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Abstract

Atrial Fibrillation (AF) is the most common and sustained type of cardiac
arrhythmia. Since AF is a risk factor for stroke, automatic detection of AF is an
important public health issue. Currently, the most useful and accurate tool for diagnosing
AF is electrocardiography (EKG). However, EKG monitoring devices have their
limitations or drawbacks. On the other hand, photoplethysmogram (PPG) is an
alternative technique to obtain the heart rate information by pulse oximetry. Compared
with EKG monitors, PPG devices are more convenient, making PPG promising in

identifying paroxysmal AF.

The aim of this thesis is to investigate the potential of analyzing PPG waveforms
to identify patients with AF. The state-of-the-art PPG-based AF detection researches in
this thesis have some limitations. In addition, there is still performance gap between
related works and EKG-based algorithm. Therefore, we propose a PPG-based AF
detection framework, including pre-processing, feature extraction, and SVM
classification with GA-based optimization. The receiver operating characteristic curve
(ROC) and statistical measures were applied to evaluate model performances.
Furthermore, two clinical scenarios, long-term monitoring and fast screening were

considered in the experiments. Among 673 patients’ signals recorded in clinic
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environments, we achieve ROC area under curve, sensitivity, specificity and accuracy of
0.980, 0.954, 0.979 and 0.973, respectively. And the record time can be shorten to 30
seconds with little performance degradation in fast screening scenario. The result
suggests that the PPG-based AF detection algorithm is a promising pre-screening tool for

AF and helps doctors monitoring patient with arrhythmia.

Keywords: Atrial Fibrillation, Photoplethysmogram, Feature extraction, Genetic

algorithm, Screening
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Chapter 1
Introduction and Motivation

1.1 Overview of Atrial Fibrillation (AF)

Atrial Fibrillation (AF) is the most common type of arrhythmia, which is an
abnormal heart rhythm characterized by rapid and irregular heart beating [1]. The

symptoms and current diagnosis of AF will be introduced in this session.

1.1.1  Symptoms and Effects of AF

Atrial Fibrillation (AF) occurs if rapid, disorganized electrical signals cause the atria
to contract irregularly. Normally, with each heartbeat, an electrical signal begins in
sinoatrial (SA) node, travels through the right and left atria, making the atria to contract
and pump blood into the ventricles. The electrical signal then moves down to
atrioventricular (AV) node and allows the ventricles to finish filling with blood [2]. The
normal electrical pathways and electrocardiogram (EKG) is shown in Fig. 1.1(a).
However, for an individual with AF, the heart's electrical signals begin in another part of
the atria or in the nearby pulmonary veins, instead of SA node. The signals travel
throughout the atria in a disorganized way, causing chaotically beating atria and fast

beating ventricles. The AF electrical pathways and EKG is shown in Fig. 1.1(b).
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Normal sinus rhythm Atrial fibrillation

Normal
electrical
pathways

Abnormal
electrical
pathways

Atrioventricular
(AV) node

Y B S S A A AAAAN A
@ (b)
Fig. 1.1 Heart activity of (a) Normal sinus rhythm (NSR), and (b) Atrial fibrillation (AF) [2]
The real danger of AF is the increased risk for stroke. AF is a risk factor for stroke,
increasing risk about five-fold [3]. During AF, the atria contract chaotically and in a
disorganized manner. Because the atria do not move blood properly, blood pools and

gets stuck in the grooves of the heart. This may result in the formation of blood clots,

which could get pumped to the brain and result in a stroke [2].

The duration of the AF and underlying reasons for the condition help medical
practitioners classify the type of AF problems. By the duration and characteristics of AF,
patients can be classified into Paroxysmal AF, Persistent AF and Permanent AF [4].
Paroxysmal AF is when AF occurs only for a period of time and returns to a normal
rhythm. Paroxysmal AF is very unpredictable and often can turn into a permanent form
of atrial fibrillation. Persistent AF when AF lasts for longer than 48 hours. Permanent
AF occurs when the condition lasts indefinitely and can no longer be controlled with

medication.
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1.1.2  Current diagnosis of AF

The diagnosis of atrial fibrillation involves a determination of the cause of the
arrhythmia, and classification of the arrhythmia. Diagnostic investigation of AF
typically includes a complete history and physical examination, ECG, transthoracic
echocardiogram, complete blood count, and serum thyroid stimulating hormone level
[5]. The most common and useful test for diagnosing AF is electrocardiogram (EKG)
[1]. As mentioned in Sec.1.1.1, AF occurs if rapid, disorganized electrical signals cause
the atria to contract irregularly. Therefore, a typical EKG record shows the absence of P
waves, with disorganized electrical activity in their place, and irregular R-R intervals due
to irregular conduction of impulses to the ventricles [6]. The short-term EKG diagnosis
may failed to detect paroxysmal AF. To detect more potential paroxysmal AF patients,
long-term recording of EKG is necessary [7]. Paroxysmal AF can only be precisely

detected with long-term monitoring devices.

EKG can be recorded by several cardiac monitoring devices [1], such as the Holter
monitoring, the patient-triggered event monitors, mobile cardiovascular telemetry, the
patient monitors, and the implantable loop recorder as shown in Fig. 1.2. When one
records EKG by a Holter monitor, there are electrodes on the chest and a recording

device continuously records the EKG signals around the neck or waist. The usual
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duration of the Holter monitoring are 24 to 48 hours [10] [11]. The patient-triggered
event recorder records the EKG signals when it is activated by the patient. The main
limitation is that the patient should activate the device when arrhythmia occurs. The
mobile cardiovascular telemetry allows continuous recording and transmits the
arrhythmic EKG signals for remote monitoring [8]. Event recorder and mobile
cardiovascular telemetry’s usual duration is up to one month, [10] [11]. The implantable
loop recorder is implanted device, which can be triggered automatically. Its usual
duration is up to two years. Furthermore, implantable loop recorders can transmit the
arrhythmic EKG signals to remote monitoring. However, it is costly and invasive
compared to the other cardiac monitoring devices. The patient monitors are devices
usually attached to the sickbed in intensive care units (ICU). They can monitor and
record patients’ physiological signals as long as the devices are on. The main drawback
is they are for hospitalized patients, therefore not portable and costly. To sum up, each
EKG monitoring device has its limitations or drawbacks [10], such as short monitoring
period (the Holter monitoring), requiring patients to trigger the recorder (the
patient-triggered event recorder), high cost (mobile cardiovascular telemetry and patient
monitors), being non portable (patient monitors) or invasive examination (the
implantable loop recorder). Furthermore, all EKG monitors requires one lead on each

arm. The pros and cons of these cardiac monitors are shown in Table 1-1. The above
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shortages make EKG monitors inefficient in long-term monitoring to detect paroxysmal

AF patients. Therefore, other tools for AF detection or diagnosis are desirable.

Electrodes Heart

J‘/\\,\fl v/\w"\,wj {

ECG reading showing heart rhythm

Holter monitor

(€)

Fig. 1.2 (a) Holter monitoring. (b) Patient-triggered event monitor (c) Patient monitor (d) Implantable loop

recorder (e) Mobile cardiovascular telemetry [1] [2] [8] [13]
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Table 1-1 The pros and cons of cardiac monitoring devices [8] [10] [11]

Devices

Advantages

Disadvantages

Holter monitoring

® Continuous recording
® Detect asymptomatic events

® Short monitoring period

Patient-triggered

event recorder

® |onger monitoring period
® Correlation of symptoms and
rhythm

® Require patients participation
® Does not detect asymptomatic

events

Patient monitors

® \ery long monitoring period
@ Continuous recording

@ Detect asymptomatic events
® Data transmission for remote

monitoring

® Non portable
® Costly

Mobile cardiovascular
telemetry

® |_onger monitoring period
@ Continuous recording
® Detect asymptomatic events

® Costly

Implantable loop
recorder

® \ery long monitoring period
® Data transmission for remote

monitoring

® Costly

® [nvasive

1.2 Motivation and Contribution of PPG-based
AF Detection

In Sec.1.1, it is mentioned that the most common and useful test for diagnosing AF
is EKG. However, other tools for long-term monitoring are desirable. On the other hand,
photoplethysmogram (PPG) is a technique to obtain the oxygen saturation of blood and

heart rate by pulse oximetry. The introduction and motivation of utilizing PPG signals in

AF detection will be illustrated in this session.
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1.2.1

Introduction of PPG signal

PPG is an electro-optical technique of measuring the cardiovascular pulse wave in

the human body [12]. It uses an invisible infra-red light (or red light) emitted into the

tissue and the amount of the transmissive or reflective light detected by the photodiode.

