
any axis can be derived similarly. Starting from the rotated Hamiltonian
one can treat the system as that in the ferromagnetic state. This approach
facilitates our later calculation.

8.2 Schwinger boson mean field theory
The application of the Schwinger boson (SB) method has been well studied in
literature. We formulate our system by generalizing the method of Schwinger
boson mean field theory (SBMFT). In the previous work such as Ref. [53] and
Ref. [54], a technique applied on the antiferromagnetic system is to separate
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spins into two sublattices after introducing the Schwinger bosons. It has
the adventage of highlighting order parameters. Mean-field approximation
can be taken when a magnetic order is thought to be important and treated
carefully. This point will be illustrated by our calculation below. We now
have two types of boson operators a and b. Operator a†(a) is a spin up
creation (annihilation) operator, and b†(b) is for spin down bosons. One can
construct the spin states by such second quantization operators. The spin
1/2 states, for example are, |↑〉 = a†|0〉, and |↓〉 = b†|0〉. Then there are
following transformation for spin operators

S+
ni = a†nibni,

S−ni = b†niani,

Szni =
1

2

(
a†niani − b

†
nibni

) (8.4)

for the i−th spin of the n−th unit cell. It is not hard to check such trans-
formations satisfy all the commutation relations of bosons [55]. A constraint
of the total spin number S on each site is imposed as

a†niani + b†nibni = 2S, (8.5)

where S is the total spin number. Thus, the Hamiltonian (8.2) in SB formu-
lation after spin rotation is

Heff =
∑

<ni,mj>

(
Jni,mj − Jni,mj cos θni,mj −Dεni,mj sin θni,mj

4

)
Â†ni,mjÂni,mj

+

(
Jni,mj + Jni,mj cos θni,mj +Dεni,mj sin θni,mj

4

)
B̂†ni,mjB̂ni,mj

+

(
Dεni,mj cos θni,mj − Jni,mj sin θni,mj

4

)
(Â†ni,mjB̂ni,mj + B̂†ni,mjÂni,mj)

+
∑
ni

λni

(
a†niani + b†nibni − 2S

)
(8.6)

where
Âni,mj = anib

†
mj − bnia

†
mj

B̂ni,mj = ania
†
mj + bnib

†
mj

(8.7)

are the bond operators of two SB on two adjacent sites and θni,mj = q·αni,mj.
Indices < ni,mj > should be summed over all atoms in consideration. In
this formulation, there are many atomic pairs. Physically, the system can
be viewed as nearly ferromagnetic after spin rotation and we need only two
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kinds of mean fields in the system. As for field B, it describes the SB motion
which always exists. Field A denotes an order parameter which deviates
from ferromagnetic state. Its existence can be expected as the spins in our
system are frustrated due to various couplings. The mean field value A(B) =

〈Â(B̂)ni,mj〉 is evaluated with the states after rotation, which are the two of
three the main parameters we are going to solve The way to take mean field
approximation of operator B̂ is

B̂†ni,mjB̂ni,mj
∼= (B̂†ni,mj + B̂ni,mj)〈B̂ni,mj〉 − 〈B̂ni,mj〉2

= (B̂†ni,mj + B̂ni,mj)B −B2,
(8.8)

where all 〈B̂ni,mj〉 = B. The mean field of operator Âni,mj should be treat
more carefully. One can see that as ni and mj exchange positions, Âmj,ni =

−Â†ni,mj. In general, mean field 〈Âni,mj〉 behaves like iAeiφεni,mj . The value of
phase φ can be determined to get lowest ground state energy. The final ap-
proximation is letting all λni = λ which represents a Lagrange multiplier. We
then take Fourier transform of operator Â(B̂)ni,mj. The spin up Schwinger
boson operator a is transfered as

ani =
1√
N

B.Z∑
k

ai,ke
−ik·Rn =

1√
N

B.Z∑
k

ake
−ik·Rn .

