Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77856Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 羅翊禎 | zh_TW |
| dc.contributor.advisor | Yi-Chen Lo | en |
| dc.contributor.author | 陳怡潔 | zh_TW |
| dc.contributor.author | Yi-Chieh Chen | en |
| dc.date.accessioned | 2021-07-11T14:36:07Z | - |
| dc.date.available | 2024-09-03 | - |
| dc.date.copyright | 2017-08-24 | - |
| dc.date.issued | 2017 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | A. Douglas Kinghora, D. D. S. G. E. I. (1986). Sweetening agents of plant origin. Critical Reviews in Plant Sciences, 4(2), 79-120.
Akabanda, F., Owusu-Kwarteng, Glover, J. R. L. K., R. L. K., Tano-Debrah, K. (2010). Microbiological characteristics of Ghanaian traditional fermented milk product. Nunu. Nature and Science, 8(9), 178-187. Anton, S. D., Martin, C. K., Han, H., Coulon, S., Cefalu, W. T., Geiselman, P., Williamson, D. A. (2010). Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite, 55(1), 37-43. Barns, S. M., Lane, D. J., Sogin, M. L., Bibeau, C., & Weisburg, W. G. (1991a). Evolutionary Relationships among Pathogenic Candida Species and Relatives. Bacteriology, 173(7), 2250-2255. Barns, S. M., Lane, D. J., Sogin, M. L., Bibeau, C., Weisburg, W. G. (1991b). Evolutionary Relationships among Pathogenic Candida Species and Relatives. J. Bacteriol., 173(7), 2250-2255. Berg, J. M., Tymoczko, J. L., Stryer, L. (2002). Biochemistry, Fifth Edition: International Version W. H. Freeman. Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J. C., Gerds, M. L., Hammes, W. P., Hansen, E. B. (2012). Food fermentations: Microorganisms with technological beneficial use. Int. J. Food Microbiol., 154(3), 87-97. Breuer, U., Harms, H. (2006). Debaryomyces hansenii--an extremophilic yeast with biotechnological potential. Yeast, 23(6), 415-437. Butters, TD., (2007) Gaucher disease. Curr. Opin. Chem. Biol., 11(4):412-418 Cai, J., Roberts, I. N., Collins, M. D. (1996a). Phylogenetic relationships among members of the AScomycetous yeast genera Brettanomyces, Debaryomyces, Dekkera, and Kluyveromyces deduced by small-subunit rRNA gene sequences. Int. J. Syst. Bacteriol., 46(2), 542-549. Cai, J., Roberts, I. N., Collins, M. D. (1996b). Phylogenetic relationships among members of the AScomycetous yeast genera Brettanomyces, Debaryomyces, Dekkera, and Kluyveromyces deduced by small-subunit rRNA gene sequences. Int. J. Syst. Evol. Microbiol., 46(2), 542-549. Chan, P., Xu, D. Y., Liu, J. C., Chen, Y. J., Tomlinson, B., Huang, W. P., Cheng, J. T. (1998). The effect of stevioside on blood pressure and plasma catecholamines in spontaneously hypertensive rats. Life Sci., 63(19), 1679-1684. Chattopadhyay, S., Raychaudhuri, U., Chakraborty, R. (2014). Artificial sweeteners - a review. J. Food Sci. Technol., 51(4), 611-621. Chen, W. J. W., J.; Qi, X. Y.; Xie, B. J. (2007). The antioxidant activities of natural sweeteners, mogrosides, from fruits of Siraitia grosvenori. Int. J. Food Sci. Nutr., 58, 548-556. Chi, H., Ji, G. E. (2005). Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnology Letters, 27(11), 765-771. Chi, H., Kim, D. H., Ji, G. E. (2005). Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms. Biol. Pharm. Bull., 28(11), 2102-2105. Chiu, C. H., Wang, R., Lee, C. C., Lo, Y. C., Lu, T. J. (2013). Biotransformation of mogrosides from Siraitia grosvenorii Swingle by Saccharomyces cerevisiae. J. Agric. Food Chem., 61(29), 7127-7134 Cutfield, S. M., Davies, G. J., Murshudov, G., Anderson, B. F., Moody, P. C., Sullivan, P. A., Cutfield, J. F. (1999). The structure of the exo-β-(1, 3)-glucanase from Candida albicans in native and bound forms: relationship between a pocket and groove in family 5 glycosyl hydrolases. J. Mol. Biol., 294(3), 771-783. Dai., L., Liu., C., Zhu., Y., Zhang., J., Men., Y., Zeng., Y., Sun., Y. (2015). Functional Characterization of Cucurbitadienol Synthase and Triterpene Glycosyltransferase Involved in Biosynthesis of Mogrosides from Siraitia grosvenorii. Plant Cell Physiol., 56(6), 1172-1182. Davies, G., & Henrissat, B. (1995). Structures and Mechanisms of Glycosyl Hydrolases. Structure, 3(9), 853-859. Davies, G. J., Mackenzie, L., Varrot, A., Dauter, M., Brzozowski, A. M., Schulein, M., Withers, S. G. (1998). Snapshots along an enzymatic reaction coordinate: analysis of a retaining beta-glycoside hydrolase. Biochemistry, 37(34), 11707-11713. Downton et al., United States Patent No. US005411755A (2 May, 1995) Food and Drug Administration, H. H. S. (2003). Food Additives Permitted for Direct Addition to Food for Human Consumption; Acesulfame Potassium. Federal Register, 68(250). George, V., Arora, S., Wadhwa, B. K., Singh, A. K. (2010). Analysis of multiple sweeteners and their degradation products in lassi by HPLC and HPTLC plates. J. Food Sci. Technol., 47(4), 408-413. Godshall, M. A. (2007). The expanding world of nutritive and non-nutritive sweeteners. Sugar, 69(8), 12-20. I. C. C. Mantovaneli, E. C. F., M. R. Simões and C. Ferreira da Silva. (2004). The effect of temperature and flow rate on the clarification of the aqueous stevia-extract in a fixed-bed column with zeolites. Braz. J. Chem. Eng., 21(3), 449-458. Itkin, M., Davidovich-Rikanati, R., Cohen, S., Portnoy, V., Doron-Faigenboim, A., Oren, E., Schaffer, A. (2016). The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii. PNAS., 113(47), 7619-7628. Jeppesen, P. B., Gregersen, S., Poulsen, C. R., Hermansen, K. (2000). Stevioside acts directly on pancreatic beta cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+-channel activity. Metabolism, 49(2), 208-214. Jiang, X. L., He, P., Qi, X. N., Lin, Y. P., Zhang, Y. K., Wang, Q. H. (2016). High-efficient xylitol production by evolved Candida maltosa adapted to corncob hemicellulosic hydrolysate. J. Chem. Technol. Biotechnol., 91(12), 