The measured pulse wave is mainly caused by the periodic pulsations of arterial blood

volume, which in turn induces a change in the optical absorption measured. Hence, the

periodicity of PPG results from the change of blood volume, which is according to the

heart cycle. As a result, the PPG signal is synchronized with heartbeat. The example of a

photoplethysmographic waveform is shown in Fig. 1.3.

Q Light source

Other
tissues

Venous blood

Non-pulsatile
component of
artery blood

Pulsatile
component of
artery blood

PPG waveform

Diastolic
phase

Systolic ¥y
phase 1

-— e Ve

Time

AC:

Pulsatile part
DC:

Steady part

>

T]me

Fig. 1.3 Example of a photoplethysmographic waveform [12]

1.2.2

Motivation and Contribution

The detection of AF should be long-term for paroxysmal AF. The shortages of

7
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EKG monitors make EKG inefficient in long-term monitoring to detect paroxysmal AF
patients. Compared to EKG examination, PPG examination is more convenient and
suitable for long-term monitoring. PPG can be measured from comfortable wearable
devices such as fingertips, wrists, or earlobes as shown in Fig. 1.4. And PPG sensors
require only one lead. The above advantages of PPG signals make PPG a potential tool

to assist AF detection.

As mentioned in Sec.1.2.1, PPG signal is synchronized with heartbeat along with
EKG. Therefore, the characteristics of AF and other kind of arrhythmia may be shown
on PPG signals, too. The PPG and EKG signals with normal sinus rhythm (NSR) and
AF are recorded from NTUH ICU is shown in Fig. 1.5. From the figure, we find that AF
affects PPG signals not only on interval, but also amplitude. Fig. 1.5 has shown the

potential of PPG-based AF detection.

(@) (b)

Fig. 1.4 PPG devices of (a) Pulse oximetry, and (b) Wrist-type PPG sensor watch [13]
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Fig. 1.5 PPG and EKG signals with (a) normal sinus rhythm (NSR), and (b) AF

The aim of this thesis is to investigate the potential of analyzing PPG waveforms to
identify patients with AF. Furthermore, two clinical scenarios, long-term monitoring and
fast screening were considered in the thesis. The PPG-based AF detection framework
can be used for long-term monitoring suspected AF patients. The aim of long-term
monitoring is to precisely detect paroxysmal AF patient and find the duration of AF to
assist doctors’ decision of treatment. On the other hand, the framework can be used as a
screening tool to assist doctors. The aim of fast-screening is to detect whether an
individual has AF with very short recording of signals. For example, screen out the
potential AF individuals with only 1 minute of PPG signals. With the predicted outcome

and the real diagnosis outcome, accuracy criteria can be calculated using the confusion
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matrix, as shown in Fig. 1.6. The importance and need of fast screening and long-term
monitoring are mentioned in [7] and [14], respectively. The details of related work will
be illustrated in Chapter 2. And the concepts of fast screening and long-term monitoring

are shown in Fig. 1.6 and Fig. 1.7, respectively.

Actual
Class (AF)
Proposed | @A AF + -
: True False TP/(TP+FP)
AF Detectlon Non + positive positive =PPV
AI Orithm ’ Predicted (TP) (FP) = Precision
9 AF 8
ass False True TN/TN+FN)
(AF) - negative negative =NPV
(FN) (TN)
TPHTP+FN) | TN/(TN+FP) | (TP+TN)/total
= Sensitivity = Specificity = Accuracy
= Recall
(@) (b)

Fig. 1.6 (a) The concept of fast screening AF detection, and (b) Confusion matrix

PPG, AF ratio = 42.50 %

Long-term »% of AF

Monitoring

Non-AF [E—————). -t

! T
0 50 100 150 200 250 300 350 400 450 500
Time (min)

(@) (b)

Fig. 1.7 (a) The concept of long-term monitoring AF detection, and (b) An example of long-term

monitoring

1.3 Thesis Organization

This thesis is organized into six chapters and shown as follows: In Chapter 2, an
overview of automatic AF detection algorithm is given. In addition, some related works

of AF detection with EKG and PPG are also introduced. In Chapter 3 and Chapter 4, a

10
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PPG-based AF detection framework is proposed. Preprocessing, feature extraction and
the statistical analysis are illustrated in Chapter 3. Classification, optimization and the
result are illustrated in Chapter 4. In Chapter 5, the applications to AF fast-screening
and long-term monitoring is introduced. Validation on MTK devices and
implementation of GUI are also included in Chapter 5. Last, we conclude this thesis and

suggest some future directions in Chapter 6.

11
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Chapter 2
Related Works of AF Detection

In this chapter, we will first introduce the state-of-the-art AF detection algorithms
with EKG and PPG. Then we discuss the related works of clinic application of AF
detection. Two clinical scenario, fast screening and long-term AF detection will be

introduced.

2.1 AF Detection algorithms
2.1.1 EKG-based AF detection

Automatic detection of AF is necessary for the long-term monitoring of patients
who are suspected to have AF. State of art methods for EKG-based AF detection are
mainly based on two different characteristics of EKG. The irregularity of RR intervals
(RRI) and the atrial activity. As mentioned in Sec.1.1, first, during AF, the electrical
signals travel throughout the atria in a rapid and disorganized way, ecadsiig—cause
chaotically beating atria and fast beating ventricles. As a result, the RR intervals (RRI)
become more irregular and usually fast. Second, electrical atrial activity in atrial is

disorganized. The atrial activity is characterized by the absence of the P-wave (PWA) and

12
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special frequency properties (FSA) [15]. The existing algorithms in AF detection were
not always evaluated with the same datasets and evaluation method. In a review study
[15], several AF detection algorithms were selected and evaluated by using the same
method and MITBIH Arrhythmia Database. The related works can be classified into RR

intervals (RRI) based, atrial activity (AA) based and combination of RRI and AA

The R wave is the most detectable and distinctive characteristic in EKG waveforms.
Therefore, the RRI-based related work are the major part of the related researches.
Related algorithms in [15] including using a simple variance feature, a statistical
framework combination, Kolmogorov Smirnov test and regressive modeling. On the
other hand, P wave is the most relevant characteristic to AF. Time domain AA analysis
consists of detecting the P wave or finding the P wave absence. Frequency spectrum AA
analysis requires cancellation of ventricular activity (QRS complex and T wave) and
Fourier analysis of the remaining P wave. Some researches combine RRI and AA
algorithms to enhance the performance. Among all the related works referenced in [15],
[16] performs the lowest error rate and is the only framework with 90% performance in
all accuracy criteria. It is worthwhile to mention that, in [16], only traditional standard
density histograms and Kolmogorov Smirnov test were used to separate AF and non AF

RRI histograms.

In conclusion, the traditional RRI-based related work shows the best performance

13
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in review studies. The reason may be that, in ambulatory conditions, the level of noise is
high and therefore, the algorithms based on RRI are preferred as they are more robust
against noise [15]. By contrast, AA-based algorithms perform poorly since P wave is hard

to detect when the noise level increases.

2.1.2 PPG-based AF detection

Contrary to the amount of EKG-based AF detection related works, there are few
PPG-based AF detection related works. The main PPG-based related works with open
algorithms are [17], [18], [19] and [20]. These studies were published by the same
group of authors, in 2012 EE conference, 2013 EE journal, 2013 medical journal, and
2015 EE journal, respectively. In these studies, AF detection using the PPG signals
measured from iPhone cameras is demonstrated, as shown in Fig. 2.1. In these studies,
the measurement time for each subject is about 2 to 5 minutes. Data collection consists
of two stages by cardioversion, which makes arrhythmia patients’ waveforms return to
normal for a short period of time. The first stage is the pre-electrical cardioversion, and
the PPG signals measured from AF patients are regarded as AF. The second stage is the
post-electrical cardioversion, and the PPG signals measured in this stage are regarded as

normal sinus rhythm (NSR).

14
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Fig. 2.1 IPhone 4S prototype for AF detection [18]

In the training phase, the EKG signals in MIT-BIH AF database and MIT-BIH
NSR database are used to build the models. First, the parameter, the R-R interval (RR),
is extracted from the EKG signals. Second, selected features, including normalized root
mean square successive difference between adjacent data points (normalized RMSSD),
Shannon entropy (ShEn), and sample entropy (SampEn) were extracted from RRI. The
models were built by finding the threshold values of the features that provided the largest
area under the receiver operating characteristic (ROC) curves in binary classification of
AF and NSR. In the testing phase, the PPG signals measured by the studies were used to
test their models. First, the parameter, the pulse-pulse interval (PPI), was extracted from
the PPG signal. Second, the same features from the training phase, were extracted from
interval series. Then, these features were used to test the models. The testing flow chart is
shown in Fig. 2.2. They achieved high accuracy in prediction and proved that PPG-based
AF detection is a promising tool. The comparisons of performances of the PPG-based

AF detection are summarized in Table 2-1.