A similar transform is also valid for operator bni. Rn indicates the origin of
nth cell as mentioned before, and N is the number of spins for sublattice i
and also, the total number of unit cell. Furthermore, the ani,k is independent
of i since the spins are parallel after rotation. We, therefore, dropped the
subscript i. The mean-field Hamiltonian in momentum space is

HMF =
B.Z∑
k

[
(−iγ1(k)A+ iγss(k)B)(a†kbk − b

†
kak)+

(λ+ γ2(k)B − γsc(k)A)(a†kak + b†kbk)
]

+ E0(A,B, λ),

(8.9)
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where

γ1(k) =
∑

<ni,mj>

1

2
[Jni,mj(1− cos θni,mj)−Dεni,mj sin θni,mj] sin(k · dnmεnm),

γss(k) =
∑

<ni,mj>

1

2
[Jni,mj sin θni,mj −Dεni,mj cos θni,mj] sin(k · dnm),

γ2(k) =
∑

<ni,mj>

1

2
[Jni,mj(1 + cos θni,mj) +Dεni,mj sin θni,mj] sin(k · dnmεnm),

γsc(k) =
∑

<ni,mj>

1

2
[Jni,mj sin |θni,mj| −Dεni,mj cos θni,mj] cos(k · dnmεnm),

(8.10)
and

E0

N
= −1

4

∑
<ni,mj>

[Jni,mj(1− cos θni,mj)−Dεni,mj sin θni,mj]A
2+

[Jni,mj(1 + cos θni,mj) +Dεni,mj sin θni,mj]B
2 + (D cos θni,mj+

Jni,mjεni,mj sin θni,mj) 2AB − λ(2S)

≡ −J−A2 − J+B
2 + 2JsAB − λ(2S).

(8.11)

Summation of k is over the first Brillouin zone. Vector dnm in (8.10) denotes
the difference between the nth and mth unit cells. For example, dn1,n2 = 0
and dn1,m2 = Rm −Rn. αni,mj may or may not be equal to dnm, depending
on the type of crystal structure.

We diagonalize the Hamiltonian of Eq.(8.9) by the Bogoliubov transfor-
mation

ak = cos θkαk + i sin θkβk

bk = cos θkβk + i sin θkαk.
(8.12)

It is not hard to show that the condition cos2 θk = sin2 θk should be satisfied.
We choose θk = π

4
without losing generality. The mean field Hamiltonian

becomes

HMF =
B.Z∑
k

(λ+ ω2k − ω1k)α†kαk + (λ+ ω2k + ω1k)β†kβk + E0, (8.13)

where ω1k = −γ1(k)A+ γss(k)B and ω2k = γ2(k)B − γsc(k)A.
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8.3 Free Energy and SB Equations

The analysis of thermodynamic property is standard. With Hamiltonian
(8.13), we have the mean-field partition function QMF = Tr[exp(−βHMF )]
and the free energy is

F = − 1

β
lnQMF = − 1

β

∑
k

[ln(1 + nαk) + ln(1 + nβk)] + E0, (8.14)

where nkα(β) = (exp[β(λ+ ω2k − (+)ω1k)]− 1)−1 is the Bose-Einstein distri-
bution of the Schwinger boson quasi-particles.

A set of self-consistent equations are acquired by minimizing the free
energy (8.14) respective to parameters A, B, and λ. Hence, the self-consistent
SB equations can be simplified as

2S =
1

N

∑
k

nk,α + nk,β

−2J−A+ 2JsB =
1

N

∑
k

(nk,α − nk,β)γ1(k)− (nk,α + nk,β)γsc(k)

−2J+A+ 2JsB =
1

N

∑
k

(nk,α + nk,β)γ2(k) + (nk,β + nk,α)γss(k).

(8.15)

The forms of J−, J+, and Js are defined in Eq.(8.11). In view of the first
equation of Eqs.(8.15), one must have macroscopic number of SB occupying
a lowest energy state. The lowest energy states, denoted by k = ±k0 are
determined by the value of λ. Here, we suggest the possibility of condensation
at finite k0. In previous works such as Ref. [54], it was suggested that
condensation occurs at k = 0.

