請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7800
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳安宇 | |
dc.contributor.author | Shih-Ming Shan | en |
dc.contributor.author | 山仕明 | zh_TW |
dc.date.accessioned | 2021-05-19T17:54:01Z | - |
dc.date.available | 2022-10-03 | |
dc.date.available | 2021-05-19T17:54:01Z | - |
dc.date.copyright | 2017-10-03 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-04-18 | |
dc.identifier.citation | [1] National Institutes of Health (NIH).
http://www.nhlbi.nih.gov/health/health-topics/topics/af [2] Hamilton Cardiology Associate. https://www.hcahamilton.com/atrial-fibrillation [3] The Internet Stroke Center. http://www.strokecenter.org/patients/about-stroke/what-is-a-stroke [4] American Heart Association. http://www.heart.org/HEARTORG/Conditions/Arrhythmia/AboutArrhythmia/Atrial-Fibrillation-AF-or-AFib_UCM_302027_Article.jsp#.WMCR2m995ph [5] C. Gutierrez, D. Blanchard 'Atrial Fibrillation: Diagnosis and Treatment', in Am Fam Physician. 2011; 83 (1): 61–68. [6] F. Valentin, 'ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines: developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society', in Circulation. 2006; 114: e257–354. [7] Gladstone, D. J., Spring, M., Dorian, P., et al., “Atrial fibrillation in patients with cryptogenic stroke,” in New England Journal of Medicine, vol. 370, no. 26, pp. 2467-2477, 2014. [8] Phillips monitors http://www.philips.com.tw/healthcare/solutions/patient-monitoring/ [9] Medtronics http://www.medtronic.com/us-en/about/news/media-resources/media-kits/seeq-mobile-cardiac-telemetry-system.html [10] Zimetbaum, P. and Goldman, A, “Ambulatory Arrhythmia Monitoring Choosing the Right Device,” in Circulation, vol. 122, no. 16, pp. 1629-1636, 2010. [11] Seet, R. C., Friedman, P. A., and Rabinstein, A. A., “Prolonged rhythm monitoring for the detection of occult paroxysmal atrial fibrillation in ischemic stroke of unknown cause,” in Circulation, vol. 124, no. 4, pp. 477-486, 2011. [12] T. Tamura, Y. Maeda, M. Sekine and M. Yoshida. “Wearable Photoplethysmographic Sensors—Past and Present,' in Electronics, 2014. [13] Texas instrument http://www.ti.com/tool/tida-00011 [14] Chan PH, Wong CK, Poh YC, Pun L, Leung WWC, Wong YF, Wong MMY, Poh MZ, Chu DWS, Siu CW, “Diagnostic performance of a smartphone‐based photoplethysmographic application for atrial fibrillation screening in a primary care setting,” in J Am Heart Assoc. 2016 [15] Larburu, N., Lopetegi, T., and Romero, I., “Comparative study of algorithms for atrial fibrillation detection,” in IEEE Computing in Cardiology, pp. 265-268, Sep. 2011. [16] Tatento K, Glass L. “Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and RR intervals.” in Medical & Biological Engineering & Computing 2001; 39: 664-671. [17] Lee, J., Reyes, B. A., McManus, D. D., et al., “Atrial fibrillation detection using a smart phone,” in IEEE Annual International Conference on Engineering in Medicine and Biology Society (EMBC), pp. 1177-1180, Aug. 2012. [18] Jinseok, L., Reyes, B.A., McManus, D.D., and