15
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Fig. 2.2 The flow chart of testing [19]

Table 2-1 The comparisons of performances in related works [17] [18] [19] [20]

Subjects Features Accuracy | Sensitivity | Specificity

Jinseok et 25 Normalized RMSSD | 98.44 97.63 99.61
al.[17][18] ShEn 89.94 74.61 100.0

SampEn 95.52 92.58 99.80

All 3 features 99.51
McManus et 76 Normalized RMSSD | 95.33 98.18 91.50
al.[19] ShEn 90.97 97.50 82.18

All 2 features 96.76 96.19 97.52
Jo Woon Chong 99 Normalized RMSSD | 96.26
et al.[20] ShEn

TPR

In [20], other types of arrhythmia have been considered, too. Subjects with AF,

PVCs and PACs can be distinguished from each other. First, the arrhythmia waveforms

are separated from NSR. Then, Poincare plot is used to separate AF, PVCs and PACs by

16
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RRI’s turning pattern. This work further prove the potential of arrhythmia can be
detected by PPG signals. Moreover, the framework can be implemented by
cost-effective and standard devices such as smart phones. The claimed accuracy is high
and the smart phone based implementation is impressive. However, these studies have
the following limitations in experiment settings and algorithms, which may make them

overestimate the accuracy of their framework:

1. The sample size is small. And the experiment data are collected in standardized
environments. Therefore, it is possible that real clinic interference like baseline or
other diseases might influence the performances of the PPG-based AF detection

[19].

2. The training and testing data are based on EKG and PPG, respectively. The
experiment is based on the hypothesis that EKG’s R-R interval (RRI) is the same as

PPG’s pulse interval (PPI).

3. And NSR data are not all collected by NSR individual. The PPG signals measured
after cardioversion are regarded as normal sinus rhythm (NSR). The experiment is
based on the hypothesis that the signals after cardioversion are always the same as

NSR individual.

4. The framework lacks baseline preprocessing.

17
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5. The framework only takes one of the PPG parameters, the pulse interval (PPI), into

consideration.
6. The framework lacks feature variety.

7. The framework only apply basic classification algorithm, such as selecting a

threshold for best accuracy.

8. The framework cannot support fast screening and long-term monitoring.

All these drawbacks will be improved in the proposed framework, which will be

introduced in Chapter 3 and Chapter 4.

2.2 AF Detection Application: Fast-screening
and Long-term Monitoring

2.2.1  Long-term monitoring AF detection

Paroxysmal AF can be a risk factor for ischemic stroke or transient ischemic
attack (TIA) patients because it is asymptomatic and undetected by traditional
monitoring techniques. In [7], 572 patients with stroke or transient ischemic attack (T1A)
are randomly separated into two different groups. One group of patients are monitored
in long-term by 30-day event-triggered loop recorder. The other group of patient are

monitored in short-term by conventional 24-hour Holter monitor. The number of

18
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subjects detected AF by long-term monitoring is 5 times higher than by Holter monitor.
In addition, when the duration of EKG monitoring is prolonged, the number of detected
AF also increases, as shown in Fig. 2.3. As a result, the study concludes that long-term
EKG monitoring significantly improves the AF detection compared with the short-term
EKG monitoring. Many medical researches with similar conclusion were summarized in
the review journal [21]. To sum up, long-term monitoring for AF detection achieve

higher detect rate of AF and is necessary in detecting paroxysmal AF.

~N
S
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&
1

116 12.3

Detected (%)
S

[
1
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2.2

o

T T T T T
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Duration of ECG Monitoring

Fig. 2.3 The percentage of detected AF when the duration of EKG monitoring is prolonged [7]

2.2.2  Fast screening AF detection

Diagnosing AF before ischemic stroke occurs is a priority for stroke prevention in
AF. As mentioned in Sec.2.1.2, PPG-based AF detection is done using smartphone [17]
[18] [19] [20], however, its ability to diagnose AF in real-world situations has not been
adequately investigated until a recent research [14] published. In [14], the diagnostic

performance of a standalone smartphone PPG application, Cardiio Rhythm, for AF
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screening in primary care setting is investigated. Patients with hypertension, with
diabetes mellitus, and/or aged >65 years were recruited. EKG was recorded by using the
AliveCor heart monitor and AF detector [23]. And the waveforms were reviewed by 2

cardiologists to provide the reference standard.

PPG measurements were performed by using the Cardiio Rhythm smartphone
application, of which algorithm was patented in [22]. Patients were instructed to place
the tip of their index finger of either hand on the camera of the iPhone, as shown in Fig.
2.4. Each PPG waveform recording lasted only 17.1 seconds and was classified
automatically by the Cardiio Rhythm smartphone application as “Regular” or
“Irregular”. Finally, the outcome was compared to the reference diagnosis by 2
cardiologists reviewing the EKG signals. And the automatic classification result of
AliveCor heart monitor was also compared. The performance of AliveCor heart monitor
and Cardiio Rhythm smartphone application is compared in this work. The result is

summarized in Table 2-2.

Table 2-2 Summary of performance comparisons [14]

Sensitivity | Specificity | PPV NPV Record Time
Cardiio Rhythm 92.9 % 97.7 % 53.1 % 99.8 % 17 Seconds
application
AliveCor heart 71.4 % 99.4 % 76.9 % 99.2 % 30 Seconds
monitor
20
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Fig. 2.4 Smartphone camera-based PPG measurements (A) The Cardiio Rhythm standalone smartphone
application. (B) Example of measurement. (C) Examples of PPG recordings from normal sinus rhythm. (D)
Examples of PPG recordings from an AF patient [14]

As a result, the study concludes that The Cardiio Rhythm smartphone PPG
application is able to detect AF with a high accuracy and comparable to the EKG-based
AliveCor automated AF detector. Moreover, its application is as a screening tool, and
not as a substitute for the standard EKG and doctor diagnosis. For a screening test, it is
important to have a high sensitivity. The potential subjects should be further diagnosed
by cardiologists with EKG recording. To sum up, fast screening for AF detection can
assist cardiologists screen out the potential AF patients in very short period of recording.
The PPG-based AF screening application is both cost and time effective and broad

accessible.

2.3 Summary

In this chapter, some related works of AF detection algorithm with EKG and PPG

are introduced. However, there are some limitations and drawbacks in the related works.
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These drawbacks in algorithm will be improved in the proposed framework of this
thesis. Long-term and fast screening AF detection medical studies are also introduced in
this chapter. Since the consideration of the two clinical scenarios is of great importance
when it comes to real clinical use. The two clinical scenarios, long-term monitoring and

fast screening are considered as the intended application of the proposed framework.
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Chapter 3
Pre-processing and Feature

Extraction of PPG-based AF
Detection

In this chapter, we will first introduced the flowchart of the proposed framework.
And the signal processing part of the proposed framework, including pre-processing,
baseline removal and feature extraction will introduced. The result of statistical analysis

of features is shown in the end of this chapter.

3.1 PPG-based AF Detection Framework

The flowchart of related work [20] is shown in Fig. 3.1. As mentioned in Sec.2.1.2,
there is still performance gap between related works and EKG-based algorithm. In
addition, the PPG-based AF detection related works have the following limitations in

algorithm:
1. The framework lacks baseline preprocessing.

2. The framework only takes one of the PPG parameters, the pulse-pulse interval

(PPI), into consideration. However, in Sec.1.2.2, we find that AF affects PPG signals
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not only interval, but also amplitude.

3. The framework lacks feature variety.

4. The framework only apply basic classification algorithm, such as selecting a

threshold for best accuracy.

5. The framework did not investigate different data length of input signals. Therefore,

it cannot support long-term monitoring and fast screening.

All these drawbacks will be improved in the proposed framework. Therefore, a
PPG-based AF detection framework is proposed, the proposed and enhanced flowchart is
shown in Fig. 3.2. The comparisons with related works are summarized in Table 3-1. The
signal processing part of the proposed framework, including data collection,
pre-processing, baseline removal and feature extraction will introduced in Chapter 3.
While the learning part, including feature selection and classification will introduced in
Chapter 4. The details of signal processing part will be illustrated successively in the

following sections.