We choose λ as the value to make the minima of λ+ ω2,k ± ω1,k equal to
zero. Then we set k = k0 for minimum λ+ω2,k +ω1,k. One can observe that
ω1 is odd whilst ω2 is even in k. It means that the energy ω2(k) + ω1(k) =
ω2(k)− ω1(−k) in k ∈ B.Z. The minimum of λ + ω2 + ω1 and λ + ω2 − ω1

are symmetric with respect to k = 0. In other words, if one find that the
minimum of λ + ω2 + ω1 is at some k0, the minimum of λ + ω2 − ω1 is at
−k0. Thus, for T < Tc, the equations can be rewritten in terms of nk,β.
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S =
1

N

∑
k6=k0

nk,β + n0

−J−A+ JsB = − 1

N

∑
k6=k0

nk,β(γ1(k) + γsc(k))− n0(γ1(k0) + γsc(k0))

−J+A+ JsB =
1

N

∑
k6=k0

nk,β(γ2(k0)− γss(k0)) + n0(γ2(k0)− γss(k0)).

(8.16)
The unknown parameters to be solved are A and B. Constant n0, the conden-
sation density, is necessary since a macroscopic number of Schwinger bosons
are condensed at k = ±k0 as T < Tc. n0 represents the density at k = k0

and its physical meaning is the magnetic moment of the system. The sum-
mation is for all k except k0. One can say the long-range order (LRO) is
interpreted as the Bose Einstein condensation of SB. Therefore, we have to
solve A, B and identify n0 when T < Tc. One should keep in mind that the
set of equations (8.16) are valid only if q = Qc, the commensurate magnetic
configuration vector. Incommensurate spin configuration, however, violates
the periodic boundary condition and the spins need infinite number of lat-
tice sites to "rotate back". The way to deal with incommensurate spin is to
expand Qic near Qc. We will discuss it further in Ch. 10.



doi:10.6342/NTU201901151

44 CHAPTER 8. FORMULATION OF SBMFT



doi:10.6342/NTU201901151

Chapter 9

Application of SBMFT to CuO

9.1 The information of CuO
Now let’s turn our attention to the structure of CuO. Following the choice
of magnetic unit cell in [52], our basis of an unit cell are t1 = (a, 0, c), t2 =
(0,−b, 0), t3 = (a, 0,−c), instead of the common abc-coordinate, see FIG. 9.1
The location of Cu atoms in a unit cell in ti representation are r1 = (1

8
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4
, 1

8
),

r2 = (3
8
,−3

4
, 3

8
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). For example, r1 = 1

8
t1 −

1
4
t2 + 1

8
t3, and r2 = 3

8
t1− 1

4
t2 + 1

8
t3. The primitive lattice vectors in reciprocal

space are g1 = (π
a
, 0, π

c
), g2 = (0,−2π

b
, 0), g3 = (π

a
, 0, −π

c
), and k is written

as k1g1 + k2g2 + k3g3. The corresponding interaction between two spins
are listed in Table 9.1 The energy magnitude is measured relative to the
largest interaction J3 throughout the entire article. Their relative strength
are (J3, J1, Ja, Jb, J2) = (1,−0.325,−0.1, 0.3, 0.35) [48] and the strength of
DM interaction D = 0.0125J3.

The relative vectors of nearest neighboring unit cells dnm are shown in
the following matrix form. They will be used in Eq.(8.10)

dnm =
0 t3 0 t1 0 t2 0 t2 0 t2 0 t1 + t3
0 t3 0 t1 t1 t1 − t2 t3 −t2 + t3 0 t1 − t2 + t3 0 t1 + t3
0 −t3 0 t1 t1 t1 − t2 0 −t2 −t2 t1 −t3 t1
0 t3 0 −t1 0 −t2 t3 −t2 + t3 −t2 t3 −t1 t3
0 −t3 0 −t1 0 −t2 0 −t2 0 −t2 −t1 − t3 0
0 −t3 0 −t1 −t1 −t1 + t2 −t3 t2 − t3 0 −t1 + t2 − t3 −t1 − t3 0
0 −t3 0 t1 0 t2 −t3 t2 − t3 t2 −t3 −t3 t1
0 t3 0 −t1 −t1 −t1 + t2 0 t2 t2 −t1 −t1 t3


