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摘要 

心房顫動是一種因為心臟內產生節律訊號的功能異常，是最常見的心臟節律

異常疾病，由於心房顫動亦是提高中風風險約五倍的危險因素，所以自動偵測心

房顫動是一個重要的醫學議題，對於包含一般民眾的篩檢，以及疑似心房顫動的

病患之長期監測而言。目前最有效的診斷為心電圖，然而，各種心電圖儀器都有

一些缺點，例如，需要一邊肢體至少一個電極、或費用較高。另一方面，使用光

體積描述訊號的偵測方式值得深入探討，光體積描述訊號是一種由血氧機可取得，

可反應心律之信號。相較於心電圖較為簡便，因此，更適合長期監測病人生理訊

號，並偵測像心房顫動等具有陣發性之心臟節律異常疾病。 

然而，本論文中提到的以光體積描述訊號偵測心房顫動之現有相關著作，除

了資料測量環境較標準化外，缺點多為較少考慮基線飄移，只考量單一的訊號參

數序列等前處理問題，與較無探討特徵抽取的多寡與選取以及學習等後處理問題。

因此，本論文提出一個以光體積描述訊號偵測心房顫動的架構，並且探討實際臨

床應用上快速篩檢與長期監測的不同需求。在臺大醫院提供的實際臨床生理訊號

資料中，本論文提出之架構之接收者操作特徵曲線的曲線下面積，靈敏度，特異

度與準確度分別達到 98.0%，95.4%，97.9%與 97.3%，該數據較現有的光體積描

述訊號偵測心房顫動之相關著作良好，且跟心電圖的心房顫動偵測架構準確度接

近，並且在快速篩檢的應用上，可以將量測時間縮短至30秒並只增加少量的誤差，

這說明本論文提出之光體積描述訊號架構有潛力被使用在快速篩檢與長期監測心

房顫動。 

關鍵字：心房顫動、光體積描述訊號、特徵抽取、基因演算法、快速篩檢 
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Abstract 

Atrial Fibrillation (AF) is the most common and sustained type of cardiac 

arrhythmia. Since AF is a risk factor for stroke, automatic detection of AF is an 

important public health issue. Currently, the most useful and accurate tool for diagnosing 

AF is electrocardiography (EKG). However, EKG monitoring devices have their 

limitations or drawbacks. On the other hand, photoplethysmogram (PPG) is an 

alternative technique to obtain the heart rate information by pulse oximetry. Compared 

with EKG monitors, PPG devices are more convenient, making PPG promising in 

identifying paroxysmal AF. 

The aim of this thesis is to investigate the potential of analyzing PPG waveforms 

to identify patients with AF. The state-of-the-art PPG-based AF detection researches in 

this thesis have some limitations. In addition, there is still performance gap between 

related works and EKG-based algorithm. Therefore, we propose a PPG-based AF 

detection framework, including pre-processing, feature extraction, and SVM 

classification with GA-based optimization. The receiver operating characteristic curve 

(ROC) and statistical measures were applied to evaluate model performances. 

Furthermore, two clinical scenarios, long-term monitoring and fast screening were 

considered in the experiments. Among 673 patients’ signals recorded in clinic 
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environments, we achieve ROC area under curve, sensitivity, specificity and accuracy of 

0.980, 0.954, 0.979 and 0.973, respectively. And the record time can be shorten to 30 

seconds with little performance degradation in fast screening scenario. The result 

suggests that the PPG-based AF detection algorithm is a promising pre-screening tool for 

AF and helps doctors monitoring patient with arrhythmia. 

Keywords: Atrial Fibrillation, Photoplethysmogram, Feature extraction, Genetic 

algorithm, Screening 
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Chapter 1  

Introduction and Motivation 

1.1 Overview of Atrial Fibrillation (AF) 

Atrial Fibrillation (AF) is the most common type of arrhythmia, which is an 

abnormal heart rhythm characterized by rapid and irregular heart beating [1]. The 

symptoms and current diagnosis of AF will be introduced in this session. 

1.1.1 Symptoms and Effects of AF 

Atrial Fibrillation (AF) occurs if rapid, disorganized electrical signals cause the atria 

to contract irregularly. Normally, with each heartbeat, an electrical signal begins in 

sinoatrial (SA) node, travels through the right and left atria, making the atria to contract 

and pump blood into the ventricles. The electrical signal then moves down to 

atrioventricular (AV) node and allows the ventricles to finish filling with blood [2]. The 

normal electrical pathways and electrocardiogram (EKG) is shown in Fig. 1.1(a). 

However, for an individual with AF, the heart's electrical signals begin in another part of 

the atria or in the nearby pulmonary veins, instead of SA node. The signals travel 

throughout the atria in a disorganized way, causing chaotically beating atria and fast 

beating ventricles. The AF electrical pathways and EKG is shown in Fig. 1.1(b). 
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(a) (b) 

Fig. 1.1 Heart activity of (a) Normal sinus rhythm (NSR), and (b) Atrial fibrillation (AF) [2] 

The real danger of AF is the increased risk for stroke. AF is a risk factor for stroke, 

increasing risk about five-fold [3]. During AF, the atria contract chaotically and in a 

disorganized manner. Because the atria do not move blood properly, blood pools and 

gets stuck in the grooves of the heart. This may result in the formation of blood clots, 

which could get pumped to the brain and result in a stroke [2].  

The duration of the AF and underlying reasons for the condition help medical 

practitioners classify the type of AF problems. By the duration and characteristics of AF, 

patients can be classified into Paroxysmal AF, Persistent AF and Permanent AF [4]. 

Paroxysmal AF is when AF occurs only for a period of time and returns to a normal 

rhythm. Paroxysmal AF is very unpredictable and often can turn into a permanent form 

of atrial fibrillation. Persistent AF when AF lasts for longer than 48 hours. Permanent 

AF occurs when the condition lasts indefinitely and can no longer be controlled with 

medication. 
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1.1.2 Current diagnosis of AF 

The diagnosis of atrial fibrillation involves a determination of the cause of the 

arrhythmia, and classification of the arrhythmia. Diagnostic investigation of AF 

typically includes a complete history and physical examination, ECG, transthoracic 

echocardiogram, complete blood count, and serum thyroid stimulating hormone level 

[5]. The most common and useful test for diagnosing AF is electrocardiogram (EKG) 

[1]. As mentioned in Sec.1.1.1, AF occurs if rapid, disorganized electrical signals cause 

the atria to contract irregularly. Therefore, a typical EKG record shows the absence of P 

waves, with disorganized electrical activity in their place, and irregular R-R intervals due 

to irregular conduction of impulses to the ventricles [6]. The short-term EKG diagnosis 

may failed to detect paroxysmal AF. To detect more potential paroxysmal AF patients, 

long-term recording of EKG is necessary [7]. Paroxysmal AF can only be precisely 

detected with long-term monitoring devices. 

EKG can be recorded by several cardiac monitoring devices [1], such as the Holter 

monitoring, the patient-triggered event monitors, mobile cardiovascular telemetry, the 

patient monitors, and the implantable loop recorder as shown in Fig. 1.2. When one 

records EKG by a Holter monitor, there are electrodes on the chest and a recording 

device continuously records the EKG signals around the neck or waist. The usual 
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duration of the Holter monitoring are 24 to 48 hours [10] [11]. The patient-triggered 

event recorder records the EKG signals when it is activated by the patient. The main 

limitation is that the patient should activate the device when arrhythmia occurs. The 

mobile cardiovascular telemetry allows continuous recording and transmits the 

arrhythmic EKG signals for remote monitoring [8]. Event recorder and mobile 

cardiovascular telemetry’s usual duration is up to one month, [10] [11]. The implantable 

loop recorder is implanted device, which can be triggered automatically. Its usual 

duration is up to two years. Furthermore, implantable loop recorders can transmit the 

arrhythmic EKG signals to remote monitoring. However, it is costly and invasive 

compared to the other cardiac monitoring devices. The patient monitors are devices 

usually attached to the sickbed in intensive care units (ICU). They can monitor and 

record patients’ physiological signals as long as the devices are on. The main drawback 

is they are for hospitalized patients, therefore not portable and costly. To sum up, each 

EKG monitoring device has its limitations or drawbacks [10], such as short monitoring 

period (the Holter monitoring), requiring patients to trigger the recorder (the 

patient-triggered event recorder), high cost (mobile cardiovascular telemetry and patient 

monitors), being non portable (patient monitors) or invasive examination (the 

implantable loop recorder). Furthermore, all EKG monitors requires one lead on each 

arm. The pros and cons of these cardiac monitors are shown in Table 1-1. The above 



doi:10.6342/NTU201700718

     

 5    

  

shortages make EKG monitors inefficient in long-term monitoring to detect paroxysmal 

AF patients. Therefore, other tools for AF detection or diagnosis are desirable. 