Data Pre- Feature Statistical Analysis
Collection processing Extraction and/or Classification

PPG Raw Pulse-pulse RMSSD/mean AVOVA
data interval Shannon entropy  Find feature’s
PPI Turning Ratio thresholds for

best Accuracy

Fig. 3.1 The flowchart of related work [20]
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Fig. 3.2 The flowchart of the proposed framework

Performance
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Table 3-1 Comparisons of related work and proposed frameworks

Jointly ] o
. Variety of Feature Classification Fast
Analysis of . . .
Features Selection Algorithms Screening
Parameters
Related )
No No Basic No
work [20]
Proposed
Yes Yes CS-SVM Yes
Framework

3.2 Data Collection

The experiment data are from the intensive care unit (ICU) of stroke in National

Taiwan University Hospital. The data was collected from February, 2012 to Nov, 2015.

The EKG and PPG signals were recorded synchronously by patient monitors with

sampling frequency 512 Hz and 128 Hz, respectively. The total number of the collected

patients in this experiment is 803.
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First, the first ten-minute signals of each patient were adopted and sampled.
Second, the segments without 40 to 150 pulses per minute were excluded because the
ones with extreme abnormal heartrate are usually noisy or poor quality signals. Third,
each minute EKG is individually labeled as AF, non-AF, or poor signal quality by Dr.
Tang and Dr. Hung. The poor quality signals and few signals with both AF and non AF
in ten minutes are removed. The label remained the same in ten minute. Finally, after
EKG were labeled by doctors, the PPG signals were used for the input of our framework.
Moreover, to compare the performance of both PPG and EKG examination, the
EKG-based AF detection framework is applied in the same way. The valid number of the
collected patients is 673. Among these 673 patients, 151 patients were labeled as AF.

Therefore, the AF ratio in this database is 22.4%.

Fast screening is considered in the framework. The fast screening experiment is
conducted by manipulating the data length used in the data collection part. PPG signals
are vulnerable to noise. Therefore, the screening record time should be shorter for
convenience. However, most entropy domain features require enough data length to be
calculated. In conclusion, the data length issue in fast screening is a trade-off between
accuracy and convenience. To find the shortest data length, we experimented with
different data length in the data collection. The experiment will be introduced in Sec.5.1.

In this thesis, the data length is 2 minutes unless otherwise stated.
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3.3 Pre-processing with Baseline Removal

3.3.1 Baseline wandering in PPG signals and its effects on

AF detection

The purpose of pre-processing is to extract parameters from PPG. Most PPG—
based AF detection related works focus on using pulse-pulse interval (PPI), which is
highly correlated to EKG’s RRI. However, we found that PPG’s AMP is also affected by
AF. The new parameter, PPG’s AMP may provide different information other than RRI
and increases the accuracy of classification. The idea of utilizing amplitude as a

parameter is even rarely seen in EKG-based algorithms, as illustrated in Fig. 3.3.

________ PR - RRI s
------ PPG waveform EKG waveform
(@) (b)

Fig. 3.3 Extracted parameters of (a) PPG, and (b) EKG

Traditionally, the old-school Pan-Tompkins peak detection algorithm [24] and
“derivative and threshold” algorithm [25] were used to find the peaks of EKG and PPG
signals, respectively. Amplitude (AMP), and pulse-pulse interval (PPI) were extracted

from PPG signals. And R-R intervals were extracted from EKG signals for comparison
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as well. However, some ICU data and the data from MT2511 have baseline wandering,

as shown in Fig. 3.4(a). If the traditional algorithm is applied for peak detection, the part

with critical baseline wandering will fail, as shown in Fig. 3.4(b). Therefore, it is

necessary to remove the effect of baseline to detect all peaks in PPG signals.

Raw PPG Signal

=

(@)

?
i8]
P
/s
?w?"“’o’&
?‘J’ '\ !‘b

L %ﬁ’é \é °

/4
(b)

Fig. 3.4 PPG waveforms and the effect of baseline

3.3.2

State-of-the-art baseline removal algorithms

Only PPl and AMP series are needed in AF detection framework, therefore, the

original wave form is not key to the accuracy in this work. Since PPl and AMP series

should be extracted, the desired baseline removal methods are limited in time domain

de-noising. The state-of-the-art time domain baseline wandering removal algorithms [26]

[27] are introduced:

1. PCA-based algorithms: PCA-based algorithms usually require periodic signals [28]
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[30]. Since AF physiological signals contain time variant noise and non-stationary

trends, PCA-based algorithms are not suitable for this framework.

2. Adaptive filters: Reference signals such as accelerator signals or respiratory signals
are need for adaptive filtering de-noising [29]. Adaptive filters cannot be applied

because the lack of reference signals.

3. Band pass filters: Band pass filters are easy to design and frequently used. The PPG
signals’ frequency range is usually 0.5Hz~4Hz [26]. However, it’s hard to find an
appropriate frequency range to meet everyone’s physiological characteristic. And the
FIR filter order can be high to meet the narrow band requirement. A band pass FIR filter
with range from 0.5Hz to 4Hz and 40dB stopband attenuation is applied to the
waveform in Fig. 3.4. The result is shown in Fig. 3.5. The peak can be detected,
however, the main drawback is it is hard to find an appropriate frequency range to meet

everyone’s characteristic and the latency due to high order the of FIR filter.

Fig. 3.5 The waveform processed by the FIR filter
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4. Ensemble Empirical Mode Decomposition (EEMD): EEMD is arguably the most

famous and accurate way to find the baseline or trend in time variant signals [30] [35].

However, the drawback is the high complexity of EEMD. EEMD utilizes the sifting

process to iteratively decompose the signal into a set of intrinsic mode functions (IMFs)

and a residual shown in Fig. 3.6. In the demonstration, PPG is decomposed into 7 IMFs

and 1 residual. EEMD is applied to the waveform in Fig. 3.4. The result is shown in Fig.

3.7. The peak can be detected yet the main drawback is high complexity.
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Fig. 3.8 The basic operators of MMF [32]
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5. Mathematical Morphological filters (MMF): MMF was usually used in 2D signal
processing, such as finger-print processing. Morphological filters modify the shape of a
signal by transforming it through its intersection with another object called the

structuring element. The basic operators and concepts are shown in Fig. 3.8.

(3.1.9)

(3.1.b)

(3.1.c)

(3.1.d)
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In 1D signal processing, MMF can be applied to extract the upper envelope by
closing and lower envelope (baseline) by opening. For example, in [31], MMF was
applied to extract the baseline of EKG signals. The author applied opening and closing
on EKG to cancel the baseline, Q wave and R wave pit, with a fixed length flat structure
element in [31]. MMF is applied to the waveform in Fig. 3.4. The result is shown in Fig.
3.9(a). The main drawback is the AMP series being deteriorated by MMF, as shown in

Fig. 3.9(h).

Opening and Closing of PPG Signals

PPG Signals
—
Toe =
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Fig. 3.9 Applying MMF to PPG signals

3.3.3 Proposed MMF-based Pre-processing

Since MMF has the advantage of being adaptive to the time variant signals, low
complexity and ability to meet everyone’s physiological characteristic. The proposed
pre-processing is based on the MMF, and able to overcome the problem that AMP series
being deteriorated. The flowchart of the proposed pre-processing is shown in Fig. 3.10.

32

doi:10.6342/NTU201700718



Waveform
[ Raw data ]_)[ Low pass ] .,;( PPl and AMP ]

filter J L extraction
Index

v
. | ‘ Peak
[ MMF filter detection ]

Fig. 3.10 The flowchart of the proposed pre-processing

First, the PPG signals don’t have pits like EKG’s P wave and T wave. The
opening operator is enough to find the baseline. And the structure element S is a flat

element adaptive to the average heartbeat of the PPG signals. The baseline is extracted

to find the MMF filtered signal  fs;gnais-

fo =1 ©Sg fsignals =f—f 3.2)

The MMF filtered signal can detect the peak index accurately, though deteriorate AMP.
We can find the AMP on the original waveform f with the index found in MMF
filtered signal  f;gnais- Furthermore, the definition of AMP is modified in the proposed
pre-processing. The amplitude of baseline wandering signal can be different in the same
pulse, as shown in Fig. 3.11(a). The problem is solved by defining AMP as the average

of left and right side amplitude, as shown in Fig. 3.11(b).

To compare the performance of EEMD and MMF, we applied these methods on a

segment of 10 minute PPG signals. The EEMD is considered as the reference solution.
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The performance can be evaluate by the extracted PPl and AMP series correlation to

EEMD’s solution. And complexity is evaluated by the time for pre-processing. The

equipments of computer are i-7-2600 CPU@ 3.40GHz and 14GB RAM. The result is

shown in Table 3-2.

. The result suggests that the proposed MMF based pre-processing can detect the

AMP and PPI series reasonably accurate with low complexity.