There are two wave vectors representing the commensurate and incommen-
surate phase of CuO, Qc = g3 and Qic = 0.023g1 + 0.989g3, respectively. (In
abc-coordinate, Qc = (0.5, 0,−0.5) and Qic = (0.506, 0,−0.483) [44]). Below

45
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Figure 9.1: Illustration of the magnetic unit cell and the positions of copper
atoms

TN1, the system is in colinear phase with commensurate magnetic configura-
tion vector Qc, whilst incommensurate Qic corresponds to spiral spin phase
in the temperature range 213K∼230K.

First we briefly explain the work of Ref.[52]. They considered the irre-
ducible representations of τ1 and τ2 of paramagnetic space group C2/c1′ in
the commensurate phase. There are two two-component order parameters
(η1 = ρ1 cos θ1, η2 = ρ1 sin θ1) and (ζ1 = ρ2 cos θ2, ζ2 = ρ2 sin θ2) associated
with Qc = ±(0, 5, 0,−0.5). These parameters are coupled by the relation
of Landau free energy, see Eq.(1) of Ref.[52]. Minimizing the Landau free
energy they have 11 possible stable phases for different equilibrium value of
ρ1, ρ2, θ1 and θ2, see TABLE. II of Ref.[52]. Considering the experimen-
tal results phase IV is chosen. This phase leads to a condition of equilib-
rium ηa,b,c1 = ηa,b,c2 = 0, ζa,b,c1 = −ζa,b,c2 and antitranslational relationships
~s1 = −~s6, ~s2 = −~s5, ~s3 = −~s4, ~s7 = −~s8. So the commensurate spin
configurations of Ref.[52] are

sac1 = sac4 = sac5 = sac7 = −sac2 = −sac3 = −sac6 = −sac8

sb1 = sb3 = sb5 = sb8 = −sb2 = −sb4 = −sb6 = −sb7.

We then demonstrate our choice of spin configuration for commensurate
phase. According to the magnetic modulation vector Qc, we can identify the
relative angles between two spins. In the paper of neutron scattering study,
the component of spins along g2 (or b-axis) direction is more certain [52]. Our
strategy is, assuming the spin component along b-axis is determined, those
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Table 9.1:
Cu 1 2 3 4 5 6 7 8
J3 7 3 2 5 4 8 1 6
J3 7t3 3t3 2−t3 5t3 4−t3 8−t3 1−t3 6t3

J1 8 4 5 2 3 7 6 1
J1 8t1 4t1 5t1 2−t1 3−t1 7−t1 6t1 1−t1
Jb 4 8t1 6t1 1 7 3−t1 5 2−t1
Jb 4t2 8t1−t2 6t1−t2 1−t2 7−t2 3−t1+t2 5t2 2−t1+t2

Jb 3 7t3 1 6t3 8 4−t3 2−t3 5
Jb 3t2 7−t2+t3 1−t2 6−t2+t3 8−t2 4t2−t3 2t2−t3 5t2

Ja 2 1 7−t2 8−t2 6 5 3t2 4t2

Ja 5t2 6t1−t2+t3 8t1 7t3 1−t2 2−t1+t2−t3 4−t3 3−t1
J2 6 5 4−t3 3−t1 2−t1−t3 1−t1−t3 8−t3 7−t2
J2 6t1+t3 5t1+t3 4t1 3t3 2 1 8t1 7t3

This table gives the coupling constants between two copper atoms. Numbers 1∼ 8
denote the Cu atoms in n-th unit cell. The vector in subscript of each number indicates
the position vector of the unit cell where Cu atoms are located, ex: 7t1 means the
position of the 7th atom is r7 + t1. Those without subscript are the atoms in the unit
cell containing the origin.