Mathias, O., “Atrial fibrillation detection using an iPhone 4S,” in IEEE Transactions on Biomedical Engineering, vol. 60, no. 1, pp. 203-206., Jan. 2013. [19] McManus, D. D., Lee, J., Maitas, O., et al., “A novel application for the detection of an irregular pulse using an iPhone 4S in patients with atrial fibrillation,” in Heart rhythm: the official journal of the Heart Rhythm Society, vol. 10, no. 3, pp. 315-319, Mar. 2013. [20] J. W. Chong, N. Esa, D. D. McManus and K. H. Chon, 'Arrhythmia Discrimination Using a Smart Phone,' in IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 3, pp. 815-824, May 2015. [21] Khan, M. and Miller, D. J., “Detection of paroxysmal atrial fibrillation in stroke/tia patients,” in Stroke research and treatment, 2013. [22] Ming-zher Poh, “Method and system for screening of atrial fibrillation” US patent, US 20150359443 A1, 12/17/2015. [23] Kardia mobile, AliveCor, Inc. https://www.alivecor.com/en [24] J. Pan and W. J. Tompkins, 'A Real-Time QRS Detection Algorithm,' in IEEE Transactions on Biomedical Engineering, vol. BME-32, no. 3, pp. 230-236, March 1985. [25] M. Di Rienzo, P. Castiglioni, and G. Parati,'Arterial blood pressure processing,' in Wiley Encyclopedia of Biomedical Engineering, Apr 2006. [26] D. J. Meredith, D. Clifton, P. Charlton, J. Brooks, C. W. Pugh and L. Tarassenko, “Photoplethysmographic derivation of respiratory rate: a review of relevant physiology” in Journal of Medical Engineering & Technology, 2012. [27] D. J. Jang, et al, “A Robust Method for Pulse Peak Determination in A Digital Volume Pulse Waveform with A Wandering Baseline,” in IEEE Trans. Biomed. Circuits Syst., vol.8, no.5, pp.729-737, 2014. [28] K. A. Reddy and V. J. Kumar. 'Motion Artifact Reduction in Photoplethysmographic Signals using Singular Value Decomposition,' in IEEE Instrumentation and Measurement Technology Conference, MAY, 2007. [29] K. L. Park, K. J. Lee, and H. R. Yoon, “Application of a wavelet adaptive filter to minimize distortion of the ST-segment,” in Med. Biol. Eng. Comput., vol. 36, pp. 581–586, 1998. [30] B Prathyusha, T Sreekanth Rao, D. Asha, “Extraction of Respiratory Rate From PPG Signals Using PCA and EMD” in International Journal of Research in Engineering and Technology, 2012. [31] P. Sun, Q. H. Wu, A. M. Weindling, et al, “An Improved Morphological Approach to Background Normalization of ECG Signals,” in IEEE Trans. Biomed. Eng. vol. 50, no. 1, pp. 117-121, 2003. [32] Shih, Frank Y, “Image processing and mathematical morphology: fundamentals and applications”, CRC Press, c2009, Chap 2. [33] Gernot Ernst, “Heart Rate Variability” Springer Science & Business Media, 2013, Chapter 4. [34] M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of biological signals,” Phys. Rev. E, vol. 71, pp. 1–17, 2005. [35] P. H. Tsai, C. Lin, J. Tsao, “Empirical mode decomposition based detrended sample entropy in electroencephalography for Alzheimer's disease”, in Journal of Neuroscience Methods, vol. 210, pp. 230-237, Sep. 