(@)

Fig. 3.11 (a) The amplitude of baseline wandering signal, and (b) Modified definition of AMP

AMP=(AMP,+AMP,)/2

(b)

Table 3-2 Performance comparisons of pre-processing

EEMD Proposed Method
Peak detected 973/973 973/973
PPI

) -- 0.999

correlation
AMP

) -- 0.998
correlation
Time (100

39.5 Secs 0.171 Secs
average)
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3.4 Feature Extraction

Time domain, frequency domain and entropy domain features are extracted from

the PPl and AMP series, not from raw _data. Except common linear features, three

entropy domain features, including multiscale entropy, Shannon entropy and turning

point ratio, are applied. The details of each feature are illustrated as follows.

3.4.1 Time domain and frequency domain features

We used some of the most popular linear features in heart rate variety (HRV)
researches, according to reference book [33]. Linear features includes time domain
features and frequency domain features. Time-domain analysis measures the variation in
heart rate over time or the intervals between successive normal cardiac cycles. Mean and
standard deviation (SD) represent overall distribution. Root mean square successive

difference (RMSSD) is based on interval differences:

N
1
RMSSD = NZ(xi —x_1)? (3.3)
i=1

Utilizing both SD and RMSSD, the features contain both short-term and long-term

variations. Furthermore, to balance the variation in mean value, normalized SD and
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normalized RMSSD is calculated by dividing mean value. NN counts ratio (pNNR) is
modified from the common HRV feature, pNN50. NN50 is the number of pairs of
successive NNs that differ by more than 50 ms. pNN50 is the proportion of NN50 divided
by total number of NNs and is thought to show cardiac parasympathetic activity. Because
PPG-AMP series are not based on NNs or RRIs, the definition is modified. For example,
PNNR(1.1) is the proportion of the number of pairs of successive NNs that has bigger ratio
than 1.1 divided by total number of NNs. We choose the ratio thresholds as 1.1, 1.3 and

1.5.

N (—Rgggl > 1.1)

N

pNNR11 = (3.4)

Frequency-domain analysis describes the periodic oscillations of the heart rate
signal. The signals are decomposed at different frequencies and amplitudes, providing
information of relative intensity in the rhythm of the heart. Related studies have found
that frequency features are related to sympathetic and para-sympathetic nervous systems.
We use FFT-based method and calculated the power in low-frequency (LF), power in
high-frequency (HF) and LF/HF according to the definition in HRV researches, as

shown in Fig. 3.12.
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Fig. 3.12 HRV power spectrum over 24 hours [33]

3.4.2 Entropy domain features

1. Multiscale entropy (MSE) [34]: MSE is a non-linear method which has been widely
used to evaluate the physiologic control mechanisms, such as heart failure and
Alzheimer’s disease [35]. In the case of AF detection, AF subjects have more unstable
heartbeat, and thus prone to present higher entropy value. There are two steps in MSE.
First, the multiple coarse-grained time series are calculated by averaging a successively

increasing number of data points in non-overlapping windows:

jT
1 | N
yi=2 Z X, 1<i<N1<j<—, (3.5)
i=(j-1)7+1

where x; is the original time series, N is the length of x;, and t is the scale factor. In 2

minutes of PPG signal, we do not have enough pulses to calculate high scale MSE.
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Therefore, 7 is set to be 3 due to sample entropy’s data length dependency. This step
generates different time series y*. Second, the sample entropy (SampEn) for each series

y* is calculated as:

Bm+1 (T')

SampEn = —In [Bm—(r) , (3.6)

where m is the pattern length and r is the similarity criterion. B™(r) is the number of
two sets of simultaneous data points of length m have distance < r. And we set m=2
and r = 0.2 in the experiment. SampEn is the conditional probability that a dataset,
having repeated itself within a tolerance r for m points, will also repeat itself for

m + 1 points. The more complex the signal is, the higher the entropy value will be.

2. Shannon entropy (E_Shannon): Shannon entropy is a common entropy definition in
information theory. Shannon’s measure of information is the probability of symbols to
represent the amount of uncertainty or randomness of data. However, how to define
parameter series into symbols can be flexible. Distribution of parameters differs a lot
among patients, therefore, fixing thresholds between symbols is inappropriate. If we use
fixed thresholds to calculate Shannon entropy, the box plot of AF and non-AF is shown
in Fig. 3.13(a). The p-value is 0.18, which is larger than 0.05. The result suggest no

statistical significance.
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Therefore, we classify parameter series into a fixed number of groups, which is
closer to Shannon entropy’s original definition. First, outliers, which had larger
difference to mean value than three standard deviations, were removed. Second, we
sorted rest data into equally spaced N bins, where N is the number of bins. Last, we

calculate the probability p; of each bins and apply Shannon entropy:

N
E_shannon = — Z p; log(py). (3.7)
=1

The optimal number of groups is data dependent, therefore, we applied N =4, 8, 16, 32
and 64 for experiment. We find the modified Shannon entropy has better statistical

significance with p value < 10", The boxplot is shown in Fig. 3.13(b).
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Fig. 3.13 The boxplot of (a) Shannon entropy calculated by fixed threshold, and (b) Modified Shannon
entropy calculated by fixed group number
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3. Turning point ratio (TPR): TPR is proposed based on the nonparametric “Runs Test”

to measure the randomness in a time-series [36], and the idea is used in EKG-RRI [37].

Each beat in a RRI series is compared to its two nearest neighbors and is defined a

turning point if it is greater or less than two neighbors. TPR is the ratio of turning point

to total data length L. TPR is higher when series is more random.

TPR

_ RRI;|(RRI; — RRI;_1)(RRI; — RRI;11) > 0

(3.8)

And TPR is applied on PPG parameters in the same way. Furthermore, we also

extracted the trend of series and then perform TPR to build the modified version of TPR

(TPR2). The purpose is to find the turning point of the trend of series, which is different

from the original definition. They both have good statistical significance with p value <

101° as shown in Fig. 3.14. For each parameter, we extract all these features as

candidate features. All candidate features are listed in Table 3-3 .
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Fig. 3.14 The boxplot of (a) TPR1, and (b) TPR2
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Table 3-3 All candidate features

Extracted Feature Physiological Meaning N
Mean value (Mean) , Median value )
. Average and median 2
(Median)
NN counts ratio (pNNR(ratio)) Ratio: 1.1, . ]
Successive ratio of parameter 3
13,15
Standard deviation (SD), Normalized SD Long-term variability 3
Root mean square successive difference o
. Short-term variability 3
(RMSSD), Normalized RMSSD
Power in very low-frequency range
Low frequency term 1
0.003-0.04 Hz (VLF)
Power in low-frequency range 0.04-0.15 Sympathetic nervous systems: )
Hz, (LF) , Normalized LF tensioned
Power in high-frequency range 0.15-0.4 Hz, Parasympathetic nervous systems: )
(HF) , Normalized HF relaxed
Ratio of power in low-frequency range and Balance between the sympathetic and L
power in high-frequency range (LF/HF) para-sympathetic nervous systems
MSE up to scale3 -(MSE1,MSE2,MSE3, Matching patterns within parameter 4
MSE1~3) series
Shannon entropy (E_Shannon(grou o
by E (group)) Overall distribution of parameter .
Group: 4,8,16,32 and 64 SEres
. . . Turning points of neighboring
Turning point ratio (TPR) ] 2
parameter series
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3.5 Statistical Analysis

ANOVA is adopted for the statistical analyses of all extracted features. ANOVA
calculates p-values by comparing the relative values between the variation within
groups and the variation among groups. A common threshold for significant statistical
difference is 0.05. The p-values of the extracted features are shown in Fig. 3.15. The
lateral axis indicates features name, the vertical axis indicates p-value, which is
indicated by a blue star. The common threshold of p-value=0.05 is represented by red
line. The blue star under the red line indicates significant statistical difference. Most
features show significant statistical differences. Though some frequency domain
features show p-value > 0.05. The result suggests the features extracted can be useful

for AF detection.
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Fig. 3.15 The p-values of features extracted from PPG (a) PPI - Time domain features, (b) AMP -
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3.6 Summary

In this chapter, the flowchart of the proposed framework and the processing part
of the proposed framework, including pre-processing, baseline removal and feature
extraction are introduced. The proposed pre-processing considering baseline can be
applied to PPG signals with baseline wandering, making the framework more robust.
And the statistical analysis of features shows significant statistical differences. As a

result, the features extracted can be useful for AF detection.

ANOVA is a widely used statistical method which decides whether the differences
among groups are significant or not. However, through such a statistical method, we
still cannot tell a feature should be selected in the framework and what are the more
important features. Therefore, further learning methods are needed, which will be

introduced in Chapter 4.
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Chapter 4
Classification and Optimization of
PPG-based AF Detection

In this chapter, we will introduced the classification part of the proposed
framework, including feature selection, classification, and optimization, as shown in Fig.
4.1. First, the traditional feature selection and classification will be introduced as the
traditional solution. Then the optimization with GA algorithm is applied in the final

proposed framework to enhance the performance even more.