in the a and c directions can be obtained by the relative angles between two
spins. For instance, angle between the spins of Cu1 and Cu7 is π, and for
Cu1 and Cu2 is π/2. For instance, sb1 = −sb2 leads to sac1 = sac2 since the
angle is π/2, see FIG. 9.2. Hence, our spin configuration for commensurate
phase is

sac1 = sac2 = sac4 = sac8 = −sac3 = −sac5 = −sac6 = −sac7

sb1 = sb3 = sb5 = sb8 = −sb2 = −sb4 = −sb6 = −sb7
(9.1)

The advantages of this spin configuration are: First, it is consistent with
the experimental [47] results; Second, the configuration has the lowest ground
state energy, at least classically. For example, the spins on 1-7-1 chains is
now completely anti-parallel, and they have the strongest AFM interaction
J3 [47]. Third, it also satisfies the symmetry properties of group theory
suggest by [52] which we mentioned before. Thus we believe the actual spin
configuration is more likely to be the one in Eq.(9.1). We thus proceed to
diagonalized the Hamiltonian in Eq. (8.2) based on the spin configuration
Eq.(9.1). The rotation is such that all the spins s1 ∼ s8 are pointed to the
z-direction in local coordinates. θni,mj in Eq.(8.6) now is equal to Qc ·αni,mj



doi:10.6342/NTU201901151

48 CHAPTER 9. APPLICATION OF SBMFT TO CUO

S1

S7

S
1

b

S
1

ac

S
7

b

S
1

ac

S1

S2

S
1

b

S
1

ac

S
2

b

S
2

ac

Figure 9.2: The determination spin directions. Take spin 1 and 7 as an
example, we know their angle is π by Qc. We also know that sb1 = −sb7 by
neutron scattering. Thus, we know sac1 = −sac7 as shown in l.h.s of FIG. 9.2.
A similar method is applied to the other spins. For example, spin 1 and 2
has Qc ·α12 = π/2. Thus we conclude sb1 = −sb2 and sac1 = sac2 .

9.2 Finite momentum BEC of magnon

In this section, we compare the magnon condensation of CuO between former
works of finite momentum BEC in magnetic systems. Theoretical argument
of interacting boson showing possible finite momentum condensate is suggest
by [5], as we mentioned in the exordium. However, the realization of such
BEC is observed in only past two decades.

Finite momentum condensation were observed by experiments. The first
experimental report is the magnetic insulator TlCuCl3 [56]. How can one tell
that the condensate of TlCuCl3 has finite momentum? The system has state
of singlet spins with Cu2+ ions forming dimers. The excited state is a triplet
with spin 1. There is an energy gap for magnons. The Sz = 1 state is coupled
with external magnetic field and hence, we can use an external field to tune
the magnitude of the energy gap. Eventually the system shows long range
order (LRO) and we can measure the temperature-dependent field strength.
They interpret this is the condensation of Sz = 1 magnons.

Another important experiment of magnons is in YIG films [57]. Magnons
are pumped into the system using microwaves. The measurement of final
state is achieved via laser light which is inelastically scattered by magnons.
This experiment relies on the difference in relaxation times between non-
equilibrium magnons and the thermalized magnon. Instead of measuring the
energy change, another way is to measure the behavior of momentum.

CuO also demonstrate similar momentum behavior. In FIG. 9.3, we plot
the energy dispersion relation ωβ,k ≡ λ+ ω1k + ω2k of CuO. Let k3 = 0.118,
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Figure 9.3: The dispersion relation of ωβ,k at T = J3/4 and k3 = 0.118. The
magnitude of energy is relative to J3.

the 3rd component of minimum k0 at temperature T = J3/4. It shows that
the minimum of ωβ,k at k0 = 0.229g1−0.347g2 +0.118g3. This is where BEC
situated. The other minimum of ωα,k ≡ λ+ω1k−ω2k is at −k0. As for k = 0,
the energy ωα,0 = ωβ,0. In a material such as CuO, we suggest that there will
be a peak if we measure the cross section of neutron scattering. The change
of momentum of incident and reflected beams should be at ±Qc ± k0. This
is an evidence of the finite momentum BEC of quasi-particles. Physically
the magnetic ordering linked with magnon condensation which is analogous
to conventional BEC (BEC of bosons) despite the lowest energy state is
composited by finite momentum wave-functions.