2994-2999. Kasai, R., Nie, R. L., Nashi, K., Ohtani, K., Zhou, J., Tao, G. D., Tanaka, O. (1989). Sweet Cucurbitane Glycosides from Fruits of Siraitia-Siamensis (Chi-Ziluo-Han-Guo), a Chinese Folk Medicine. Agric. Biol. Chem., 53(12), 3347-3349. Kelmer Bracht, A., Alvarez, M., Bracht, A. (1985). Effects of Stevia rebaudiana natural products on rat liver mitochondria. Biochem. Pharmacol., 34(6), 873-882. Khan, S., Pozzo, T., Megyeri, M., Lindahl, S., Sundin, A., Turner, C., Karlsson, E. N. (2011). Aglycone specificity of Thermotoga neapolitana beta-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis. Bmc Biochemistry, 12. Kim, M. J., Yoo, S. H., Jung, S., Park, M. K., Hong, J. H. (2015). Relative sweetness, sweetness quality, and temporal profile of xylooligosaccharides and luo han guo (Siraitia grosvenorii) extract. Food Sci. Biotechnol., 24(3), 965-973. Knight, I. (1994). The development and applications of sucralose, a new high-intensity sweetener. Can. J. Physiol. Pharmacol., 72(4), 435-439. Ko, S. R., Suzuki, Y., Suzuki, K., Choi, K. J., Cho, B. G. (2007). Marked production of ginsenosides Rd, F2, Rg3, and compound K by enzymatic method. Chem. Pharm. Bull. (Tokyo), 55(10), 1522-1527. Koehl, P., Levitt, M. (2002). Sequence variations within protein families are linearly related to structural variations. J. Mol. Biol. , 323(3), 551-562. Larue, K., Melgar, M., Martin, V. J. J. (2016). Directed evolution of a fungal beta-glucosidase in Saccharomyces cerevisiae. Biotechnol. Biofuels., 9(52). Lee, C. (1975). Intense sweetener from Lo Han Kuo (Momordica grosvenori). Experientia, 31(5), 533-534. Li, D., Ikeda, T., Huang, Y., Liu, J., Nohara, T., Sakamoto, T., Nonaka, G. I. (2007). Seasonal variation of mogrosides in Lo Han Kuo (Siraitia grosvenori) fruits. J. Nat. Med., 61(3), 307-312. Liu, C., Dai, L. H., Dou, D. Q., Ma, L. Q., Sun, Y. X. (2016). A natural food sweetener with anti-pancreatic cancer properties. Oncogenesis, 5, 217. Liu, D. D., Ji, X. W., Li, R. W. (2013). Effects of Siraitia grosvenorii Fruits Extracts on Physical Fatigue in Mice. Iran J. Pharm. Res., 12(1), 115-121. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res., 42(Database issue), 490-495. Madan, S., Ahmad, S., Singh, G. N., Kohli, K., Kumar, Y., Singh, R., Garg, M. . (2010). Stevia rebaudiana (Bert.) Bertoni-a review. Indian J. Nat. Prod. Resour., 1(3), 267-286. Mathews., C. K., Holde., K. E. v., Ahern., K. G. (2000). Biochemistry Third edition. Addison-Wesley Publishing Company. Matsumoto, K., Kasai, R., Ohtani, K., Tanaka, O. (1990). Minor Cucurbitane-Glycosides from Fruits of Siraitia-Grosvenori (Cucurbitaceae). Chem. Pharm. Bull., 38(7), 2030-2032. Matsumoto, S., Jin, M., Dewa, Y., Nishimura, J., Moto, M., Murata, Y., Mitsumori, K. (2009). Suppressive effect of Siraitia grosvenorii extract on dicyclanil-promoted hepatocellular proliferative lesions in male mice. J. Toxicol. Sci., 