Traditional

Solution Feature S
» . Classification y'y
Selection

» Sequential Forward » Cost-sensitive SVM
Selection (SFS) (CS-SVM)

Proposed ( GA-based Feature Selection
'L with CS-SVM

Fig. 4.1 Flow chart of classification part

A4

4.1 Feature Selection

We have 28x2=56 candidate features in the proposed PPG based framework.

However, the combination of the features to achieve decent performance is unknown.
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Using all the extracted features into a classifier will result in some problems such as
“curse of dimensionality” and over-fitting [38]. Performing feature selection has

advantages of:

1. Dimension reduction and avoiding over-fitting

2. Finding the dominant features for AF detection

3. Potential higher accuracy and less features in implementation

Analysis of variance (ANOVA) can select the feature with p-value<0.05 in a
common way. However, most features have p-value <0.05, making ANOVA inefficient
in this case. The straightforward method is exhaustive search. However, if we want to
select M features as subset from N features, exhaustive evaluation of feature subsets
involves (},) and 2V if M needs to be optimized, too. The amount of combination is
too large to implement if the total feature number N is large. Therefore, we applied
wrapper type feature selection to find the decent features combination. The famous
sequential feature selection algorithm is chosen to find the best features heuristically
[39]. Sequential feature selection including sequential forward selection (SFS) and
sequential backward selection (SBS). The concept of feature selection and is shown in

Fig. 4.2. The steps of SFS/SBS in selecting subset Y, from {x,,..,xy} can be
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simplified as Table 4-1.

In traditional solution, we applied sequential forward selection to find the feature

subset to find the smallest feature subset with best score, defined by accuracy.

Training data

Complete feature set

_ _ / Feature subset selection \
X1

.l
X2 xiz Search

Feature
subset

X Obiecti
i jective
th_ M function j

Final feature subset l

(@) (b)

Goodness

Fig. 4.2 (a) Concept of feature selection, and (b) Concept of wrapper type feature selection [39]

Table 4-1 Steps of sequential forward selection (SFS) and sequential backward selection (SBS)

Steps
S1. Start withthe empty set: Y, = {0} /Y, ={x;]li =1, ..., N}.

S2.  Select the next best / worst feature: x* = arg rréa}l,x](Yk + x).
XY

S3. Update feature subset: Y,y =Y +/—xT;k =k + 1.
S4.  Go to 2, until stop criteria meets.

4.2 Classification
4.2.1 Classification and parameter tuning

There are different techniques for data classification, such as naive Bayes
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classifier, random forest, support vector machine (SVM) and neural network (NN).
SVM s the classification technique adopted in our experiment considering the number
and the properties of our samples. Linear kernel is adopted in SVM, because the
performance of RBF kernel is not significantly better than linear kernel. The problem is
more linear separable. The features extracted were linear scaled to avoid features with
large value dominate the classification. And stratified 5-fold cross-validation is applied
to avoid over-fitting in evaluation, as shown in Fig. 4.3. Among 673 subjects, only 151
of them are AF and 522 of them are non-AF, and the AF class is more important in
pre-screening. Therefore, we encountered class imbalance problem. The “class imbalance
problem” occurs due to the ratio between majority and minority class in the dataset and
leads to lower sensitivity. It is a very common problem in practice [40]. Furthermore, the
minority class is more important in most cases. Therefore, a cost-sensitive method is
adopted to deal with the class imbalance problem.

Training Testing
M features M features
1 label Model A

Training Testing
M features M features

1 label Model B

Training Testing
M features M features

Feature 1 label Average
s | 0 et

Training Testing
M features M features

1 label Model D

Training . Testing
M features M features

e,

Fig. 4.3 The flow of classification with 5-fold cross-validation

48

doi:10.6342/NTU201700718



For a separable case, SVM finds the decision boundary by solving the following
optimization problem:

2 l
min —“W” +CZE-
min 2 il 4.2)

=1

where & > 0 corresponds to the slack variable for the i sample;C > 0 is the cost of
misclassifying the samples. The cost-sensitive SVM [41] is implemented by modifying
the cost of the minority class (positive class label as &) to C = W, where W is the
penalty weight > 1 and the cost of the majority class (negative class label as &;7) to C.

The optimization equation is modified as:
2 I+ -
L7 R PR
min{ ——+ §i + $i |- (4.2)
i=1 i=1

In traditional solution, we performed the grid search on cost (C) and penalty weight
(W) to find the best combination for highest score, defined by sensitivity + specificity.
The cost (C) were searched on exponential order (2°4°~ 2°) and penalty weight (W) were
search on linear order (1~10). And we applied five-fold cross validation to avoid
over-fitting in learning. The whole SVM procedure and grid search algorithm is

supported by the famous machine learning toolbox LIBSVM [42].
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4.2.2

Performance and summary of traditional solution

To evaluate and compare the performances of the proposed framework with

related work, the accuracy, sensitivity, specificity, positive predictive value (PPV),

negative predictive value (NPV), and receiver operating characteristic (ROC) curve of

the frameworks are calculated based on the definitions of confusion matrix shown in Fig.

4.4.

The predicted class refers to the prediction results of the AF detection framework.

The actual class refers to the AF or Non-AF labeled doctors. In our experiment, AF is

defined as positive class and Non-AF is defined as negative class. Because, the aimed

application is screening tool, the AF class (sensitivity) is more important. The result of

grid search is shown in Fig. 4.5. The final SVM parameters cost (C) and penalty weight

(W) are the ones with best score, defined as sensitivity + specificity.

Actual
Class
+ —
True False TP/(TP+FP)
positive positive = PPV
= Precision
Predicted (TP) (FP)
Class False True TN/(TN+FN)
negative negative = NPV
(FN) (TN)
TP/TP+FN) | TN/(TN+FP) | (TP+TN)itotal
= Sensitivity = Specificity = Accuracy
= Recall

Fig. 4.4 Confusion matrix
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Fig. 4.5 The result of grid search

The traditional solution illustrated in Sec.4.1 and Sec.4.2 is the first solution of the
AF detection framework. The comparisons with related works are shown in Table 4-2.
The result suggests that framework with traditional solution has better performance than

the related works. The result was accepted in IEEE BioCAS, 2016 [43].

Table 4-2 Performance comparisons in traditional solution and related work

Accuracy Sensitivity | Specificity PPV NPV ROC_AUC
BioCAS
0.966 0.940 0.973 0.910 0.983 0.968
2016
Related
0.911 0.848 0.929 0.776 0.955 0.938
work [20]

4.2.3 Limitations in traditional solution

However, there are limitations in traditional solution. The feature selection
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focuses on optimizing feature subset. The SVM parameter, cost (C) and penalty weight
(W) are set to default in the process. On the other hand, the parameter tuning focus on
optimizing SVM parameter, feature subset is fixed in the process. So traditional solution
is not the best optimized feature subset and SVM parameters. The SVM outcome and be

simplified as:

SVM(featuress,pser, PArametersy ). 4.3)

The desired algorithm should be able to optimize feature subset and SVM parameter

jointly, will be introduced in next session.

4.3 Features and Classifier Parameters
Optimization with GA-based Algorithms

4.3.1 Introduction to GA Algorithms

The Genetic Algorithm (GA) is originated from Darwin’s Survival of the fittest
[44]. GA was first introduced by John Holland to investigate the usage of the Darwinian
senses on computer programs [45]. The GA methodology is particularly suited for
optimization, a problem solving technique in which good solutions are searched for in a

large solution space. GA can reduce the search complexity by imitating generation
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evolution in Darwinian way.

The simple GA flow chart is shown in Fig. 4.6. In GA algorithms, all candidate

solutions are regarded as the population in a generation. The structures of a solution are

regarded as chromosome, which are often the input of a problem to be optimized. The

chromosomes are often design in binary forms. The evaluation of candidate solutions is

done using some measures of goodness or fitness, often are the problems to be

optimized. After the evaluation, the solutions with poor outcomes are discarded,

producing a new generation through mutation. The mutation is carried out by point

mutation, cross over and the best solutions in the generation, as shown in Fig. 4.7.