9.3 The spin correlation function

In order to compare our theoretical model for CuO with experimental results,
we calculate the spin correlation function with spins directions both vertical
and parallel to our SB rotation axis. The correlations contain many phys-
ically measurable quantities. In a magnetic spin system, one of important
experimental results is magnetic susceptibility. In our SB model, the rotation
axis of Hamiltonian is y-axis, which corresponds to the linear combination
of a and c coordinates of [52]. Hence χa and χc contain part of

∑
〈SySy〉. It

is not hard to understand the spin correlation function of y axis is invariant
before and after rotation of the Hamiltonian.
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∑
n,m

〈S ′yn S ′ym〉 =
∑
n,m

〈SynSym〉

= −1

4

∑
n,m,k1∼k4

〈(a†k1
bk2 − b

†
k1
ak2)(a

†
k3
bk4 − b

†
k3
ak4)e

iRn·(k2−k1)eiRm·(k4−k3)〉.

(9.2)
With the Bogoliubov transformation in Eq.(8.12), we consider the mo-

mentum k = ±k0 independently, where particles αk condensed at −k0 and
particles βk condensed at k0. The full expansion of Eq. (9.2) is

1

16N2

∑
n,m,k1∼k4

〈α†1α2α
†
3α4 − α†1α2β

†
3β4 − α†1α2β

†
4β3 + β†3β4α

†
4α3

− β†1β2α
†
3α4 + β†1β2β

†
3β4 + β†1β2β

†
4β3 − β†1β2α

†
4α3

− β†2β1α
†
3α4 + β†2β1β

†
3β4 + β†2β1β

†
4β3 − β†2β1α

†
4α3

+ α†2α1α
†
3α4 − α†2α1β

†
3β4 − α†2α1β

†
4β3 + α†2α1α

†
4α3〉

· eiRn·(k2−k1)eiRm·(k4−k3).

(9.3)

For k1 = k2 = k3 = k4 = −k0, the particles αk condensed but particles
βk do not. This yields 4〈α†0α0α

†
0α0〉 = 4n2

0,α. On the other hand, we have
4〈β†0β0β

†
0β0〉 = 4n2

0,β as all k′s equals to k0. We can further simplify the
notation as n2

0,α = n2
0,β = n2

0 according to Eq. (16a). Thus, we obtain the
magnetic susceptibility function χy as

χy =
gµB
2V

[
n2

0

2
+

1

2N

∑
k6=k0

nk(nk + 1)− 1

N

∑
k,k′ 6=k0

nknk′

]
. (9.4)

It approaches a finite value gµB
4V
n2

0 as T → 0. As both χa and χc contain
part of χy, they also approach a finite constant as T → 0. This agrees with
experimental result [47]. Physically, consider the spiral spins lie on a plane
formed by vectors~b and ~a+~c. Any perpendicular external field, even slightly,
will lead a significant change of magnetic moment. Our y−axis is a linear
combination a and c so that χy corresponds to a average of χa and χc. This
fact is shown in the experimental measurement [47]. Our model can, at least
qualitatively, describes this result.

As for susceptibility χb, for which the dc magnetic field is applied along
b−axis or perpendicular to the spiral axis. The BEC density does not have
contribution. As a result χb approaches zero when T → 0. We found that,
some anisotropic energy on the spiral plane has to be added to our calculation
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in order to compare the experimental data. This will add unnecessary com-
plication to our computation. Hence we did not go further in this direction
so as to present a clear physical picture.
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Chapter 10

The c-ic Phase Transition of CuO

In this chapter, we explain how the transition occurs between commensurate
and incommensurate c − ic phases. A straightforward and convincing way
is to compare the free energy F = U − TS of two phases. One can imagine
the system prefers commensurate phase when free energy Fc is smaller than
the incommensurate free energy Fic at low temperature. As temperature
increases, Fic becomes smaller and the system move into incommensurate
phase. Mathematically, we are going to look for a temperature Tc−ic which
satisfies the equation

Fic − Fc = Uic − Uc − Tc−ic∆S = 0. (10.1)