 

  

(a) (b) 

  

(c) (d) 

 

 

(e)  

Fig. 1.2 (a) Holter monitoring. (b) Patient-triggered event monitor (c) Patient monitor (d) Implantable loop 

recorder (e) Mobile cardiovascular telemetry [1] [2] [8] [13] 
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Table 1-1 The pros and cons of cardiac monitoring devices [8] [10] [11] 

1.2 Motivation and Contribution of PPG-based 

AF Detection 

In Sec.1.1, it is mentioned that the most common and useful test for diagnosing AF 

is EKG. However, other tools for long-term monitoring are desirable. On the other hand, 

photoplethysmogram (PPG) is a technique to obtain the oxygen saturation of blood and 

heart rate by pulse oximetry. The introduction and motivation of utilizing PPG signals in 

AF detection will be illustrated in this session. 

Devices Advantages Disadvantages 

Holter monitoring  Continuous recording 

 Detect asymptomatic events 

 Short monitoring period 

Patient-triggered 

event recorder 

 Longer monitoring period 

 Correlation of symptoms and 

rhythm 

 Require patients participation  

 Does not detect asymptomatic 

events 

Patient monitors  Very long monitoring period 

 Continuous recording 

 Detect asymptomatic events 

 Data transmission for remote 

monitoring 

 Non portable 

 Costly 

Mobile cardiovascular 

telemetry 

 Longer monitoring period 

 Continuous recording 

 Detect asymptomatic events 

 Costly 

Implantable loop 

recorder 

 Very long monitoring period 

 Data transmission for remote 

monitoring 

 Costly 

 Invasive 
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1.2.1 Introduction of PPG signal 

PPG is an electro-optical technique of measuring the cardiovascular pulse wave in 

the human body [12]. It uses an invisible infra-red light (or red light) emitted into the 

tissue and the amount of the transmissive or reflective light detected by the photodiode. 

The measured pulse wave is mainly caused by the periodic pulsations of arterial blood 

volume, which in turn induces a change in the optical absorption measured. Hence, the 

periodicity of PPG results from the change of blood volume, which is according to the 

heart cycle. As a result, the PPG signal is synchronized with heartbeat. The example of a 

photoplethysmographic waveform is shown in Fig. 1.3. 

 

Fig. 1.3 Example of a photoplethysmographic waveform [12] 

1.2.2 Motivation and Contribution 

The detection of AF should be long-term for paroxysmal AF. The shortages of 
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EKG monitors make EKG inefficient in long-term monitoring to detect paroxysmal AF 

patients. Compared to EKG examination, PPG examination is more convenient and 

suitable for long-term monitoring. PPG can be measured from comfortable wearable 

devices such as fingertips, wrists, or earlobes as shown in Fig. 1.4. And PPG sensors 

require only one lead. The above advantages of PPG signals make PPG a potential tool 

to assist AF detection. 

As mentioned in Sec.1.2.1, PPG signal is synchronized with heartbeat along with 

EKG. Therefore, the characteristics of AF and other kind of arrhythmia may be shown 

on PPG signals, too. The PPG and EKG signals with normal sinus rhythm (NSR) and 

AF are recorded from NTUH ICU is shown in Fig. 1.5. From the figure, we find that AF 

affects PPG signals not only on interval, but also amplitude. Fig. 1.5 has shown the 

potential of PPG-based AF detection. 

  

(a) (b) 

Fig. 1.4 PPG devices of (a) Pulse oximetry, and (b) Wrist-type PPG sensor watch [13] 
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(a) 

 

(b) 

Fig. 1.5 PPG and EKG signals with (a) normal sinus rhythm (NSR), and (b) AF 

The aim of this thesis is to investigate the potential of analyzing PPG waveforms to 

identify patients with AF. Furthermore, two clinical scenarios, long-term monitoring and 

fast screening were considered in the thesis. The PPG-based AF detection framework 

can be used for long-term monitoring suspected AF patients. The aim of long-term 

monitoring is to precisely detect paroxysmal AF patient and find the duration of AF to 

assist doctors’ decision of treatment. On the other hand, the framework can be used as a 

screening tool to assist doctors. The aim of fast-screening is to detect whether an 

individual has AF with very short recording of signals. For example, screen out the 

potential AF individuals with only 1 minute of PPG signals. With the predicted outcome 

and the real diagnosis outcome, accuracy criteria can be calculated using the confusion 
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matrix, as shown in Fig. 1.6. The importance and need of fast screening and long-term 

monitoring are mentioned in [7] and [14], respectively. The details of related work will 

be illustrated in Chapter 2. And the concepts of fast screening and long-term monitoring 

are shown in Fig. 1.6 and Fig. 1.7, respectively. 

 

 

(a) (b) 

Fig. 1.6 (a) The concept of fast screening AF detection, and (b) Confusion matrix 

  

(a) (b) 

Fig. 1.7 (a) The concept of long-term monitoring AF detection, and (b) An example of long-term 

monitoring 

1.3 Thesis Organization 

This thesis is organized into six chapters and shown as follows: In Chapter 2, an 

overview of automatic AF detection algorithm is given. In addition, some related works 

of AF detection with EKG and PPG are also introduced. In Chapter 3 and Chapter 4, a 
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PPG-based AF detection framework is proposed. Preprocessing, feature extraction and 

the statistical analysis are illustrated in Chapter 3. Classification, optimization and the 

result are illustrated in Chapter 4. In Chapter 5, the applications to AF fast-screening 

and long-term monitoring is introduced. Validation on MTK devices and 

implementation of GUI are also included in Chapter 5. Last, we conclude this thesis and 

suggest some future directions in Chapter 6. 
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Chapter 2  

Related Works of AF Detection 

In this chapter, we will first introduce the state-of-the-art AF detection algorithms 

with EKG and PPG. Then we discuss the related works of clinic application of AF 

detection. Two clinical scenario, fast screening and long-term AF detection will be 

introduced. 

2.1 AF Detection algorithms 

2.1.1 EKG-based AF detection 

Automatic detection of AF is necessary for the long-term monitoring of patients 

who are suspected to have AF. State of art methods for EKG-based AF detection are 

mainly based on two different characteristics of EKG. The irregularity of RR intervals 

(RRI) and the atrial activity. As mentioned in Sec.1.1, first, during AF, the electrical 

signals travel throughout the atria in a rapid and disorganized way, causing cause 

chaotically beating atria and fast beating ventricles. As a result, the RR intervals (RRI) 

become more irregular and usually fast. Second, electrical atrial activity in atrial is 

disorganized. The atrial activity is characterized by the absence of the P-wave (PWA) and 
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special frequency properties (FSA) [15]. The existing algorithms in AF detection were 

not always evaluated with the same datasets and evaluation method. In a review study 

[15], several AF detection algorithms were selected and evaluated by using the same 

method and MITBIH Arrhythmia Database. The related works can be classified into RR 

intervals (RRI) based, atrial activity (AA) based and combination of RRI and AA 

The R wave is the most detectable and distinctive characteristic in EKG waveforms. 

Therefore, the RRI-based related work are the major part of the related researches. 

Related algorithms in [15] including using a simple variance feature, a statistical 

framework combination, Kolmogorov Smirnov test and regressive modeling. On the 

other hand, P wave is the most relevant characteristic to AF. Time domain AA analysis 

consists of detecting the P wave or finding the P wave absence. Frequency spectrum AA 

analysis requires cancellation of ventricular activity (QRS complex and T wave) and 

Fourier analysis of the remaining P wave. Some researches combine RRI and AA 

algorithms to enhance the performance. Among all the related works referenced in [15], 

[16] performs the lowest error rate and is the only framework with 90% performance in 

all accuracy criteria. It is worthwhile to mention that, in [16], only traditional standard 

density histograms and Kolmogorov Smirnov test were used to separate AF and non AF 

RRI histograms. 

In conclusion, the traditional RRI-based related work shows the best performance 
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in review studies. The reason may be that, in ambulatory conditions, the level of noise is 

high and therefore, the algorithms based on RRI are preferred as they are more robust 

against noise [15]. By contrast, AA-based algorithms perform poorly since P wave is hard 

to detect when the noise level increases. 