Population : The set of all potential solutions
Start ) -
Ancestor Chromosomes : Solution structure | 1011010011101

Eval

m Evaluation: Calculate fithess function of population

Population |

Offspring:

Select
Parents

Selection: Choose better solutions as parents

Fig. 4.6 The simple flow chart of GA algorithms

Mutated from

(— parent solutions and be next
PERIEE eneration
Offspring 9

Parent 1 Parent 2 Parent 1 Parent 1
1011010111101 110101 /0010100 1011010011101 1011010111101
101101 0010100 110101 | 0111101 1011010111101 1011010111101

Child 1 Child 2 Child 1 Child 1

(a) (b) (c)

Fig. 4.7 The mutation methods
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4.3.2 Optimization with GA Algorithms

The limitations in traditional solution, mentioned in Sec.4.2.3, should be further
improved by GA algorithms and optimization. The problem to be optimized is equation
(4.3): SVM(featuresg,pser, parametersyy). The structure is composed of
featuresgpser, aNd parametersy,, both to be optimized jointly to solve the
limitation in traditional solution. The solution structure, regarded as the chromosome in
GA algorithms is shown in Fig. 4.8. The cost (C) and penalty weight (W) are transferred
to binary form in their range of grid search in Sec.4.2.1. And feature subsets are
transformed into the feature mask. The selected features are 1 on the index of the feature

mask, while the discarded features are 0 on the index of feature mask.

The most important accuracy criteria are sensitivity and ROC’s area under curve
(ROC_AUC). The optimized is the solution with best score. The evaluation of fitness is

defined by:

Fitness = 1.5 sensitivity + specificity +
PPV + NPV + ROC_AUC ' (4.4)

The proposed GA-based selection with cost-sensitive SVM (CS-SVM) can further
improved traditional solution. The algorithm combines feature selection, CS-SVM and

evaluation by 5-fold cross-validation, shown in Fig. 4.9.
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Fig. 4.8 The chromosomes, solution structure
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GA-based Subset (" Feature
. . . Cd " ﬁ
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SVM
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estin Average
—| Performances
estin CS-SVM

Fig. 4.9 The proposed GA-based optimization with cost-sensitive SVM

4.4 Results of the PPG-based AF Detection

Framework

441 Performance comparisons

To compare our proposed framework with the related works [20], a basis for
comparison is needed. Our experiment data are collected in the ICU, the real clinical
scenario. We applied their proposed feature RMSSD, Shannon entropy and TPR of PPI
on our database to repeat their performance. The traditional solution is also compared to
the final framework. The performance comparisons are shown in Table 4-3. And the

ROC curve comparisons is shown in Fig. 4.10.

The result suggests that the proposed AF detection framework has better
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performance than the related works and traditional solution. The sensitivity achieves

95.4%, and the ROC area under curve achieves 98.0%. The accuracy is comparable

EKG-based algorithms and proves that the PPG-based AF detection algorithm is a

promising pre-screening tool to help doctors monitoring patient with AF.

ROC Curve Comparisons

o
)

Sensitivity
o
wn

0.4 =Proposed Framework
——[BioCAS, '2016]
0.3 ——J.W.Chong,etc. [20]
0.2
0.1
0! | | . . . . . |
0 02 03 04 05 06 07 08 09 1
1-Specificity
Fig. 4.10 ROC curve comparisons
Table 4-3 The performance comparisons
Accuracy Sensitivity | Specificity PPV NPV ROC_AUC
Proposed
0.973 0.954 0.979 0.929 0.987 0.980
Framework
BioCAS,
0.966 0.940 0.973 0.910 0.983 0.968
<2016
J.W.Chong
0.911 0.848 0.929 0.776 0.955 0.938
,etc. [20]
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4.4.2 Features selected in the proposed framework

Furthermore, the feature selected in the GA-based optimization is shown in Table
4-4. This result suggests that utilizing amplitude in the analysis helps the performance of
AF detection, since some of the AMP features are selected over PPI features. The number
of features are reduced to 16, which is far less than the number of features with p-value
<0.05 in the statistical analysis. The blue and bold ones are the features proposed or
modified in Sec.3.4 feature extraction. This result further proves the importance of the

features proposed or modified in the framework and the importance of feature variety.

Table 4-4 The feature selected in the proposed framework

Category Selected Features

Mean, SD, pNNR(1.1), pNNR(L.5), LF, LH Ratio, E_Shannon(4), MSEL,
TPRI.

PPG-PPI

Mean, SD, Normalized RMSSD, Normalized HF, LH Ratio,
E_Shannon(8), TPR1, TPR2.

PPG-AMP

4.4.3 Validation within ICU data

The classification accuracy is optimized to find the best SVM parameters and
feature subset. Using all data in the optimization is for finding the best model for

framework. However, a part of data should be the test set for an even more reliable
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accuracy. The concept of test set is shown in Fig. 4.11.

Training
Set

Validation

Prediction

Set

Test Set Over- Fitting
Test

N

Fig. 4.11 The concept of over-fitting test

In the experiment, the last received data (2015/6-2015/11), are used as test set.
This part of data are not including in the optimization. Instead, the data are for testing
by the model created by the rest part of data. The test set accuracy compared to the
optimized accuracy is shown in Table 4-5. The test set accuracy still shows comparable
performance to the optimized accuracy. The validation result further proves the

reliability of the proposed framework.

Table 4-5 Test set accuracy compared to the optimized accuracy

Accuracy Sensitivity | Specificity PPV NPV
Optimized

0.973 0.954 0.979 0.929 0.987
Accuracy
Test Set

0.951 0.941 0.955 0.889 0.977
Accuracy
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4.5 Summary

In this chapter, we introduced the classification part of the proposed framework,
including feature selection, classification, and optimization. The comparison results
suggest that the proposed PPG-based AF detection framework has better performance
than related works and the traditional solution. The algorithmic parts are introduced in
Chapter 3 and Chapter 4. On the other hand, the applications of AF detection are shown
in the next chapter. The result and performance of the aimed applications of this thesis,

including fast screening and long-term monitoring will be introduced.
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Chapter 5
Application of PPG-based AF
Detection

In this chapter, we will introduce the application of AF detection. The aimed
applications of this thesis include two clinical scenarios, long-term monitoring and fast
screening. The PPG-based AF detection framework can be used as a pre-screening tool
to assist doctors. On the other hand, the framework can be used for long-term
monitoring suspected AF patients. The concepts of fast screening and long-term

monitoring have been mentioned in Sec.1.2.2, and shown in Fig. 1.6 and Fig. 1.7.

5.1 Results of Application: Fast Screening and
Long-term Monitoring

5.1.1 Fastscreening

The framework can be used as a screening tool to assist doctors. The aim of
fast-screening is to detect whether an individual has AF with very short recording of
signals. The fast screening experiment is conducted by manipulating the data length

used in the data collection part. As mentioned in Sec.3.2, the data length issue in fast
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screening is a trade-off between accuracy and convenience. To find the shortest data
length, we experimented with different data length in the data collection, including 10
secs, 20 secs, 30 secs, 40 secs, 1 min, 2 mins, 3 mins, 5 mins and 10 mins. The proposed

AF detection framework’s performances on different data length are shown in Table 5-1.

Table 5-1 Performances on different data length

Accuracy Sensitivity | Specificity PPV NPV ROC_AUC
10 Sec 0.873 0.893 0.868 0.662 0.965 0.906
20 Sec 0.946 0.927 0.952 0.848 0.978 0.959
30 Sec 0.966 0.920 0.979 0.926 0.977 0.968
40 Sec 0.969 0.927 0.981 0.933 0.979 0.970
1 Min 0.973 0.940 0.983 0.940 0.983 0.971
2 Min 0.973 0.954 0.979 0.929 0.987 0.980
3 Min 0.978 0.954 0.985 0.947 0.987 0.977
5 Min 0.981 0.947 0.990 0.966 0.985 0.977
10 Min 0.981 0.954 0.989 0.960 0.987 0.981
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According to Table 5-1, the data length of fast-screening is chosen as 30 Secs.
Because the PPVs in under 20 Secs version perform poorly and show a large
performance drop. The fast screening version framework suffer only a little
performance degrade compared to the more accurate versions. The most important
accuracy criteria are sensitivity and ROC’s area under curve (ROC AUC). Judging
mainly from these 2 criteria, the performances become stable when data length > 2mins.
In conclusion, the version with data length > 2mins can be regarded as accurate model

and applied on long-term monitoring.

5.1.2 Long-term monitoring

The aim of long-term monitoring is to precisely detect paroxysmal AF patient and
find the duration of AF to assist doctors’ decision of treatment. According to Table 5-1,
the 2 mins version framework is applied. The framework can be applied on long-term
monitoring by make a decision of AF or non AF every 2 mins. The decision of the
proposed PPG-based framework are compared to the EKG-based framework. To
evaluate the similarity between two prediction results of the frameworks, the simple

matching coefficient (SMC) is calculated:

SMC = (My; + Myo) + (Myq + My + Moy + Myy), (5.1)
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where M;;, Mo, My, and M, refer to the number of decisions made by PPG-based
framework and EKG-based framework are (1,1), (1,0), (0,1), and (0,0), respectively.