2012. [36] W. A. Wallis and G. H. Moore, “A Significance Test for Time Series Analysis.” in Journal of the American Statistical Association, vol. 36, pp. 401- 409, 1946. [37] S. Dash, E. Raeder, S. Merchant and K. Chon, 'A statistical approach for accurate detection of atrial fibrillation and flutter,' in Proc, Annual Computers in Cardiology Conference (CinC), Sep. 2009, pp. 137-140. [38] Saeys, Y., Inza, I., and Larrañaga, P., “A review of feature selection techniques in bioinformatics,” in Bioinformatics, vol. 23, no. 19, pp. 2507-2517, Aug. 2007. [39] Salt Okunur, CSE802, Michigan state university. [40] C. P. Chan and S. Stolfo, “Toward scalable learning with non-uniform class and cost distributions,” in Proc. Int’l Conf. Knowledge Discovery and Data Mining, Aug. 1998, pp. 164-168. [41] Sun, Y., Wong, A. K., and Kamel, M. S., “Classification of imbalanced data: A review,”in International Journal of Pattern Recognition and Artificial Intelligence, vol. 23, no. 4, pp. 687-719, 2009. [42] C. C. Chang and C. J. Lin, “LIBSVM : a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, Vol.2, no. 27, pp. 1-27, 2011 [43] Shih-Ming Shan, Sung-Chun Tang, Pei-Wen Huang, Yu-Min Lin,Wei-Han Huang, Dar-Ming Lai, An-Yeu Wu, 'Reliable PPG-based Algorithm in Atrial Fibrillation Detection,' in Proc. IEEE BioMedical Circuits and Systems Conference, pp. 340-343, Shanghai, China, Oct. 2016. [44] Charles Darwin, “Origin of Species”, 1859. [45] John Holland, “Adaptation in Natural and Artificial Systems”, M.I.T.P., 1992. [46] Muhannad Harrim, CS479, Western Michigan University. [47] Matlab global optimization toolbox. https://www.mathworks.com/products/global-optimization.html | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7800 | - |
dc.description.abstract | 心房顫動是一種因為心臟內產生節律訊號的功能異常,是最常見的心臟節律異常疾病,由於心房顫動亦是提高中風風險約五倍的危險因素,所以自動偵測心房顫動是一個重要的醫學議題,對於包含一般民眾的篩檢,以及疑似心房顫動的病患之長期監測而言。目前最有效的診斷為心電圖,然而,各種心電圖儀器都有一些缺點,例如,需要一邊肢體至少一個電極、或費用較高。另一方面,使用光體積描述訊號的偵測方式值得深入探討,光體積描述訊號是一種由血氧機可取得,可反應心律之信號。相較於心電圖較為簡便,因此,更適合長期監測病人生理訊號,並偵測像心房顫動等具有陣發性之心臟節律異常疾病。
然而,本論文中提到的以光體積描述訊號偵測心房顫動之現有相關著作,除了資料測量環境較標準化外,缺點多為較少考慮基線飄移,只考量單一的訊號參數序列等前處理問題,與較無探討特徵抽取的多寡與選取以及學習等後處理問題。因此,本論文提出一個以光體積描述訊號偵測心房顫動的架構,並且探討實際臨床應用上快速篩檢與長期監測的不同需求。在臺大醫院提供的實際臨床生理訊號資料中,本論文提出之架構之接收者操作特徵曲線的曲線下面積,靈敏度,特異度與準確度分別達到98.0%,95.4%,97.9%與97.3%,該數據較現有的光體積描述訊號偵測心房顫動之相關著作良好,且跟心電圖的心房顫動偵測架構準確度接近,並且在快速篩檢的應用上,可以將量測時間縮短至30秒並只增加少量的誤差,這說明本論文提出之光體積描述訊號架構有潛力被使用在快速篩檢與長期監測心房顫動。 | zh_TW |
dc.description.abstract | Atrial Fibrillation (AF) is the most common and sustained type of cardiac arrhythmia. Since AF is a risk factor for stroke, automatic detection of AF is an important public health issue. Currently, the most useful and accurate tool for diagnosing AF is electrocardiography (EKG). However, EKG monitoring devices have their limitations or drawbacks. On the other hand, photoplethysmogram (PPG) is an alternative technique to obtain the heart rate information by pulse oximetry. Compared with EKG monitors, PPG devices are more convenient, making PPG promising in identifying paroxysmal AF.