2.1.2 PPG-based AF detection 

Contrary to the amount of EKG-based AF detection related works, there are few 

PPG-based AF detection related works. The main PPG-based related works with open 

algorithms are [17], [18], [19] and [20]. These studies were published by the same 

group of authors, in 2012 EE conference, 2013 EE journal, 2013 medical journal, and 

2015 EE journal, respectively. In these studies, AF detection using the PPG signals 

measured from iPhone cameras is demonstrated, as shown in Fig. 2.1. In these studies, 

the measurement time for each subject is about 2 to 5 minutes. Data collection consists 

of two stages by cardioversion, which makes arrhythmia patients’ waveforms return to 

normal for a short period of time. The first stage is the pre-electrical cardioversion, and 

the PPG signals measured from AF patients are regarded as AF. The second stage is the 

post-electrical cardioversion, and the PPG signals measured in this stage are regarded as 

normal sinus rhythm (NSR).  
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Fig. 2.1 IPhone 4S prototype for AF detection [18] 

In the training phase, the EKG signals in MIT-BIH AF database and MIT-BIH 

NSR database are used to build the models. First, the parameter, the R-R interval (RR), 

is extracted from the EKG signals. Second, selected features, including normalized root 

mean square successive difference between adjacent data points (normalized RMSSD), 

Shannon entropy (ShEn), and sample entropy (SampEn) were extracted from RRI. The 

models were built by finding the threshold values of the features that provided the largest 

area under the receiver operating characteristic (ROC) curves in binary classification of 

AF and NSR. In the testing phase, the PPG signals measured by the studies were used to 

test their models. First, the parameter, the pulse-pulse interval (PPI), was extracted from 

the PPG signal. Second, the same features from the training phase, were extracted from 

interval series. Then, these features were used to test the models. The testing flow chart is 

shown in Fig. 2.2. They achieved high accuracy in prediction and proved that PPG-based 

AF detection is a promising tool. The comparisons of performances of the PPG-based 

AF detection are summarized in Table 2-1. 
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Fig. 2.2 The flow chart of testing [19] 

Table 2-1 The comparisons of performances in related works [17] [18] [19] [20] 

 Subjects Features Accuracy Sensitivity Specificity 

Jinseok et 

al.[17][18] 

25 Normalized RMSSD 98.44 97.63 99.61 

ShEn 89.94 74.61 100.0 

SampEn 95.52 92.58 99.80 

All 3 features 99.51 --- --- 

McManus et 

al.[19] 

76 Normalized RMSSD 95.33 98.18 91.50 

ShEn 90.97 97.50 82.18 

All 2 features 96.76 96.19 97.52 

Jo Woon Chong 

et al.[20] 

99 Normalized RMSSD 

ShEn 

TPR 

96.26 --- --- 

In [20], other types of arrhythmia have been considered, too. Subjects with AF, 

PVCs and PACs can be distinguished from each other. First, the arrhythmia waveforms 

are separated from NSR. Then, Poincare plot is used to separate AF, PVCs and PACs by 
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RRI’s turning pattern. This work further prove the potential of arrhythmia can be 

detected by PPG signals. Moreover, the framework can be implemented by 

cost-effective and standard devices such as smart phones. The claimed accuracy is high 

and the smart phone based implementation is impressive. However, these studies have 

the following limitations in experiment settings and algorithms, which may make them 

overestimate the accuracy of their framework: 

1. The sample size is small. And the experiment data are collected in standardized 

environments. Therefore, it is possible that real clinic interference like baseline or 

other diseases might influence the performances of the PPG-based AF detection 

[19]. 

2. The training and testing data are based on EKG and PPG, respectively. The 

experiment is based on the hypothesis that EKG’s R-R interval (RRI) is the same as 

PPG’s pulse interval (PPI). 

3. And NSR data are not all collected by NSR individual. The PPG signals measured 

after cardioversion are regarded as normal sinus rhythm (NSR). The experiment is 

based on the hypothesis that the signals after cardioversion are always the same as 

NSR individual. 

4. The framework lacks baseline preprocessing.  
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5. The framework only takes one of the PPG parameters, the pulse interval (PPI), into 

consideration. 

6. The framework lacks feature variety.  

7. The framework only apply basic classification algorithm, such as selecting a 

threshold for best accuracy. 

8. The framework cannot support fast screening and long-term monitoring. 

All these drawbacks will be improved in the proposed framework, which will be 

introduced in Chapter 3 and Chapter 4. 

2.2 AF Detection Application: Fast-screening 

and Long-term Monitoring 

2.2.1 Long-term monitoring AF detection 

Paroxysmal AF can be a risk factor for ischemic stroke or transient ischemic 

attack (TIA) patients because it is asymptomatic and undetected by traditional 

monitoring techniques. In [7], 572 patients with stroke or transient ischemic attack (TIA) 

are randomly separated into two different groups. One group of patients are monitored 

in long-term by 30-day event-triggered loop recorder. The other group of patient are 

monitored in short-term by conventional 24-hour Holter monitor. The number of 
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subjects detected AF by long-term monitoring is 5 times higher than by Holter monitor. 

In addition, when the duration of EKG monitoring is prolonged, the number of detected 

AF also increases, as shown in Fig. 2.3. As a result, the study concludes that long-term 

EKG monitoring significantly improves the AF detection compared with the short-term 

EKG monitoring. Many medical researches with similar conclusion were summarized in 

the review journal [21]. To sum up, long-term monitoring for AF detection achieve 

higher detect rate of AF and is necessary in detecting paroxysmal AF. 

 

Fig. 2.3 The percentage of detected AF when the duration of EKG monitoring is prolonged [7] 

2.2.2 Fast screening AF detection 

Diagnosing AF before ischemic stroke occurs is a priority for stroke prevention in 

AF. As mentioned in Sec.2.1.2, PPG–based AF detection is done using smartphone [17] 

[18] [19] [20], however, its ability to diagnose AF in real-world situations has not been 

adequately investigated until a recent research [14] published. In [14], the diagnostic 

performance of a standalone smartphone PPG application, Cardiio Rhythm, for AF 
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screening in primary care setting is investigated. Patients with hypertension, with 

diabetes mellitus, and/or aged ≥65 years were recruited. EKG was recorded by using the 

AliveCor heart monitor and AF detector [23]. And the waveforms were reviewed by 2 

cardiologists to provide the reference standard. 

PPG measurements were performed by using the Cardiio Rhythm smartphone 

application, of which algorithm was patented in [22]. Patients were instructed to place 

the tip of their index finger of either hand on the camera of the iPhone, as shown in Fig. 

2.4. Each PPG waveform recording lasted only 17.1 seconds and was classified 

automatically by the Cardiio Rhythm smartphone application as “Regular” or 

“Irregular”. Finally, the outcome was compared to the reference diagnosis by 2 

cardiologists reviewing the EKG signals. And the automatic classification result of 

AliveCor heart monitor was also compared. The performance of AliveCor heart monitor 

and Cardiio Rhythm smartphone application is compared in this work. The result is 

summarized in Table 2-2. 

Table 2-2 Summary of performance comparisons [14] 

 Sensitivity Specificity PPV NPV Record Time 

Cardiio Rhythm 

application 

92.9 % 97.7 % 53.1 % 99.8 % 17 Seconds 

AliveCor heart 

monitor 

71.4 % 99.4 % 76.9 % 99.2 % 30 Seconds 
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Fig. 2.4 Smartphone camera-based PPG measurements (A) The Cardiio Rhythm standalone smartphone 

application. (B) Example of measurement. (C) Examples of PPG recordings from normal sinus rhythm. (D) 

Examples of PPG recordings from an AF patient [14] 

As a result, the study concludes that The Cardiio Rhythm smartphone PPG 

application is able to detect AF with a high accuracy and comparable to the EKG-based 

AliveCor automated AF detector. Moreover, its application is as a screening tool, and 

not as a substitute for the standard EKG and doctor diagnosis. For a screening test, it is 

important to have a high sensitivity. The potential subjects should be further diagnosed 

by cardiologists with EKG recording. To sum up, fast screening for AF detection can 

assist cardiologists screen out the potential AF patients in very short period of recording. 

The PPG-based AF screening application is both cost and time effective and broad 

accessible. 

2.3 Summary 

In this chapter, some related works of AF detection algorithm with EKG and PPG 

are introduced. However, there are some limitations and drawbacks in the related works. 
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These drawbacks in algorithm will be improved in the proposed framework of this 

thesis. Long-term and fast screening AF detection medical studies are also introduced in 

this chapter. Since the consideration of the two clinical scenarios is of great importance 

when it comes to real clinical use. The two clinical scenarios, long-term monitoring and 

fast screening are considered as the intended application of the proposed framework. 
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Chapter 3  

Pre-processing and Feature 

Extraction of PPG-based AF 

Detection 

In this chapter, we will first introduced the flowchart of the proposed framework. 

And the signal processing part of the proposed framework, including pre-processing, 

baseline removal and feature extraction will introduced. The result of statistical analysis 

of features is shown in the end of this chapter. 

3.1 PPG-based AF Detection Framework 

The flowchart of related work [20] is shown in Fig. 3.1. As mentioned in Sec.2.1.2, 

there is still performance gap between related works and EKG-based algorithm. In 

addition, the PPG-based AF detection related works have the following limitations in 

algorithm: 

1. The framework lacks baseline preprocessing. 

2. The framework only takes one of the PPG parameters, the pulse-pulse interval 

(PPI), into consideration. However, in Sec.1.2.2, we find that AF affects PPG signals 
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not only interval, but also amplitude. 

3. The framework lacks feature variety. 

4. The framework only apply basic classification algorithm, such as selecting a 

threshold for best accuracy. 

5. The framework did not investigate different data length of input signals. Therefore, 

it cannot support long-term monitoring and fast screening. 

All these drawbacks will be improved in the proposed framework. Therefore, a 

PPG-based AF detection framework is proposed, the proposed and enhanced flowchart is 

shown in Fig. 3.2. The comparisons with related works are summarized in Table 3-1. The 

signal processing part of the proposed framework, including data collection, 

pre-processing, baseline removal and feature extraction will introduced in Chapter 3. 