And the ratio of the whole recording are also calculated.

AF

AF ratio = .
AF+NAF

(5.2)

The case studies of some patients with long-term data (6-8 hours) are as follows:

1. ID=2956355, the result is shown in Fig. 5.1(a) and Fig. 5.1(b). The result suggests
that the patient is Non-AF. And the SMC between EKG-based framework and

PPG-based framework is 100%o.

2. ID=3234202, the result is shown in Fig. 5.1(c) and Fig. 5.1(d). The result suggests
that the patient is persistent AF. And The SMC between EKG-based framework and

PPG-based framework is 100%o.

3. ID=5302261, the result is shown in Fig. 5.1(e) and Fig. 5.1(f). The result suggests

that the patient is paroxysmal AF. And The SMC between EKG-based framework and

PPG-based framework is 89.88%.

4. 1D=5650186, the result is shown in Fig. 5.1(g) and Fig. 5.1(h). The result suggests

that the patient is paroxysmal AF. And The SMC between EKG-based framework and

PPG-based framework is 97.08%.
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ID = 5302261, SMC = 89.88 %

PPG, AF ratio = 75.00 %
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Fig. 5.1 Long-term monitoring result of patient (a) 1D=2956355 PPG, (b) 1D=2956355 EKG, (c)
ID=3234202 PPG, (d) ID=3234202 EKG, (e) ID=5302261 PPG, (f) ID=5302261 EKG, (g) ID=5650186
PPG, and (h) ID=5650186 EKG
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The above case studies suggest that the proposed PPG-based framework can
detect paroxysmal AF and find the AF ratio of a long-term recording. Furthermore, the
SMC between EKG-based framework and PPG-based framework is reasonably high to
suggest that PPG signals are potential to replace EKG signals in long-term AF

detection.

5.2 Validation on MTK Device

The results shown are based on ICU data so far. However, the validation with
different data base is needed to further strengthen the reliability of the framework. And
the implementation of GUI can make the framework easy accessed by medical staffs.
The project is supported by: National Taiwan University (NTU) - National Taiwan
University Hospital (NTUH) - MediaTek Innovative Medical Electronics Research
Center. The trial experiment with MTK devices is important to preview the potential of

using MTK devices to record PPG signals for AF detection.

The data received from MTK watch MT2511, as shown in Fig. 5.2, are used for
validation in the framework. MT2511 is a prototype wrist-type PPG and EKG sensor. 20
patients in ICU were tested, whose EKG and PPG signals were recorded by MT2511 for
2 minutes. The signals were transferred to the android phone with Bluetooth and
processed in the PC and the amplitude units were scaled into database scales. The
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signals were then processed by the proposed PPG-based AF detection framework. The
experiment can validate the utility of the framework on different sensors and databases

and further prove the possibility of AF detection on wearable devices.

e B
De-noise Wi o g?atwf Extract « Non
Blue tooth |l assiry AF

Fig. 5.2 Adopted from MediaTek. The flow chart of applied MT2511 in validation

Among the 24 patients, 11 of them were found to be AF by doctors while
recording. These PPG signals were processed by the proposed AF detection framework
(accurate model) and 30 secs version framework (fast screening). The result is shown in
Table 5-2. Though the database is not large in the trial experiment, the result suggests
that the framework is able to be applied on MT2511. And the result shows the potential

of AF detection base on PPG signals with wearable devices.

Table 5-2 The trial validation on MTK devices, MT2511

Accuracy Sensitivity Specificity
Fast screening (30 secs) 24/24=100% 11/11=100% 13/13=100%
Accurate model (2 mins) 24/24=100% 11/11=100% 13/13=100%

5.3 Implementation of Graphic User Interface

The framework has potential to be applied to real clinical uses. For the
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convenience of medical staffs, the implementation of graphic user interface (GUI) is

implemented. The interface of the GUI is shown in Fig. 5.3. The GUI can support both

application scenarios, long-term monitoring and fast screening. First, the user should

select the file of raw data recorded by the medical devices. Second, the application

scenario should be chosen. Third, the parameters, including sampling frequency and the

monitoring range from long-term monitoring should be given. Final, the GUI will run

program and generate the report by clicking start button.

r

4 main_AF_Detection_gui

PPG-based AF Detection

1. Input Data

Selected filename

filename

Application Fastscreening (30 Secs) ~ Select file

2. Set Parameters 3. Report

Sampling Frequency

98 i
Monitoring time @
p

From 0 |Mins to | 480 | Mins

Fig. 5.3 The interface of GUI
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In long-term monitoring scenario, the generated report shows the AF and Non-AF
of the whole recording and the AF ratio, as shown in Fig. 5.4. In fast scenario, the
generated report shows the waveforms, the decision of AF and Non-AF, and the features

extracted during the recording, as shown in Fig. 5.5.

Long-term monitoring report, ID = 3163231
PPG, AF ratio=0.00 %

1

1 1 1

1

0 50 100 150 200 250 300 350 400
Time (min)

Fig. 5.4 Report of long-term monitoring

PPG Fast Screening Report

500 T T

% 400 Wil
R B R

° A fuL,WLM/UUWLH.MMJ
=< 200 KA A . i A ]
= MUY

200 . ! : . !

0 5 10 15 20 25 30
Time (sec)
Fast screening result: Non-AF

Sp = 151,
pPNNRE1] =
pPNNRLS
LE = 22

Fig. 5.5 Report of fast-screening
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5.4 Summary

In this chapter, we introduced the application of AF detection. The results of the
aimed applications of this thesis including fast screening and long-term monitoring are
shown. The recording time can be shortened to 30 seconds in fast screening scenario
with little performance degradation. And the proposed PPG-based AF detection
framework is able to detect paroxysmal AF in long-term monitoring and highly
correlated to EKG-based framework. Furthermore, the validation with different data
base strengthens the reliability of the framework. Finally, the graphic user interface

(GUI) is implemented for the convenience of medical staffs.
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Chapter 6
Conclusion and Future Works

6.1 Main Contribution

In this thesis, the PPG-based AF detection framework is proposed. The drawbacks
and limitations of related works are improved in the proposed framework. The
framework can be applied to PPG signals with baseline wandering by improved
pre-processing. The framework jointly analyzes all the PPG features extracted from
AMP and PPI. And more features are considered and even improved in the feature
extraction part. Most features show significant statistical difference (p < 0.05) in AF
detection. In the classification part, the GA-based feature selection with CS-SVM is
applied to jointly consider feature selection and the class imbalance problem. Among
673 patients’ signals recorded in clinic environments, we achieve ROC area under curve,
sensitivity, specificity and accuracy of 0.980, 0.954, 0.979 and 0.973, respectively in
cross-validation. The performances are higher than those of the PPG related works And

the accuracy and reliability is validated with MTK devices and within ICU database.

Furthermore, two clinical scenarios, long-term monitoring and fast screening were

considered in the experiments. The record time can be shortened to 30 seconds with
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little performance degradation in fast screening scenario. And some case studies of
long-term monitoring are shown, which are highly correlated with the outcome of the
EKG-based framework. The result suggests that the PPG-based AF detection algorithm

is a promising pre-screening tool for AF and helps doctors monitoring patient with AF.

Partial work of this thesis was submitted and accepted in EE conference, IEEE

BioCAS, 2016 and medical journal, Nature Scientific Reports, 2017.

6.2 Future Works

The main limitation of the proposed framework is that it is based on PPG’s
parameters, such as PPl and AMP. However, the p-wave in EKG is also a key to
diagnose AF. Some patients with AF shows more regular parameters comparing to
others, however, the p-wave is absent in EKG. These kinds of patients are
misclassified as Non-AF in the framework. The p-wave cannot be shown on PPG,
which is the main drawback of PPG-based AF detection and other kinds of heart-beat

based AF detection.

In the future, we expect our proposed framework can be integrated with the
existing devices in ICU and MTK devices, carrying out the online monitoring of AF

detection. Furthermore, we plan to build the processing unit in the local and upload
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the information onto the cloud server, reducing overhead of data uploading
bandwidth, providing the latest information of patients for medical staff and family
members. The online system can screen out potential AF patients and alert the

medical staff in advance.

Although the inspection of physiological signals can never replace medical
imaging system and doctors’ diagnosis, it provides a feasible and quantitative way to
monitor without any side effect. To our ambitiousness, the optimal goal is to
implement a highly accurate analysis system, which is as accurate as EKG devices.
Additionally, this framework is not able to investigate other kinds of arrhythmia
because the lack of corresponding data. The ability to diagnosis other kinds of

arrhythmia such as PVC and PAV is also a good future direction of the thesis.
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