In this circumstance, the free energy obtained from SBMFT before is not
enough since a more sophisticated incommensurate phase should be con-
sidered. What comes in is not the absolute entropy but the difference of
entropies between commensurate and incommensurate phase. Now we inter-
pret the free energy in (8.14) as the internal energy U . Solving parameters
A, B and λ in Eq.(8.16) for a given temperature, then feed these values into
Eq.(8.14) to get Uc. For Uic, as mentioned before, we expand the energy
functions with respect to Qc up to the second order of Qic−Qc and we insert
the (A,B, λ) which is obtained from commensurate equations (8.16). We
have the value of Uic − Uc which tends to be 0.0185J3 at low temperature.
Thus, the spins prefer commensurate configuration at low T .

The main feature of entropy and the magnetic modulation vector Q can
be understood in terms of a soliton model. We illustrate our calculation
by a very simple example. Consider, in one dimension, solitons are static
domain walls between commensurate domains. When the magnetic module
vector changes from Qc to Qic, all possible permutations of the locations of
solitons lead to the entropy difference. Suppose the incommensurate wave
length is slightly smaller than the commensurate one, that is, λc − λic = δλ.

53
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Comparing these two phases, it is not hard to see the "wavefront" of in-
commensurate phase lags behind that of the commensurate one by a short
distance. If two "waves" start at a same position with different wavelengths,
the two wavefronts "meet" each other when one of them is lag or lead by one
wavelength. Assuming after m wavelengths, the commensurate "wavefront"
meets the incommensurate one, then the latter would have gone through
m+ 1 wavelengths.

Let’s consider a one-dimensional lattice with lattice constant a first.
The relation between wavelength and magnetic modulation wave vector is
λ = 2π

qa
= 1

Q
, where a is the lattice constant. Let l be the distance over which

commensurate and incommensurate "wave" meet each other, then

l = mλc = m/Qc

and
l = (m+ 1)λic + δw ≈ (m+ 1)/Qic,

where δw is the width of a domain wall which is very small compared to λic.
The contribution of δω can be ignored. By the equations above one can solve
m = Qc/(Qic −Qc). Then

l = 1/(Qic −Qc), (10.2)

which can be viewed as the size of a domain in the incommensurate phase.
Our argument of domain size agree with the formula (4.16) suggested by P.
Bak and J. von Boehm[58].

Physically, the location of a domain wall is where a soliton occurs. The
entropy increases as a soliton is produced so the entropy can be calculated by
considering the distribution of solitons. According to the spirit of Gaussian
distribution, for a sample of length l, there are n solitons and N sites, the
number of microscopic states is Ω = N !

n!(N−n)!
. We have the entropy per site

∆s = kB ln Ω ≈ kB

[
ln(

N

N + n
) +

n

N
ln(

N

n
− 1)

]
,

for n and N are large numbers. The density of soliton is n/N . Hence we
have a formula for ∆s for one dimensional spin chain

∆s = ln(1 + aδQ) + aδQ ln(
1

aδQ
− 1), (10.3)

where δQ = Qic −Qc.
Now we apply the idea above to CuO. Consider vector Q ≡ q1g1 + q2g2 +

q3g3 is parallel to g2-axis in our magnetic unit cell or b-axis in abc-coordinate.
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Figure 10.1: The numerical solution of commensurate-incommensurate
Tc-ic ≈ 0.337J3

This situation is the same as a one dimensional system because the only
direction is given by Q = (q1, 0, q3). Since the entropy is caused by the
distribution of solitons, we can think of the wavefront of solitons as moving
along ac direction i.e. the hypotenuse of a right triangle. The formula for l
has a generalized form

l =
√

(1/δq1)2 + (1/δq3)2. (10.4)

In the g coordinate, Qc = g3 and Qic = 0.023g1 + 0.989g3. We have δQ ≡
Qic −Qc = (0.023, 0,−0.011), and the domain length is

l =
√

(1/0.023)2 + (1/0.011)2 = 100.771.