While the learning part, including feature selection and classification will introduced in 

Chapter 4. The details of signal processing part will be illustrated successively in the 

following sections. 

 

Fig. 3.1 The flowchart of related work [20] 
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Fig. 3.2 The flowchart of the proposed framework 

Table 3-1 Comparisons of related work and proposed frameworks 

 

Jointly 

Analysis of 

Parameters 

Variety of 

Features 

Feature 

Selection 

Classification 

Algorithms 

Fast 

Screening 

Related 

work [20] 
No 3 No Basic No 

Proposed 

Framework 
Yes 56 Yes CS-SVM Yes 

3.2 Data Collection 

The experiment data are from the intensive care unit (ICU) of stroke in National 

Taiwan University Hospital. The data was collected from February, 2012 to Nov, 2015. 

The EKG and PPG signals were recorded synchronously by patient monitors with 

sampling frequency 512 Hz and 128 Hz, respectively. The total number of the collected 

patients in this experiment is 803. 
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First, the first ten-minute signals of each patient were adopted and sampled. 

Second, the segments without 40 to 150 pulses per minute were excluded because the 

ones with extreme abnormal heartrate are usually noisy or poor quality signals. Third, 

each minute EKG is individually labeled as AF, non-AF, or poor signal quality by Dr. 

Tang and Dr. Hung. The poor quality signals and few signals with both AF and non AF 

in ten minutes are removed. The label remained the same in ten minute. Finally, after 

EKG were labeled by doctors, the PPG signals were used for the input of our framework. 

Moreover, to compare the performance of both PPG and EKG examination, the 

EKG-based AF detection framework is applied in the same way. The valid number of the 

collected patients is 673. Among these 673 patients, 151 patients were labeled as AF. 

Therefore, the AF ratio in this database is 22.4%. 

Fast screening is considered in the framework. The fast screening experiment is 

conducted by manipulating the data length used in the data collection part. PPG signals 

are vulnerable to noise. Therefore, the screening record time should be shorter for 

convenience. However, most entropy domain features require enough data length to be 

calculated. In conclusion, the data length issue in fast screening is a trade-off between 

accuracy and convenience. To find the shortest data length, we experimented with 

different data length in the data collection. The experiment will be introduced in Sec.5.1. 

In this thesis, the data length is 2 minutes unless otherwise stated. 
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3.3 Pre-processing with Baseline Removal 

3.3.1 Baseline wandering in PPG signals and its effects on 

AF detection 

The purpose of pre-processing is to extract parameters from PPG. Most PPG–

based AF detection related works focus on using pulse-pulse interval (PPI), which is 

highly correlated to EKG’s RRI. However, we found that PPG’s AMP is also affected by 

AF. The new parameter, PPG’s AMP may provide different information other than RRI 

and increases the accuracy of classification. The idea of utilizing amplitude as a 

parameter is even rarely seen in EKG-based algorithms, as illustrated in Fig. 3.3. 

 

(a) 

 

(b) 

Fig. 3.3 Extracted parameters of (a) PPG, and (b) EKG 

Traditionally, the old-school Pan-Tompkins peak detection algorithm [24] and 

“derivative and threshold” algorithm [25] were used to find the peaks of EKG and PPG 

signals, respectively. Amplitude (AMP), and pulse-pulse interval (PPI) were extracted 

from PPG signals. And R-R intervals were extracted from EKG signals for comparison 
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as well. However, some ICU data and the data from MT2511 have baseline wandering, 

as shown in Fig. 3.4(a). If the traditional algorithm is applied for peak detection, the part 

with critical baseline wandering will fail, as shown in Fig. 3.4(b). Therefore, it is 

necessary to remove the effect of baseline to detect all peaks in PPG signals. 

 

(a) 

 

(b) 

Fig. 3.4 PPG waveforms and the effect of baseline 

3.3.2 State-of-the-art baseline removal algorithms 

Only PPI and AMP series are needed in AF detection framework, therefore, the 

original wave form is not key to the accuracy in this work. Since PPI and AMP series 

should be extracted, the desired baseline removal methods are limited in time domain 

de-noising. The state-of-the-art time domain baseline wandering removal algorithms [26] 

[27] are introduced:  

1. PCA-based algorithms: PCA-based algorithms usually require periodic signals [28] 
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[30]. Since AF physiological signals contain time variant noise and non-stationary 

trends, PCA-based algorithms are not suitable for this framework. 

2. Adaptive filters: Reference signals such as accelerator signals or respiratory signals 

are need for adaptive filtering de-noising [29]. Adaptive filters cannot be applied 

because the lack of reference signals. 

3. Band pass filters: Band pass filters are easy to design and frequently used. The PPG 

signals’ frequency range is usually 0.5Hz~4Hz [26]. However, it’s hard to find an 

appropriate frequency range to meet everyone’s physiological characteristic. And the 

FIR filter order can be high to meet the narrow band requirement. A band pass FIR filter 

with range from 0.5Hz to 4Hz and 40dB stopband attenuation is applied to the 

waveform in Fig. 3.4. The result is shown in Fig. 3.5. The peak can be detected, 

however, the main drawback is it is hard to find an appropriate frequency range to meet 

everyone’s characteristic and the latency due to high order the of FIR filter. 

 

Fig. 3.5 The waveform processed by the FIR filter 
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4. Ensemble Empirical Mode Decomposition (EEMD): EEMD is arguably the most 

famous and accurate way to find the baseline or trend in time variant signals [30] [35]. 

However, the drawback is the high complexity of EEMD. EEMD utilizes the sifting 

process to iteratively decompose the signal into a set of intrinsic mode functions (IMFs) 

and a residual shown in Fig. 3.6. In the demonstration, PPG is decomposed into 7 IMFs 

and 1 residual. EEMD is applied to the waveform in Fig. 3.4. The result is shown in Fig. 

3.7. The peak can be detected yet the main drawback is high complexity. 

 

Fig. 3.6 PPG de-trend using empirical mode decomposition 
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Fig. 3.7 The waveform processed by the EEMD 

5. Mathematical Morphological filters (MMF): MMF was usually used in 2D signal 

processing, such as finger-print processing. Morphological filters modify the shape of a 

signal by transforming it through its intersection with another object called the 

structuring element. The basic operators and concepts are shown in Fig. 3.8. 

𝐸𝑟𝑜𝑠𝑖𝑜𝑛: 𝐴 ⊖ 𝐵 (3.1.a) 

𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛: 𝐴 ⊕ 𝐵 (3.1.b) 

𝑂𝑝𝑒𝑛𝑖𝑛𝑔: 𝐴 ○ 𝐵 = (𝐴 ⊖ 𝐵) ⊕ 𝐵 (3.1.c) 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔: 𝐴 • 𝐵 = (𝐴 ⊕ 𝐵) ⊖ 𝐵 (3.1.d) 

 

Fig. 3.8 The basic operators of MMF [32] 
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In 1D signal processing, MMF can be applied to extract the upper envelope by 

closing and lower envelope (baseline) by opening. For example, in [31], MMF was 

applied to extract the baseline of EKG signals. The author applied opening and closing 

on EKG to cancel the baseline, Q wave and R wave pit, with a fixed length flat structure 

element in [31]. MMF is applied to the waveform in Fig. 3.4. The result is shown in Fig. 

3.9(a). The main drawback is the AMP series being deteriorated by MMF, as shown in 

Fig. 3.9(b). 

 

(a) 

 

(b) 

Fig. 3.9 Applying MMF to PPG signals 

3.3.3 Proposed MMF-based Pre-processing 

Since MMF has the advantage of being adaptive to the time variant signals, low 

complexity and ability to meet everyone’s physiological characteristic. The proposed 

pre-processing is based on the MMF, and able to overcome the problem that AMP series 

being deteriorated. The flowchart of the proposed pre-processing is shown in Fig. 3.10. 
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Fig. 3.10 The flowchart of the proposed pre-processing 

First, the PPG signals don’t have pits like EKG’s P wave and T wave. The 

opening operator is enough to find the baseline. And the structure element 𝑆𝐸 is a flat 

element adaptive to the average heartbeat of the PPG signals. The baseline is extracted 

to find the MMF filtered signal  𝑓𝑠𝑖𝑔𝑛𝑎𝑙𝑠. 

𝑓𝑏 = 𝑓 ○ 𝑆𝐸 ,  𝑓𝑠𝑖𝑔𝑛𝑎𝑙𝑠 = 𝑓 − 𝑓𝑏 (3.2) 

The MMF filtered signal can detect the peak index accurately, though deteriorate AMP. 

We can find the AMP on the original waveform 𝑓 with the index found in MMF 

filtered signal  𝑓𝑠𝑖𝑔𝑛𝑎𝑙𝑠. Furthermore, the definition of AMP is modified in the proposed 

pre-processing. The amplitude of baseline wandering signal can be different in the same 

pulse, as shown in Fig. 3.11(a). The problem is solved by defining AMP as the average 

of left and right side amplitude, as shown in Fig. 3.11(b). 