34(1), 109-118. Murata, Y., Ogawa, T., Suzuki, Y. A., Yoshikawa, S., Inui, H., Sugiura, M., Nakano, Y. (2010). Digestion and Absorption of Siraitia grosvenori Triterpenoids in the Rat. BioSci. Biotechnol. Biochem., 74(3), 673-676. Murata, Y., Yoshikawa, S., Suzuki, Y. A., Sugiura, M., Inui, H., Nakano, Y. (2006). Sweetness characteristics of the triterpene glycosides in Siraitia grosvenori. J. JPN. Soc. Food. Sci., 53(10), 527-533. Ohkuma, M., Hwang, C. W., Masuda, Y., Nishida, H., Sugiyama, J., Ohta, A., Takagi, M. (1993). Evolutionary position of n-alkane-assimilating yeast Candida maltosa shown by nucleotide sequence of small-subunit ribosomal RNA gene. BioSci. Biotechnol. Biochem., 57(10), 1793-1794. Okuno, G., Kawakami, F., Tako, H., Kashihara, T., Shibamoto, S., Yamazaki, T., Saeki, M. (1986). Glucose tolerance, blood lipid, insulin and glucagon concentration after single or continuous administration of aspartame in diabetics. Diabetes Res. Clin. Pract., 2(1), 23-27. Palmnas, M. S., Cowan, T. E., Bomhof, M. R., Su, J., Reimer, R. A., Vogel, H. J., Shearer, J. (2014). Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLOS One, 9(10), 109841. Pan, M. H. Y., J. R.; Tsai, M. L.; Sang, S. M.; Ho, C. T. (2009). Anti-inflammatory effect of Momordica grosvenori Swingle extract through suppressed LPS-induced upregulation of iNOS and COX-2 in murine macrophages. J. Funct. Foods, 1(2), 145-152. Patrick, W. M., Nakatani, Y., Cutfield, S. M., Sharpe, M. L., Ramsay, R. J., Cutfield, J. F. (2010). Carbohydrate binding sites in Candida albicans exo‐β‐1, 3‐glucanase and the role of the Phe‐Phe ‘clamp’at the active site entrance. FEBS., 277(21), 4549-4561. Pawar, R. S., Krynitsky, A. J., Rader, J. I. (2013). Sweeteners from plants--with emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Anal. Bioanal. Chem., 405(13), 4397-4407. Philippe, R. N., De Mey, M., Anderson, J., Ajikumar, P. K. (2014). Biotechnological production of natural zero-calorie sweeteners. Curr. Opin. Biotechnol., 26, 155-161. Pinheiro, R., Belo, I., Mota, M. (2003). Growth and β‐galactosidase activity in cultures of Kluyveromyces marxianus under increased air pressure. Letters in Applied Microbiology, 37(6), 438-442. Qi., X., Chen., W., Zhang., L., Shan., X., Song., Y. (2006). Study on the Inhibitory Effects of Natural Sweetner Mogrosides on Radical and Lipid Peroxidation. Sci. Agric. Sin., 39(2), 382-388. Shivanna, N., Naika, M., Khanum, F., Kaul, V. K. (2013). Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J. Diabetes Complications, 27(2), 103-113. Sinnott, M. L. (1990). Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev., 90, 1171-1202. Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., Elinav, E. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 514(7521), Suez, J., Korem, T., Zilberman-Schapira, G., Segal, E., Elinav, E. (2015). Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes, 6(2), 149-155. Sun, B. S., Chen, Y. P., Wang, Y. B., Tang, S. W., Pan, F. Y., Li, Z., Sung, C. K. (2012). Anti-obesity effects of mogrosides extracted from the fruits of Siraitia grosvenorii (Cucurbitaceae). Afr. J. Pharm. Pharmacol., 6(20), 1492-1501. Sun, H., Xue, Y., Lin, Y. (2014). Enhanced catalytic efficiency in quercetin-4'-glucoside hydrolysis of Thermotoga maritima beta-glucosidase A by site-directed mutagenesis. J. Agric. Food Chem., 62(28), 6763-6770. Suzuki, Y. A., Murata, Y., Inui, H., Sugiura, M., Nakano, Y. (2005). Triterpene glycosides of Siraitia grosvenori inhibit rat intestinal maltase and suppress the rise in blood glucose level after a single oral administration of maltose in rats. J. Agric. Food Chem., 53(8), 2941-2946. Takasaki, M., Konoshima, T., Murata, Y., Sugiura, M., Nishino, H., Tokuda, H., Yamasaki, K. (2003). Anticarcinogenic activity of natural sweeteners, cucurbitane glycosides, from Momordica grosvenori. Cancer Lett., 198(1), 37-42. Takemoto, T. A., S.; Nakajima, T.; Okuhira, M. (1983a). Studies on the constituents of fructus Momordicae. I. On the sweet princple. Yakugaku Zasshi, 103, 1151-1154. Takemoto, T. A., S.; Nakajima, T.; Okuhira, M. (1983b). Studies on the constituents of Fructus momordicae. II. Structure of sapogenin. Yakugaku Zasshi, 103, 1155-1166. Takemoto, T. A., S.; Nakajima, T.; Okuhira, M. (1983c). Studies on the constituents of fructus Momordicae. III. Structure of mogrosides. Yakugaku Zasshi, 103, 1167-1173. Tang, Q., Ma, X., Mo, C., Wilson, I. W., Song, C., Zhao, H., Qiu, D. (2011). An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics, 12, 343. Tribolo, S., Berrin, J. G., Kroon, P. A., Czjzek, M., Juge, N. (2007). The crystal structure of human cytosolic beta-glucosidase unravels the substrate aglycone specificity of a family 1 glycoside hydrolase. J. Mol. Biol., 370(5), 964-975. Tsolmonbaatar, A., Hashida, K., Sugimoto, Y., Watanabe, D., Furukawa, S., Takagi, H. (2016). Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses. Int. J. Food Microbiol., 238, 233-240. Ukiya, M., Akihisa, T., Tokuda, H., Toriumi, M., Mukainaka, T., Banno, N., Nishino, H. (2002). Inhibitory effects of cucurbitane glycosides and other triterpenoids from the fruit of Momordica grosvenori on epstein-barr virus early antigen induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate. J. Agric. Food Chem., 50(23), 6710-6715. Vinokur, J. M., Korman, T. P., Cao, Z., Bowie, J. U. (2014). Evidence of a Novel Mevalonate Pathway in Archaea. Biochemistry, 53(25), 4161-4168. Weerawatanakorn, M., Yang, J. R., Tsai, M. L., Lai, C. S., Ho, C. T., Pan, M. H. (2014). Inhibitory effects of Momordica grosvenori Swingle extracts on 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumor promotion in mouse skin. Food & Function, 5(2), 257-264. Xia, Y. (2006). Supercritical fluid extraction of mogrosides from Siraitia grosvenorii. Department