The aim of this thesis is to investigate the potential of analyzing PPG waveforms to identify patients with AF. The state-of-the-art PPG-based AF detection researches in this thesis have some limitations. In addition, there is still performance gap between related works and EKG-based algorithm. Therefore, we propose a PPG-based AF detection framework, including pre-processing, feature extraction, and SVM classification with GA-based optimization. The receiver operating characteristic curve (ROC) and statistical measures were applied to evaluate model performances. Furthermore, two clinical scenarios, long-term monitoring and fast screening were considered in the experiments. Among 673 patients’ signals recorded in clinic environments, we achieve ROC area under curve, sensitivity, specificity and accuracy of 0.980, 0.954, 0.979 and 0.973, respectively. And the record time can be shorten to 30 seconds with little performance degradation in fast screening scenario. The result suggests that the PPG-based AF detection algorithm is a promising pre-screening tool for AF and helps doctors monitoring patient with arrhythmia. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:54:01Z (GMT). No. of bitstreams: 1 ntu-106-R03943004-1.pdf: 3569386 bytes, checksum: 3216e37750573f9119c2b3b7d70e0e8a (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 v
摘要 vii Abstract ix Contents xi List of Figures xiv List of Tables xviii Chapter 1 Introduction and Motivation 1 1.1 Overview of Atrial Fibrillation (AF) 1 1.1.1 Symptoms and Effects of AF 1 1.1.2 Current diagnosis of AF 3 1.2 Motivation and Contribution of PPG-based AF Detection 6 1.2.1 Introduction of PPG signal 7 1.2.2 Motivation and Contribution 7 1.3 Thesis Organization 10 Chapter 2 Related Works of AF Detection 12 2.1 AF Detection algorithms 12 2.1.1 EKG-based AF detection 12 2.1.2 PPG-based AF detection 14 2.2 AF Detection Application: Fast-screening and Long-term Monitoring 18 2.2.1 Long-term monitoring AF detection 18 2.2.2 Fast screening AF detection 19 2.3 Summary 21 Chapter 3 Pre-processing and Feature Extraction of PPG-based AF Detection 23 3.1 PPG-based AF Detection Framework 23 3.2 Data Collection 25 3.3 Pre-processing with Baseline Removal 27 3.3.1 Baseline wandering in PPG signals and its effects on AF detection 27 3.3.2 State-of-the-art baseline removal algorithms 28 3.3.3 Proposed MMF-based Pre-processing 32 3.4 Feature Extraction 35 3.4.1 Time domain and frequency domain features 35 3.4.2 Entropy domain features 37 3.5 Statistical Analysis 42 3.6 Summary 44 Chapter 4 Classification and Optimization of PPG-based AF Detection 45 4.1 Feature Selection 45 4.2 Classification 47 4.2.1 Classification and parameter tuning 47 4.2.2 Performance and summary of traditional solution 50 4.2.3 Limitations in traditional solution 51 4.3 Features and Classifier Parameters Optimization with GA-based Algorithms 52 4.3.1 Introduction to GA Algorithms 52 4.3.2 Optimization with GA Algorithms 54 4.4 Results of the PPG-based AF Detection Framework 55 4.4.1 Performance comparisons 55 4.4.2 Features selected in the proposed framework 57 4.4.3 Validation within ICU data 57 4.5 Summary 59 Chapter 5 Application of PPG-based AF Detection 60 5.1 Results of Application: Fast Screening and Long-term Monitoring 60 5.1.1 Fast screening 60 5.1.2 Long-term monitoring 62 5.2 Validation on MTK Device 66 5.3 Implementation of Graphic User Interface 67 5.4 Summary 70 Chapter 6 Conclusion and Future Works 71 6.1 Main Contribution 71 6.2 Future Works 72 Reference 74 | |
dc.language.iso | en | |
dc.title | 以光體積描述訊號偵測心房顫動之快速篩檢與長期監測應用 | zh_TW |
dc.title | Robust PPG-based Atrial Fibrillation Detection with Applications to Fast Screening and Long-term Monitoring | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊家驤,古博文,湯頌君,賴達明 | |
dc.subject.keyword | 心房顫動,光體積描述訊號,特徵抽取,基因演算法,快速篩檢, | zh_TW |
dc.subject.keyword | Atrial Fibrillation,Photoplethysmogram,Feature extraction,Genetic algorithm,Screening, | en |
dc.relation.page | 78 | |
dc.identifier.doi | 10.6342/NTU201700718 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-04-19 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 3.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。