To compare the performance of EEMD and MMF, we applied these methods on a 

segment of 10 minute PPG signals. The EEMD is considered as the reference solution. 
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The performance can be evaluate by the extracted PPI and AMP series correlation to 

EEMD’s solution. And complexity is evaluated by the time for pre-processing. The 

equipments of computer are i-7-2600 CPU@ 3.40GHz and 14GB RAM. The result is 

shown in Table 3-2. 

. The result suggests that the proposed MMF based pre-processing can detect the 

AMP and PPI series reasonably accurate with low complexity. 

 

(a) 

 

(b) 

Fig. 3.11 (a) The amplitude of baseline wandering signal, and (b) Modified definition of AMP 

Table 3-2 Performance comparisons of pre-processing 

 EEMD Proposed Method 

Peak detected 973/973 973/973 

PPI 

correlation 
-- 0.999 

AMP 

correlation 
-- 0.998 

Time (100 

average) 
39.5 Secs 0.171 Secs 
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3.4 Feature Extraction 

Time domain, frequency domain and entropy domain features are extracted from 

the PPI and AMP series, not from raw data. Except common linear features, three 

entropy domain features, including multiscale entropy, Shannon entropy and turning 

point ratio, are applied. The details of each feature are illustrated as follows. 

3.4.1 Time domain and frequency domain features 

We used some of the most popular linear features in heart rate variety (HRV) 

researches, according to reference book [33]. Linear features includes time domain 

features and frequency domain features. Time-domain analysis measures the variation in 

heart rate over time or the intervals between successive normal cardiac cycles. Mean and 

standard deviation (SD) represent overall distribution. Root mean square successive 

difference (RMSSD) is based on interval differences: 

𝑅𝑀𝑆𝑆𝐷 = √
1

𝑁
∑(𝑥𝑖 − 𝑥𝑖−1)2

𝑁

𝑖=1

 (3.3) 

Utilizing both SD and RMSSD, the features contain both short-term and long-term 

variations. Furthermore, to balance the variation in mean value, normalized SD and 
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normalized RMSSD is calculated by dividing mean value. NN counts ratio (pNNR) is 

modified from the common HRV feature, pNN50. NN50 is the number of pairs of 

successive NNs that differ by more than 50 ms. pNN50 is the proportion of NN50 divided 

by total number of NNs and is thought to show cardiac parasympathetic activity. Because 

PPG-AMP series are not based on NNs or RRIs, the definition is modified. For example, 

pNNR(1.1) is the proportion of the number of pairs of successive NNs that has bigger ratio 

than 1.1 divided by total number of NNs. We choose the ratio thresholds as 1.1, 1.3 and 

1.5. 

𝑝𝑁𝑁𝑅11 =
𝑁 (

𝑅𝑅𝐼𝑖+1

𝑅𝑅𝐼𝑖
> 1.1)

𝑁
 (3.4) 

Frequency-domain analysis describes the periodic oscillations of the heart rate 

signal. The signals are decomposed at different frequencies and amplitudes, providing 

information of relative intensity in the rhythm of the heart. Related studies have found 

that frequency features are related to sympathetic and para-sympathetic nervous systems. 

We use FFT-based method and calculated the power in low-frequency (LF), power in 

high-frequency (HF) and LF/HF according to the definition in HRV researches, as 

shown in Fig. 3.12. 
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Fig. 3.12 HRV power spectrum over 24 hours [33] 

3.4.2 Entropy domain features 

1. Multiscale entropy (MSE) [34]: MSE is a non-linear method which has been widely 

used to evaluate the physiologic control mechanisms, such as heart failure and 

Alzheimer’s disease [35]. In the case of AF detection, AF subjects have more unstable 

heartbeat, and thus prone to present higher entropy value. There are two steps in MSE. 

First, the multiple coarse-grained time series are calculated by averaging a successively 

increasing number of data points in non-overlapping windows: 

𝑦𝜏 =
1

𝜏
∑ 𝑥𝑖

𝑗𝜏

𝑖=(𝑗−1)𝜏+1

, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤
𝑁

𝜏
, (3.5) 

where 𝑥𝑖 is the original time series, 𝑁 is the length of 𝑥𝑖, and 𝜏 is the scale factor. In 2 

minutes of PPG signal, we do not have enough pulses to calculate high scale MSE. 
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Therefore, 𝜏 is set to be 3 due to sample entropy’s data length dependency. This step 

generates different time series 𝑦𝜏. Second, the sample entropy (SampEn) for each series 

𝑦𝜏 is calculated as: 

𝑆𝑎𝑚𝑝𝐸𝑛 = − ln [
𝐵𝑚+1(𝑟)

𝐵𝑚(𝑟)
] , (3.6) 

where m is the pattern length and r is the similarity criterion. 𝐵𝑚(𝑟) is the number of 

two sets of simultaneous data points of length m have distance < 𝑟. And we set 𝑚=2 

and 𝑟 = 0.2 in the experiment. SampEn is the conditional probability that a dataset, 

having repeated itself within a tolerance 𝑟 for m points, will also repeat itself for  

𝑚 + 1 points. The more complex the signal is, the higher the entropy value will be. 

2. Shannon entropy (E_Shannon): Shannon entropy is a common entropy definition in 

information theory. Shannon’s measure of information is the probability of symbols to 

represent the amount of uncertainty or randomness of data. However, how to define 

parameter series into symbols can be flexible. Distribution of parameters differs a lot 

among patients, therefore, fixing thresholds between symbols is inappropriate. If we use 

fixed thresholds to calculate Shannon entropy, the box plot of AF and non-AF is shown 

in Fig. 3.13(a). The p-value is 0.18, which is larger than 0.05. The result suggest no 

statistical significance.  
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Therefore, we classify parameter series into a fixed number of groups, which is 

closer to Shannon entropy’s original definition. First, outliers, which had larger 

difference to mean value than three standard deviations, were removed. Second, we 

sorted rest data into equally spaced N bins, where N is the number of bins. Last, we 

calculate the probability 𝑝𝑖 of each bins and apply Shannon entropy: 

𝐸_𝑠ℎ𝑎𝑛𝑛𝑜𝑛 = − ∑ 𝑝𝑖 log(𝑝𝑖)

𝑁

𝑖=1

. (3.7) 

The optimal number of groups is data dependent, therefore, we applied N =4, 8, 16, 32 

and 64 for experiment. We find the modified Shannon entropy has better statistical 

significance with p value < 10-10. The boxplot is shown in Fig. 3.13(b). 

 

(a) 

 

(b) 

Fig. 3.13 The boxplot of (a) Shannon entropy calculated by fixed threshold, and (b) Modified Shannon 

entropy calculated by fixed group number 
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3. Turning point ratio (TPR): TPR is proposed based on the nonparametric “Runs Test” 

to measure the randomness in a time-series [36], and the idea is used in EKG-RRI [37]. 

Each beat in a RRI series is compared to its two nearest neighbors and is defined a 

turning point if it is greater or less than two neighbors. TPR is the ratio of turning point 

to total data length L. TPR is higher when series is more random. 

𝑇𝑃𝑅 =
𝑅𝑅𝐼𝑖|(𝑅𝑅𝐼𝑖 − 𝑅𝑅𝐼𝑖−1)(𝑅𝑅𝐼𝑖 − 𝑅𝑅𝐼𝑖+1) > 0

𝐿
. (3.8) 

And TPR is applied on PPG parameters in the same way. Furthermore, we also 

extracted the trend of series and then perform TPR to build the modified version of TPR 

(TPR2). The purpose is to find the turning point of the trend of series, which is different 

from the original definition. They both have good statistical significance with p value < 

10-10, as shown in Fig. 3.14. For each parameter, we extract all these features as 

candidate features. All candidate features are listed in Table 3-3 . 

  

(a) (b) 

Fig. 3.14 The boxplot of (a) TPR1, and (b) TPR2 
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Table 3-3 All candidate features 

Extracted Feature Physiological Meaning N 

Mean value (Mean) , Median value 

(Median) 
Average and median 2 

NN counts ratio (pNNR(ratio)) Ratio: 1.1, 

1.3, 1.5 
Successive ratio of parameter 3 

Standard deviation (SD), Normalized SD Long-term variability 3 

Root mean square successive difference 

(RMSSD), Normalized RMSSD 
Short-term variability 3 

Power in very low-frequency range 

0.003-0.04 Hz (VLF) 
Low frequency term 1 

Power in low-frequency range 0.04-0.15 

Hz, (LF) , Normalized LF 

Sympathetic nervous systems: 

tensioned 
2 

Power in high-frequency range 0.15-0.4 Hz, 

(HF) , Normalized HF 

Parasympathetic nervous systems: 

relaxed 
2 

Ratio of power in low-frequency range and 

power in high-frequency range (LF/HF) 

Balance between the sympathetic and 

para-sympathetic nervous systems 
1 

MSE up to scale3 –(MSE1,MSE2,MSE3, 

MSE1~3) 

Matching patterns within parameter 

series 
4 

Shannon entropy (E_Shannon(group)) 

Group: 4,8,16,32 and 64 

Overall distribution of parameter 

series 
5 

Turning point ratio (TPR) 
Turning points of neighboring 

parameter series 
2 
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3.5 Statistical Analysis 

ANOVA is adopted for the statistical analyses of all extracted features. ANOVA 

calculates p-values by comparing the relative values between the variation within 

groups and the variation among groups. A common threshold for significant statistical 

difference is 0.05. The p-values of the extracted features are shown in Fig. 3.15. The 

lateral axis indicates features name, the vertical axis indicates p-value, which is 

indicated by a blue star. The common threshold of p-value=0.05 is represented by red 

line. The blue star under the red line indicates significant statistical difference. Most 

features show significant statistical differences. Though some frequency domain 

features show p-value > 0.05. The result suggests the features extracted can be useful 

for AF detection.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 3.15 The p-values of features extracted from PPG (a) PPI - Time domain features, (b) AMP - 

Time domain features, (c) PPI - Frequency domain features, (d) AMP - Frequency domain features, (e) 

PPI - Entropy domain features, and (f) AMP - Entropy domain features 
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3.6 Summary 

In this chapter, the flowchart of the proposed framework and the processing part 

of the proposed framework, including pre-processing, baseline removal and feature 

extraction are introduced. The proposed pre-processing considering baseline can be 

applied to PPG signals with baseline wandering, making the framework more robust. 