This leads to n/N ≈ 0.01. So ∆s is given by (23):

∆s = kB [ln(1 + 0.01) + 0.01 ln(100.771 + 1)] = 0.0557kB. (10.5)

Since Qc = g3, which is a reciprocal lattice vector of a magnetic unit
cell, in g coordinate representation, the value of ∆s in Eq.(10.5) means the
entropy per magnetic unit cell. Feeding into Eq.(10.1), FIG. 10.1 shows the
numerical solution of critical temperature Tc-ic ≈ 0.337J3. We have explained
the spins prefer the commensurate phase at low T in the beginning of this
section. As the temperature rises higher than Tc-ic, the magnitude of Fic
becomes smaller than that of Fc which means the spins are more stable to
from incommensurate phase. In many papers of first principle calculation,
summarized in [47], the range of the magnitude of J3(101̄) can be from 50
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to 80 meV. We choose J3 = 54 meV, then Tc−ic is around 210K, agrees well
with the experimental result of c-ic phase transition.

The relations in Eq. (10.2) and Eq.(10.3) can in principle be applied to
any commensurate-incommensurate systems, especially proper for those of
one dimension. First we must know the difference of internal energy and the
we measure the wave-vector Qc and Qic. Once we have Qc and Qic then we
can follow the process above to get the transition temperature by the unit of
largest spin-spin interaction strength J .
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Chapter 11

Conclusion

In chapter 2-6, we consider the exciton condensation of two-dimensional semi-
conductors. We take germanene as an example but this scheme can also be
used in materials of similar type such as silicene. The electron wave func-
tions give rise to a form factor which has profound effect on the symmetry of
the gap function. We found that the mixed state has the lowest energy com-
pared to the pure symmetric state and the antisymmetric state. This natural
phenomenon is due to the intrinsic SOC interaction and more significantly
an external field which can provides a much stronger Rashba interaction in
this scenario. The two-dimensional semiconductors also provide a mixed spin
state of two types of exciton, known as bright and dark exciton. The measure-
ment of bright exciton can be performed by optical methods. Furthermore,
the mixed state solution of condensation can be measure experimentally by
probing the midgap states energy in sNp and sNs structures. The former
sustains zero-energy midgap states. Finally, the Rashba interaction, no mat-
ter how it is generated, by the lattice geometry or by the external field, plays
an crucial role in determine the form factors, and hence, the forms of the
exciton condensates.

In chapter 7-10, based on the neutron scattering data [44] of CuO, we pos-
tulate the spin configuration of the ground state. Using SBMFT, we take two
order parameters A and B and diagonalized the Hamiltonian. We derived
the energy dispersion and showed the system has finite momentum BEC at
k = ±k0. The concept of condensation of quasi-particles (BEC) allows us to
explain the finite value of susceptibility in ac direction as T tends to zero. We
also analyzed c− ic phase transition. Our model of soliton distribution leads
to an entropy difference between commensurate and incommensurate phases.
The free energies of two phases are calculated and the critical temperature is
found. This results can be compared with experiments and give us a phys-
ical picture to consider similar problems. Numerical calculation requires a
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lot of computation. The reason is that for an incommensurate system one
needs infinite lattice size for a spin to "rotate back". Our argument gives
a convincing reason for the entropy consideration without involving heavy
numerical calculation.

For the first sight, these two systems are quite different. However, they
both exhibited the nature of type II boson condensates as we mentioned in
the preface. We practically demonstrated the condensate in detail of type
II boson doesn’t accompany with superfluidity but with a change of spatial
or magnetic order. Generally, for a non-interacting boson system, the BEC
happens at k = 0. This fact is shown in exciton condensation at T = 0,
see Sec. 4.2. In Sec. 8.2 we show a BEC system whose energy dispersion
has degenerate minima at two finite momentum ±k0. The condensation of
Schwinger boson is similar to other kinds of quasi-particles such as spin waves
in a lattice (magnons). For bosons consists of quasiparticle such as excitons
or magnons. Obviously our SB system coincides with such kind of bosons.

Quasiparticle condensation shows its richness in many aspects. Being as
a physical phenomena or a mathematical tool, it offers us a road to deal with
many body problems in physics.
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