of Food Science and Agricultural Chemistry, McGill University (Montreal, Québec, Canada). Xiao., G., Wang., Q. (2008). Protective Effect of Mogrosides on Experimental Liver Injury in Mice. China Pharm., 19(3), 163-165. Xu, F., Li, D. P., Huang, Z. C., Lu, F. L., Wang, L., Huang, Y. L., Cai, S. Q. (2015). Exploring in vitro, in vivo metabolism of mogroside V and distribution of its metabolites in rats by HPLC-ESI-IT-TOF-MS(n). J. Pharm. Biomed. Anal., 115, 418-430. Yang, X. R., Xu, F., Li, D. P., Lu, F. L., Liu, G. X., Wang, L., Cai, S. Q. (2016). Metabolites of Siamenoside I and Their Distributions in Rats. Molecules, 21(2). Yang., X. W., Zhang., J. Y., Xu., W. (2007). Biotransformation of mogroside III by humanintestinal bacteria. J. Peking Univ. (Health Sci.), 39, 657-662. Yu, H., Zhang, C., Lu, M., Sun, F., Fu, Y., Jin, F. (2007). Purification and characterization of new special ginsenosidase hydrolyzing multi-glycisides of protopanaxadiol ginsenosides, ginsenosidase type I. Chem. Pharm. Bull. (Tokyo), 55(2), 231-235. Zhang, H., Yang, H., Zhang, M., Wang, Y., Wang, J., Yau, L., Hu, P. (2012). Identification of flavonol and triterpene glycosides in Luo-Han-Guo extract using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Food. Comp. Anal., 25, 142-148. Zheng, Y., Huang, W., Yoo, J. G., Ebersole, J. L., Huang, C. B. (2011). Antibacterial compounds from Siraitia grosvenorii leaves. Nat. Prod. Res., 25(9), 890-897. Zhou, Y. et al., World Intellectual Property Organization, WO 2014/150127 A1 (25 September, 2014) Zhou, Y., Zheng, Y., Ebersole, J., Huang, C. F. (2009). Insulin secretion stimulating effects of mogroside V and fruit extract of luo han kuo (Siraitia grosvenori Swingle) fruit extract. Yao Xue Xue Bao, 44(11), 1252-1257. Zhou., Y., Huang., C. (2008). Identification of the antibacterial activity from leaf, vine and root of Lo Han Kuo (Momordica grosvenorii). Lishizhen Med. Mater Med. Res., 19(7), 1797-1799. 潘利華., 羅建平. (2006) β-葡萄糖苷酶的研究及應用進展. 食品科學, 27(12) 李平., 宛曉春., 陶文沂., 丁霄霖. (2000) 黑曲霉β-葡萄糖苷酶的食品增香應用. 食品與發酵工業, 26(2): 5-6, 32 李卓璟. (2009). 以液相層析串聯質譜探討羅漢果皂素在酸與酵母菌模式中的結構轉換. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文, 臺北, 臺灣. 何偉平.,朱曉韻., 何超文. (2012) 羅漢果的應用研究進展及產品開發中存在的問題. 食品工業科技, 11:400-403 邱群惠. (2013). 羅漢果皂苷分析與利用靈芝及酵母菌對其進行生物轉換. 國立臺灣大學生物資源暨農學院食品科技研究所博士論文, 臺北, 臺灣. 中國食品添加劑和配料協會. (2012). 食品添加劑手冊(第三版). 中國輕工業出版社. 楊鴻元., 蔣向軍. (2011) 發酵型羅漢果酒的生產工藝研究. 安徽農業科學, 39(21): 13070-072 王帥., 陳冠軍., 張懷強., 王祿山. (2014). 碳水化合物活性酶數據庫 (CAZy) 及其研究趨勢. 生物加工過程, 12(1). 王如邦. (2016). 探討Saccharomyces cerevisiae kre6Δ突變株及Dekkera bruxellensis對羅漢果皂苷轉化之機制. 國立臺灣大學生物資源暨農學院食品科技研究所博士論文, 臺北, 臺灣. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77856 | - |