And the statistical analysis of features shows significant statistical differences. As a 

result, the features extracted can be useful for AF detection. 

ANOVA is a widely used statistical method which decides whether the differences 

among groups are significant or not. However, through such a statistical method, we 

still cannot tell a feature should be selected in the framework and what are the more 

important features. Therefore, further learning methods are needed, which will be 

introduced in Chapter 4. 
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Chapter 4  

Classification and Optimization of 

PPG-based AF Detection 

In this chapter, we will introduced the classification part of the proposed 

framework, including feature selection, classification, and optimization, as shown in Fig. 

4.1. First, the traditional feature selection and classification will be introduced as the 

traditional solution. Then the optimization with GA algorithm is applied in the final 

proposed framework to enhance the performance even more. 

 

Fig. 4.1 Flow chart of classification part 

4.1 Feature Selection 

We have 28×2=56 candidate features in the proposed PPG based framework. 

However, the combination of the features to achieve decent performance is unknown. 
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Using all the extracted features into a classifier will result in some problems such as 

“curse of dimensionality” and over-fitting [38]. Performing feature selection has 

advantages of:  

1. Dimension reduction and avoiding over-fitting 

2. Finding the dominant features for AF detection 

3. Potential higher accuracy and less features in implementation 

Analysis of variance (ANOVA) can select the feature with p-value<0.05 in a 

common way. However, most features have p-value <0.05, making ANOVA inefficient 

in this case. The straightforward method is exhaustive search. However, if we want to 

select 𝑀 features as subset from 𝑁 features, exhaustive evaluation of feature subsets 

involves (𝑁
𝑀

) and 2𝑁 if M needs to be optimized, too. The amount of combination is 

too large to implement if the total feature number N is large. Therefore, we applied 

wrapper type feature selection to find the decent features combination. The famous 

sequential feature selection algorithm is chosen to find the best features heuristically 

[39]. Sequential feature selection including sequential forward selection (SFS) and 

sequential backward selection (SBS). The concept of feature selection and is shown in 

Fig. 4.2. The steps of SFS/SBS in selecting subset 𝑌0  from {𝑥1, … , 𝑥𝑁}  can be 
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simplified as Table 4-1. 

 In traditional solution, we applied sequential forward selection to find the feature 

subset to find the smallest feature subset with best score, defined by accuracy. 

 

 

(a) (b) 

Fig. 4.2 (a) Concept of feature selection, and (b) Concept of wrapper type feature selection [39] 

Table 4-1 Steps of sequential forward selection (SFS) and sequential backward selection (SBS) 

4.2 Classification 

4.2.1 Classification and parameter tuning 

There are different techniques for data classification, such as naive Bayes 

Steps 

S1. Start with the empty set: 𝑌0 = {∅} / 𝑌0 = {𝑥𝑖|𝑖 = 1, … , 𝑁}. 

S2. Select the next best / worst feature: 𝑥+ = arg max
𝑥∉𝑌𝑘

𝐽(𝑌𝑘 + 𝑥). 

S3. Update feature subset: 𝑌𝑘+1 = 𝑌𝑘 + / − 𝑥+; 𝑘 = 𝑘 + 1. 

S4. Go to 2, until stop criteria meets. 
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classifier, random forest, support vector machine (SVM) and neural network (NN). 

SVM is the classification technique adopted in our experiment considering the number 

and the properties of our samples. Linear kernel is adopted in SVM, because the 

performance of RBF kernel is not significantly better than linear kernel. The problem is 

more linear separable. The features extracted were linear scaled to avoid features with 

large value dominate the classification. And stratified 5-fold cross-validation is applied 

to avoid over-fitting in evaluation, as shown in Fig. 4.3. Among 673 subjects, only 151 

of them are AF and 522 of them are non-AF, and the AF class is more important in 

pre-screening. Therefore, we encountered class imbalance problem. The “class imbalance 

problem” occurs due to the ratio between majority and minority class in the dataset and 

leads to lower sensitivity. It is a very common problem in practice [40]. Furthermore, the 

minority class is more important in most cases. Therefore, a cost-sensitive method is 

adopted to deal with the class imbalance problem. 

 

Fig. 4.3 The flow of classification with 5-fold cross-validation 
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For a separable case, SVM finds the decision boundary by solving the following 

optimization problem: 

min
𝒘,𝑏,𝜉

(
||𝒘||

2

2
+ 𝐶 ∑ 𝜉𝑖

𝑙

𝑖=1

), (4.1) 

where 𝜉𝑖 > 0 corresponds to the slack variable for the 𝑖th sample;𝐶 > 0 is the cost of 

misclassifying the samples. The cost-sensitive SVM [41] is implemented by modifying 

the cost of the minority class (positive class label as 𝜉𝑖
+

) to 𝐶 ∗ 𝑊, where 𝑊 is the 

penalty weight > 1 and the cost of the majority class (negative class label as 𝜉𝑖
−

) to 𝐶. 

The optimization equation is modified as: 

min
𝒘,𝑏,𝜉

(
||𝒘||

2

2
+ 𝐶𝑊 ∑ 𝜉𝑖

+

𝑙+

𝑖=1

+ 𝐶 ∑ 𝜉𝑖
−

𝑙−

𝑖=1

) . (4.2) 

In traditional solution, we performed the grid search on cost (𝐶) and penalty weight 

(𝑊) to find the best combination for highest score, defined by sensitivity + specificity. 

The cost (𝐶) were searched on exponential order (2-4.5~ 25) and penalty weight (𝑊) were 

search on linear order (1~10). And we applied five-fold cross validation to avoid 

over-fitting in learning. The whole SVM procedure and grid search algorithm is 

supported by the famous machine learning toolbox LIBSVM [42]. 
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4.2.2 Performance and summary of traditional solution 

To evaluate and compare the performances of the proposed framework with 

related work, the accuracy, sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV), and receiver operating characteristic (ROC) curve of 

the frameworks are calculated based on the definitions of confusion matrix shown in Fig. 

4.4.  

The predicted class refers to the prediction results of the AF detection framework. 

The actual class refers to the AF or Non-AF labeled doctors. In our experiment, AF is 

defined as positive class and Non-AF is defined as negative class. Because, the aimed 

application is screening tool, the AF class (sensitivity) is more important. The result of 

grid search is shown in Fig. 4.5. The final SVM parameters cost (𝐶) and penalty weight 

(𝑊) are the ones with best score, defined as sensitivity + specificity. 

 

Fig. 4.4 Confusion matrix 
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Fig. 4.5 The result of grid search 

The traditional solution illustrated in Sec.4.1 and Sec.4.2 is the first solution of the 

AF detection framework. The comparisons with related works are shown in Table 4-2. 

The result suggests that framework with traditional solution has better performance than 

the related works. The result was accepted in IEEE BioCAS, 2016 [43]. 

Table 4-2 Performance comparisons in traditional solution and related work 

 Accuracy Sensitivity Specificity PPV NPV ROC_AUC 

BioCAS 

2016 
0.966 0.940 0.973 0.910 0.983 0.968 

Related 

work [20] 
0.911 0.848 0.929 0.776 0.955 0.938 

4.2.3 Limitations in traditional solution 

However, there are limitations in traditional solution. The feature selection 
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focuses on optimizing feature subset. The SVM parameter, cost (𝐶) and penalty weight 

(𝑊) are set to default in the process. On the other hand, the parameter tuning focus on 

optimizing SVM parameter, feature subset is fixed in the process. So traditional solution 

is not the best optimized feature subset and SVM parameters. The SVM outcome and be 

simplified as: 

𝑆𝑉𝑀(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑠𝑢𝑏𝑠𝑒𝑡, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑆𝑉𝑀). (4.3) 

The desired algorithm should be able to optimize feature subset and SVM parameter 

jointly, will be introduced in next session. 

4.3 Features and Classifier Parameters 

Optimization with GA-based Algorithms 

4.3.1 Introduction to GA Algorithms 

The Genetic Algorithm (GA) is originated from Darwin’s Survival of the fittest 

[44]. GA was first introduced by John Holland to investigate the usage of the Darwinian 

senses on computer programs [45]. The GA methodology is particularly suited for 

optimization, a problem solving technique in which good solutions are searched for in a 

large solution space. GA can reduce the search complexity by imitating generation 
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evolution in Darwinian way.  

The simple GA flow chart is shown in Fig. 4.6. In GA algorithms, all candidate 

solutions are regarded as the population in a generation. The structures of a solution are 

regarded as chromosome, which are often the input of a problem to be optimized. The 

chromosomes are often design in binary forms. The evaluation of candidate solutions is 

done using some measures of goodness or fitness, often are the problems to be 

optimized. After the evaluation, the solutions with poor outcomes are discarded, 

producing a new generation through mutation. The mutation is carried out by point 

mutation, cross over and the best solutions in the generation, as shown in Fig. 4.7.  

 

Fig. 4.6 The simple flow chart of GA algorithms 

   

(a) (b) (c) 

Fig. 4.7 The mutation methods 
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4.3.2 Optimization with GA Algorithms 

The limitations in traditional solution, mentioned in Sec.4.2.3, should be further 

improved by GA algorithms and optimization. The problem to be optimized is equation 

(4.3): 𝑆𝑉𝑀(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑠𝑢𝑏𝑠𝑒𝑡, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑆𝑉𝑀).  The structure is composed of 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑠𝑢𝑏𝑠𝑒𝑡 , and 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑆𝑉𝑀 , both to be optimized jointly to solve the 

limitation in traditional solution. The solution structure, regarded as the chromosome in 

GA algorithms is shown in Fig. 4.8. The cost (𝐶) and penalty weight (𝑊) are transferred 

to binary form in their range of grid search in Sec.4.2.1. And feature subsets are 

transformed into the feature mask. The selected features are 1 on the index of the feature 

mask, while the discarded features are 0 on the index of feature mask.  

The most important accuracy criteria are sensitivity and ROC’s area under curve 

(ROC_AUC). The optimized is the solution with best score. The evaluation of fitness is 

defined by:  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 1.5 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 +
𝑃𝑃𝑉 + 𝑁𝑃𝑉 + 𝑅𝑂𝐶_𝐴𝑈𝐶

. (4.4) 

The proposed GA-based selection with cost-sensitive SVM (CS-SVM) can further 

improved traditional solution. The algorithm combines feature selection, CS-SVM and 

evaluation by 5-fold cross-validation, shown in Fig. 4.9. 
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Fig. 4.8 The chromosomes, solution structure 

 

Fig. 4.9 The proposed GA-based optimization with cost-sensitive SVM 

4.4 Results of the PPG-based AF Detection 

Framework 

4.4.1 Performance comparisons 

To compare our proposed framework with the related works [20], a basis for 

comparison is needed. Our experiment data are collected in the ICU, the real clinical 

scenario. We applied their proposed feature RMSSD, Shannon entropy and TPR of PPI 

on our database to repeat their performance. The traditional solution is also compared to 

the final framework. The performance comparisons are shown in Table 4-3. And the 

ROC curve comparisons is shown in Fig. 4.10. 

The result suggests that the proposed AF detection framework has better 
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performance than the related works and traditional solution. The sensitivity achieves 

95.4%, and the ROC area under curve achieves 98.0%. The accuracy is comparable 

EKG-based algorithms and proves that the PPG-based AF detection algorithm is a 

promising pre-screening tool to help doctors monitoring patient with AF. 

 

Fig. 4.10 ROC curve comparisons 

Table 4-3 The performance comparisons 

 Accuracy Sensitivity Specificity PPV NPV ROC_AUC 

Proposed 

Framework 
0.973 0.954 0.979 0.929 0.987 0.980 

BioCAS, 

‘2016 
0.966 0.940 0.973 0.910 0.983 0.968 

J.W.Chong

,etc. [20] 
0.911 0.848 0.929 0.776 0.955 0.938 
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4.4.2 Features selected in the proposed framework 

Furthermore, the feature selected in the GA-based optimization is shown in Table 

4-4. This result suggests that utilizing amplitude in the analysis helps the performance of 

AF detection, since some of the AMP features are selected over PPI features. The number 

of features are reduced to 16, which is far less than the number of features with p-value 

<0.05 in the statistical analysis. The blue and bold ones are the features proposed or 

modified in Sec.3.4 feature extraction. This result further proves the importance of the 

features proposed or modified in the framework and the importance of feature variety. 

Table 4-4 The feature selected in the proposed framework 

4.4.3 Validation within ICU data 

The classification accuracy is optimized to find the best SVM parameters and 

feature subset. Using all data in the optimization is for finding the best model for 

framework. However, a part of data should be the test set for an even more reliable 

Category Selected Features 

PPG-PPI 
Mean, SD, pNNR(1.1), pNNR(1.5), LF, LH Ratio, E_Shannon(4), MSE1, 

TPR1. 

PPG-AMP 
Mean, SD, Normalized RMSSD, Normalized HF, LH Ratio, 

E_Shannon(8), TPR1, TPR2. 
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accuracy. The concept of test set is shown in Fig. 4.11. 

 

Fig. 4.11 The concept of over-fitting test 

In the experiment, the last received data (2015/6-2015/11), are used as test set. 

This part of data are not including in the optimization. Instead, the data are for testing 

by the model created by the rest part of data. The test set accuracy compared to the 

optimized accuracy is shown in Table 4-5. The test set accuracy still shows comparable 

performance to the optimized accuracy. The validation result further proves the 

reliability of the proposed framework. 

Table 4-5 Test set accuracy compared to the optimized accuracy 

 Accuracy Sensitivity Specificity PPV NPV 

Optimized 

Accuracy 
0.973 0.954 0.979 0.929 0.987 

Test Set 

Accuracy 
0.951 0.941 0.955 0.889 0.977 
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4.5 Summary 

In this chapter, we introduced the classification part of the proposed framework, 

including feature selection, classification, and optimization. The comparison results 

suggest that the proposed PPG-based AF detection framework has better performance 

than related works and the traditional solution. The algorithmic parts are introduced in 

Chapter 3 and Chapter 4. On the other hand, the applications of AF detection are shown 

in the next chapter. The result and performance of the aimed applications of this thesis, 

including fast screening and long-term monitoring will be introduced. 
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Chapter 5  

Application of PPG-based AF 

Detection 

In this chapter, we will introduce the application of AF detection. The aimed 

applications of this thesis include two clinical scenarios, long-term monitoring and fast 

screening. The PPG-based AF detection framework can be used as a pre-screening tool 

to assist doctors. On the other hand, the framework can be used for long-term 

monitoring suspected AF patients. The concepts of fast screening and long-term 

monitoring have been mentioned in Sec.1.2.2, and shown in Fig. 1.6 and Fig. 1.7.  

5.1 Results of Application: Fast Screening and 

Long-term Monitoring 

5.1.1 Fast screening 

The framework can be used as a screening tool to assist doctors. The aim of 

fast-screening is to detect whether an individual has AF with very short recording of 

signals. The fast screening experiment is conducted by manipulating the data length 

used in the data collection part. As mentioned in Sec.3.2, the data length issue in fast 
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screening is a trade-off between accuracy and convenience. To find the shortest data 

length, we experimented with different data length in the data collection, including 10 

secs, 20 secs, 30 secs, 40 secs, 1 min, 2 mins, 3 mins, 5 mins and 10 mins. The proposed 

AF detection framework’s performances on different data length are shown in Table 5-1.  

Table 5-1 Performances on different data length 

 Accuracy Sensitivity Specificity PPV NPV ROC_AUC 

10 Sec 0.873 0.893 0.868 0.662 0.965 0.906 

20 Sec 0.946 0.927 0.952 0.848 0.978 0.959 

30 Sec 0.966 0.920 0.979 0.926 0.977 0.968 

40 Sec 0.969 0.927 0.981 0.933 0.979 0.970 

1 Min 0.973 0.940 0.983 0.940 0.983 0.971 

2 Min 0.973 0.954 0.979 0.929 0.987 0.980 

3 Min 0.978 0.954 0.985 0.947 0.987 0.977 

5 Min 0.981 0.947 0.990 0.966 0.985 0.977 

10 Min 0.981 0.954 0.989 0.960 0.987 0.981 
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According to Table 5-1, the data length of fast-screening is chosen as 30 Secs. 

Because the PPVs in under 20 Secs version perform poorly and show a large 

performance drop. The fast screening version framework suffer only a little 

performance degrade compared to the more accurate versions. The most important 

accuracy criteria are sensitivity and ROC’s area under curve (ROC_AUC). Judging 

mainly from these 2 criteria, the performances become stable when data length > 2mins. 

In conclusion, the version with data length > 2mins can be regarded as accurate model 

and applied on long-term monitoring. 