| dc.description.abstract | 先期研究發現不同種酵母菌(Saccharomyces cerevisiae 和Dekkera bruxellensis) 分泌的Exg1酵素具有不同生物轉換羅漢果(Siraitia grosvenorii Swingle)皂苷的能力。因此本實驗首先利用Exg1蛋白親緣性分析探討不同酵母菌株生物轉換粗羅漢果皂苷【mogroside V (MG V)、siamenoside I (S I)、mogroside Ⅳ (MG Ⅳ)和mogroside ⅢE (MG ⅢE)】的特性。實驗初步結果顯示Exg1親緣性相近的18株酵母菌水解羅漢果皂苷的能力不完全相同,並依羅漢果皂苷的生物轉換結果將菌株分成三群。第一群菌株主要生成MG ⅢE;第二群可觀察到生物轉換效率低,四種皂苷皆存在;第三群則是S I與MG ⅢE,隨發酵時間增加,S I有降低的趨勢,MG ⅢE隨之上升。我們進一步將隸屬第三群菌株以MG V標準品進行發酵,發現該群菌株生物轉換產物為S I和MG ⅢE,說明此類群菌株生成的酵素較傾向水解MG V三號碳端以β-1,6鍵結的醣基。據上述結果,由於Dekkera bruxellensis生物轉換羅漢果皂苷的效率低且欲提升Saccharomyces cerevisiae轉化羅漢果皂苷的效率,因此接著探討在序列相似度高的蛋白質中,影響皂苷轉換的關鍵胺基酸。初步結果顯示點突變酵素的生物轉換羅漢果皂苷速度與未修飾原酵素相比,ScExg1 I230L降低,ScExg1 A301S不變、ScExg1 Q304E提升、DbExg1 L207I不變、DbExg1 S278A和DbExg1 E281Q降低,說明經特定修飾後雖無法改變酵素專一性,但卻影響對於皂苷的轉換速率。綜合上述,我們以不同菌株發酵羅漢果皂苷並襯托出DbExg1基因能專一性將粗羅漢果皂苷中的MG V完全轉成S I,表示其獨特性與高度商業價值,期望未來可用作專門生產S I的最佳酵素,同時,我們也發現新一類群的菌株轉換羅漢果皂苷的機制與ScExg1和DbExg1截然不同。另外,目前無直接的證據證明氨基酸與轉換羅漢果皂苷的關係,但可依據可能的線索於未來做更深入的探討,期望對商業市場及酵素研究領域有所貢獻。 | zh_TW |
| dc.description.abstract | The previous studies found Exg1 was secreted from various yeasts (Saccharomyces cerevisiae and Dekkera bruxellensis) had different characteristics to bioconvert Siraitia grosvenorii Swingle mogrosides. Therefore, we investigated the bioconversion of crude Luo Han Guo (LHK) extract which contained mogroside V (MG V), siamenoside I (S I), mogroside Ⅳ (MG Ⅳ), and mogroside ⅢE (MG ⅢE) by different yeasts based on Exg1 evolutionary relationship. The results showed that 18 strains which had closly Exg1 evolutionary relationship to each other had different abilities to bioconvert mogrosides, and the strains were divided into three groups according to the bioconversion of LHK. The strains in first group mainly produced MG ⅢE; there are four kinds of compounds in the second group due to low bioconversion efficiency; the products of the third group were S I and MG ⅢE, with the fermentation time increased, the percent of S I ratio decreased and MG ⅢE ratio raised. MG V standard compound was further fermented with strains which belonged to third group, and found the products were S I and MG ⅢE. It indicated the enzyme produced by strains in third group tend to hydrolyze C3 end β-1,6 glycosidic bond of MG V. In order to improve low efficiency of mogrosides conversion by Dekkera bruxellensis and enhance the efficiency of mogrosides bioconversion by Saccharomyces cerevisiae, we used highly identitied Exg1 sequences to explore the key amino acids of LHK conversion. The results of point mutation showed that the rate to convert mogrosides by ScExg1 I230L was decreased, ScExg1 A301S was unchanged, ScExg1 Q304E was increased, DbExg1 L207I was unchanged, and DbExg1 S278A and DbExg1 E281Q were decreased compared with each unmodified enzyme. Although our specific modifications can’t change the enzyme specificity, they affect the conversion rate of mogrosides. To sum up, we used the different strains to ferment mogrosides can bring out the uniqueness and high commercial value of DbExg1 which can specifically convert MG V to S I. Hope it can be used as the best enzyme to produced S I in the future, and we also found the new mechanism of mogroside bioconversion by new group in our experiment which is different from ScExg1 and DbExg1. In addition, there is no direct evidence to prove the relationship between amino acids and conversion of mogrosides, but we can do more in-depth experiment based on possible clues, and contribute to commercial market and enzyme research. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:36:07Z (GMT). No. of bitstreams: 1 ntu-106-R04641013-1.pdf: 7032896 bytes, checksum: d876ca335c909a3f1e3e0ee73c4b4c80 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 總目錄 III 圖目錄 VI 表目錄 VIII 附錄目錄 IX 壹、前言 1 贰、文獻回顧 2 2.1. 甜味劑 2 2.1.1. 人工甜味劑 2 2.1.2. 天然甜味劑 4 2.2. 羅漢果(Siraitia grosvenorii) 8 2.2.1. 化學結構 8 2.2.2. 皂苷合成路徑 11 2.2.3. 含量及甜度特性 15 2.2.4. 生理功能 17 2.2.5. 代謝及分布 17 2.3. 化合物的生物轉化 19 2.4. β-葡萄糖苷酶 (β-glucosidase) 22 2.5. 碳水化合物活性酵素 23 2.5.1. 醣苷水解酵素分類 23 2.5.2. 醣苷水解酵素反應機制 25 2.6. 酵母菌保守性基因和酵素的演化 27 2.7. 序列修飾影響酵素水解特性 30 叁、研究目的及實驗架構 33 3.1. 研究目的 33 3.2. 實驗架構 33 肆、材料與方法 34 4.1. 實驗材料 34 4.1.1. 化學藥品及試劑 34 4.1.2. 菌株及菌株培養材料 35 4.2. 儀器設備 36 4.2.1. 實驗耗材 36 4.2.2. 一般儀器設備 36 4.2.3. 常壓層析管柱 37 4.2.4. 液相層析與質譜串聯系統 37 4.2.5. 應用軟體 37 4.3. 實驗方法 38 4.3.1. 酵母菌培養條件 38 4.3.2. HP-20樹脂分離純化crude MG ⅢE和crude S I 39 4.3.3. 固相萃取純化羅漢果皂苷 40 4.3.4. 薄層層析分析羅漢果皂苷 40 4.3.5. 液相層析串聯質譜(HPLC-ESI-MS)分析羅漢果皂苷 40 4.3.6. 基因轉殖以建構質體 41 4.3.7. 點突變探討菌株轉換羅漢果皂苷之影響 45 伍、結果與討論 46 5.1. 不同菌株發酵羅漢果 46 5.1.1. Cluster Ⅰ之菌株 46 5.1.1.1 生長曲線測試 46 5.1.1.2 菌株轉換皂苷之特性 47 5.1.2. Cluster Ⅱ之菌株 51 5.1.2.1生長曲線測試 51 5.1.2.2 菌株轉換皂苷之特性 51 5.1.3. Cluster Ⅲ之菌株 51 5.1.3.1生長曲線測試 51 5.1.3.2 菌株轉換皂苷之特性 51 5.1.4. Cluster Ⅳ之菌株 54 5.1.4.1生長曲線測試 54 5.1.4.2 菌株轉換皂苷之特性 56 5.2. DbExg1和ScExg1胺基酸序列之探討 65 5.2.1 修飾的ScExg1對羅漢果皂苷轉換之影響 66 5.2.2. 修飾的DbExg1對羅漢果皂苷轉換之影響 70 陸、結論與展望 75 柒、參考文獻 76 捌、附錄 84 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 羅漢果皂? | zh_TW |
| dc.subject | 點突變 | zh_TW |
| dc.subject | Exg1 | zh_TW |
| dc.subject | 酵母菌 | zh_TW |
| dc.subject | 生物轉換 | zh_TW |
| dc.subject | bioconversion | en |
| dc.subject | mogrosides | en |
| dc.subject | point mutation | en |
| dc.subject | yeast | en |
| dc.subject | Exg1 | en |
| dc.title | 不同酵母菌株對羅漢果皂苷轉化之影響 | zh_TW |
| dc.title | Effect of mogrosides bioconversion from different yeasts | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 105-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 呂廷璋;黃學聰 | zh_TW |
| dc.contributor.oralexamcommittee | Ting-Jang Lu;Shyue-tsong Huang | en |
| dc.subject.keyword | Exg1,酵母菌,生物轉換,羅漢果皂?,點突變, | zh_TW |
| dc.subject.keyword | Exg1,yeast,bioconversion,mogrosides,point mutation, | en |
| dc.relation.page | 106 | - |
| dc.identifier.doi | 10.6342/NTU201703958 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2017-08-19 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2027-12-31 | - |
| Appears in Collections: | 食品科技研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-105-2.pdf Restricted Access | 6.87 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