5.1.2 Long-term monitoring 

The aim of long-term monitoring is to precisely detect paroxysmal AF patient and 

find the duration of AF to assist doctors’ decision of treatment. According to Table 5-1, 

the 2 mins version framework is applied. The framework can be applied on long-term 

monitoring by make a decision of AF or non AF every 2 mins. The decision of the 

proposed PPG-based framework are compared to the EKG-based framework. To 

evaluate the similarity between two prediction results of the frameworks, the simple 

matching coefficient (SMC) is calculated: 

𝑆𝑀𝐶 = (𝑀11 + 𝑀00) ÷ (𝑀11 + 𝑀10 + 𝑀01 + 𝑀00), (5.1) 
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where 𝑀11, 𝑀10, 𝑀01, and 𝑀00 refer to the number of decisions made by PPG-based 

framework and EKG-based framework are (1,1), (1,0), (0,1), and (0,0), respectively. 

And the ratio of the whole recording are also calculated. 

𝐴𝐹 𝑟𝑎𝑡𝑖𝑜 =
AF

𝐴𝐹+𝑁𝐴𝐹
. (5.2) 

The case studies of some patients with long-term data (6-8 hours) are as follows: 

1. ID=2956355, the result is shown in Fig. 5.1(a) and Fig. 5.1(b). The result suggests 

that the patient is Non-AF. And the SMC between EKG-based framework and 

PPG-based framework is 100%. 

2. ID=3234202, the result is shown in Fig. 5.1(c) and Fig. 5.1(d). The result suggests 

that the patient is persistent AF. And The SMC between EKG-based framework and 

PPG-based framework is 100%. 

3. ID=5302261, the result is shown in Fig. 5.1(e) and Fig. 5.1(f). The result suggests 

that the patient is paroxysmal AF. And The SMC between EKG-based framework and 

PPG-based framework is 89.88%. 

4. ID=5650186, the result is shown in Fig. 5.1(g) and Fig. 5.1(h). The result suggests 

that the patient is paroxysmal AF. And The SMC between EKG-based framework and 

PPG-based framework is 97.08%.  
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(a) 

(b) 

 

(c) 

(d) 
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(e) 

(f) 

 

(g) 

(h) 

Fig. 5.1 Long-term monitoring result of patient (a) ID=2956355 PPG, (b) ID=2956355 EKG, (c) 

ID=3234202 PPG, (d) ID=3234202 EKG, (e) ID=5302261 PPG, (f) ID=5302261 EKG, (g) ID=5650186 

PPG, and (h) ID=5650186 EKG 
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The above case studies suggest that the proposed PPG-based framework can 

detect paroxysmal AF and find the AF ratio of a long-term recording. Furthermore, the 

SMC between EKG-based framework and PPG-based framework is reasonably high to 

suggest that PPG signals are potential to replace EKG signals in long-term AF 

detection. 

5.2 Validation on MTK Device 

The results shown are based on ICU data so far. However, the validation with 

different data base is needed to further strengthen the reliability of the framework. And 

the implementation of GUI can make the framework easy accessed by medical staffs. 

The project is supported by: National Taiwan University (NTU) - National Taiwan 

University Hospital (NTUH) - MediaTek Innovative Medical Electronics Research 

Center. The trial experiment with MTK devices is important to preview the potential of 

using MTK devices to record PPG signals for AF detection. 

The data received from MTK watch MT2511, as shown in Fig. 5.2, are used for 

validation in the framework. MT2511 is a prototype wrist-type PPG and EKG sensor. 20 

patients in ICU were tested, whose EKG and PPG signals were recorded by MT2511 for 

2 minutes. The signals were transferred to the android phone with Bluetooth and 

processed in the PC and the amplitude units were scaled into database scales. The 
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signals were then processed by the proposed PPG-based AF detection framework. The 

experiment can validate the utility of the framework on different sensors and databases 

and further prove the possibility of AF detection on wearable devices. 

 

Fig. 5.2 Adopted from MediaTek. The flow chart of applied MT2511 in validation 

Among the 24 patients, 11 of them were found to be AF by doctors while 

recording. These PPG signals were processed by the proposed AF detection framework 

(accurate model) and 30 secs version framework (fast screening). The result is shown in 

Table 5-2. Though the database is not large in the trial experiment, the result suggests 

that the framework is able to be applied on MT2511. And the result shows the potential 

of AF detection base on PPG signals with wearable devices. 

Table 5-2 The trial validation on MTK devices, MT2511 

 Accuracy Sensitivity Specificity 

Fast screening (30 secs) 24/24=100% 11/11=100% 13/13=100% 

Accurate model (2 mins) 24/24=100% 11/11=100% 13/13=100% 

5.3 Implementation of Graphic User Interface 

The framework has potential to be applied to real clinical uses. For the 



doi:10.6342/NTU201700718

     

 68    

  

convenience of medical staffs, the implementation of graphic user interface (GUI) is 

implemented. The interface of the GUI is shown in Fig. 5.3. The GUI can support both 

application scenarios, long-term monitoring and fast screening. First, the user should 

select the file of raw data recorded by the medical devices. Second, the application 

scenario should be chosen. Third, the parameters, including sampling frequency and the 

monitoring range from long-term monitoring should be given. Final, the GUI will run 

program and generate the report by clicking start button. 

 

Fig. 5.3 The interface of GUI 
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In long-term monitoring scenario, the generated report shows the AF and Non-AF 

of the whole recording and the AF ratio, as shown in Fig. 5.4. In fast scenario, the 

generated report shows the waveforms, the decision of AF and Non-AF, and the features 

extracted during the recording, as shown in Fig. 5.5. 

 

Fig. 5.4 Report of long-term monitoring 

 

Fig. 5.5 Report of fast-screening 



doi:10.6342/NTU201700718

     

 70    

  

5.4 Summary 

In this chapter, we introduced the application of AF detection. The results of the 

aimed applications of this thesis including fast screening and long-term monitoring are 

shown. The recording time can be shortened to 30 seconds in fast screening scenario 

with little performance degradation. And the proposed PPG-based AF detection 

framework is able to detect paroxysmal AF in long-term monitoring and highly 

correlated to EKG-based framework. Furthermore, the validation with different data 

base strengthens the reliability of the framework. Finally, the graphic user interface 

(GUI) is implemented for the convenience of medical staffs. 
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Chapter 6  

Conclusion and Future Works 

6.1 Main Contribution 

In this thesis, the PPG-based AF detection framework is proposed. The drawbacks 

and limitations of related works are improved in the proposed framework. The 

framework can be applied to PPG signals with baseline wandering by improved 

pre-processing. The framework jointly analyzes all the PPG features extracted from 

AMP and PPI. And more features are considered and even improved in the feature 

extraction part. Most features show significant statistical difference (p < 0.05) in AF 

detection. In the classification part, the GA-based feature selection with CS-SVM is 

applied to jointly consider feature selection and the class imbalance problem. Among 

673 patients’ signals recorded in clinic environments, we achieve ROC area under curve, 

sensitivity, specificity and accuracy of 0.980, 0.954, 0.979 and 0.973, respectively in 

cross-validation. The performances are higher than those of the PPG related works And 

the accuracy and reliability is validated with MTK devices and within ICU database. 

Furthermore, two clinical scenarios, long-term monitoring and fast screening were 

considered in the experiments. The record time can be shortened to 30 seconds with 
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little performance degradation in fast screening scenario. And some case studies of 

long-term monitoring are shown, which are highly correlated with the outcome of the 

EKG-based framework. The result suggests that the PPG-based AF detection algorithm 

is a promising pre-screening tool for AF and helps doctors monitoring patient with AF.  

Partial work of this thesis was submitted and accepted in EE conference, IEEE 

BioCAS, 2016 and medical journal, Nature Scientific Reports, 2017. 

6.2 Future Works 

The main limitation of the proposed framework is that it is based on PPG’s 

parameters, such as PPI and AMP. However, the p-wave in EKG is also a key to 

diagnose AF. Some patients with AF shows more regular parameters comparing to 

others, however, the p-wave is absent in EKG. These kinds of patients are 

misclassified as Non-AF in the framework. The p-wave cannot be shown on PPG, 

which is the main drawback of PPG-based AF detection and other kinds of heart-beat 

based AF detection. 

In the future, we expect our proposed framework can be integrated with the 

existing devices in ICU and MTK devices, carrying out the online monitoring of AF 

detection. Furthermore, we plan to build the processing unit in the local and upload 
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the information onto the cloud server, reducing overhead of data uploading 

bandwidth, providing the latest information of patients for medical staff and family 

members. The online system can screen out potential AF patients and alert the 

medical staff in advance.  

Although the inspection of physiological signals can never replace medical 

imaging system and doctors’ diagnosis, it provides a feasible and quantitative way to 

monitor without any side effect. To our ambitiousness, the optimal goal is to 

implement a highly accurate analysis system, which is as accurate as EKG devices. 

Additionally, this framework is not able to investigate other kinds of arrhythmia 

because the lack of corresponding data. The ability to diagnosis other kinds of 

arrhythmia such as PVC and PAV is also a good future direction of the thesis.  
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