Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77816
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳基旺zh_TW
dc.contributor.advisorJi-Wang Chernen
dc.contributor.author馮湘芷zh_TW
dc.contributor.authorSheang-Tze Fungen
dc.date.accessioned2021-07-11T14:35:22Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Hippius, H.; Neundörfer, G. The discovery of Alzheimer's disease. Dialogues Clin. Neurosci. 2003, 5, 101-108.
2. Huang, Y.; Mucke, L. Alzheimer Mechanisms and Therapeutic Strategies. Cell 2012, 148, 1204-1222.
3. Pievani, M.; de Haan, W.; Wu, T.; Seeley, W. W.; Frisoni, G. B. Functional network disruption in the degenerative dementias. Lancet. Neurol. 2011, 10, 829-843.
4. Singh, M.; Kaur, M.; Kukreja, H.; Chugh, R.; Silakari, O.; Singh D. Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur. J. Med. Chem. 2013, 70, 165-188.
5. Alzheimer’s Disease International. World Alzheimer Report 2016. London: Alzheimer’s Disease International, September 2016.
6. Alzheimer’s Disease International. World Alzheimer’s Report 2015: The Global Impact of Dementia. London: Alzheimer’s Disease International, October 2015.
7. Francis, P. T.; Palmer, A. M.; Snape, M.; Wilcock, G. K. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 1999, 66, 137-147.
8. Haass, C.; Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat. Rev. Mol. Cell Biol. 2007, 8, 101-112.
9. Karran, E.; Mercken, M.; De Strooper, B. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 2011, 10, 698-712.
10. Boutajangout, A.; Wisniewski, T. Tau-based therapeutic approaches for Alzheimer's disease - a mini-review. Gerontology 2014, 60, 381-385.
11. Praticò, D. Oxidative stress hypothesis in Alzheimer's disease: a reappraisal. Trends Pharmacol. Sci. 2008, 29, 609-615.
12. Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M. Metals, oxidative stress and neurodegenerative disorders. Mol. Cell. Biochem. 2010, 345, 91-104.
13. Ayton, S.; Lei, P.; Bush, A. I. Metallostasis in Alzheimer's disease. Free Radic. Biol. Med. 2013, 62, 76-89.
14. Heneka, M. T.; Carson, M. J.; Khoury J., E. I.; Landreth, G. E.; Brosseron, F.; Feinstein, D. L.; Jacobs, A. H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R. M.; Herrup, K.; Frautschy, S. A.; Finsen, B.; Brown, G. C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G. C.; Town, T.; Morgan, D.; Shinohara, M. L.; Perry, V. H.; Holmes, C.; Bazan, N. G.; Brooks, D. J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C. A.; Breitner, J. C.; Cole, G. M.; Golenbock, D. T.; Kummer, M. P. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 2015, 14, 388-405.
15. Onyango, I. G.; Dennis, J.; Khan, S. M. Mitochondrial Dysfunction in Alzheimer's Disease and the Rationale for Bioenergetics Based Therapies. Aging Dis. 2016, 7, 201-214.
16. Hardy, J.; Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002, 297, 353-356.
17. LaFerla, F. M.; Oddo, S. Alzheimer's disease: Abeta, tau and synaptic dysfunction. Trends Mol. Med. 2005, 11, 170-176.
18. Cavallucci, V.; D'Amelio, M.; Cecconi, F. Aβ toxicity in Alzheimer's disease. Mol. Neurobiol. 2012, 45, 366-378.
19. Bernstein, S. L.; Dupuis, N. F.; Lazo, N. D.; Wyttenbach, T.; Condron, M. M.; Bitan, G.; Teplow, D. B.; Shea, J. E.; Ruotolo, B. T.; Robinson, C. V.; Bowers, M. T. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat. Chem. 2009, 1, 326-331.
20. Salahuddin, P.; Fatima, M. T.; Abdelhameed, A. S.; Nusrat, S.; Khan, R. H. Structure of amyloid oligomers and their mechanisms of toxicities: Targeting amyloid oligomers using novel therapeutic approaches. Eur. J. Med. Chem. 2016, 114, 41-58.
21. Francis, P. T.; Palmer, A. M.; Snape, M.; Wilcock, G. K. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J. Neurol. Neurosurg. Psychiatry. 1999, 66, 137-147.
22. Lleó, A.; Greenberg, S. M.; Growdon, J. H. Current pharmacotherapy for Alzheimer's disease. Annu. Rev. Med. 2006, 57, 513-533.
23. Francis, P. T.; Palmer, A. M.; Snape, M.; Wilcock, G. K. The cholinergic hypothesis of Alzheimer’s disease: a review of progress J. Neurol. Neurosurg. Psychiatry 1999, 66, 137-147.
24. Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T. L.; Sussman, J. L. Acetylcholinesterase: From 3D Structure to Function. Chem. Biol. Interact. 2010, 187, 10-22.
25. Chatonnet, A.; Lockridge, O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem. J. 1989, 260, 625-634.
26. Mesulam, M.; Guillozet, A.; Shaw, P.; Quinn, B. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Neurobiol. Dis. 2002, 9, 88-93.
27. Arendt, T.; Bigl, V.; Walther, F.; Sonntag, M. Decreased ratio of CSF acetylcholinesterase to butyrylcholinesterase activity in Alzheimer's disease. Lancet.1984, 1, 173.
28. De Ferrari, G. V.; Canales, M. A.; Shin, I.; Weiner, L. M.; Silman, I.; Inestrosa, N. C. A Structural Motif of Acetylcholinesterase That Promotes Amyloid β-Peptide Fibril Formation. Biochemistry 2001, 40, 10447-10457.
29. Lovell, M. A.; Robertson, J. D.; Teesdale, W. J.; Campbell, J. L.; Markesbery, W. R. Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci. 1998, 158, 47-52.
30. Todorich, B. M.; Connor, J. R. Redox Metals in Alzheimer's Disease. Ann. N. Y. Acad. Sci. 2004, 1012, 171-178.
31. Lovell, M. A.; Robertson, J. D.; Teesdale, W. J.; Campbell, J. L.; Markesbery, W. R. Copper, iron and zinc in Alzheimer's disease senile plaques. J. Neurol. Sci. 1998, 158, 47-52.
32. Huang, X.; Moir, R. D.; Tanzi, R. E.; Bush, A. I.; Rogers, J. T. Redox-active metals, oxidative stress, and Alzheimer's disease pathology. Ann. N. Y. Acad. Sci. 2004, 1012, 153-163.
33. Huang, X.; Atwood, C. S.; Hartshorn, M. A.; Multhaup, G.; Goldstein, L. E.; Scarpa, R. C.; Cuajungco, M. P.; Gray, D. N.; Lim, J.; Moir, R. D.; Tanzi, R. E.; Bush, A. I. The Aβ Peptide of Alzheimer's Disease Directly Produces Hydrogen Peroxide through Metal Ion Reduction. Biochemistry 1999, 38, 7609-7616.
34. Zhu, X.; Su, B.; Wang, X.; Smith, M. A.; Perry, G. Causes of oxidative stress in Alzheimer disease. Cell Mol. Life Sci. 2007, 64, 2202-2210.
35. Cummings, J.; Lee, G.; Mortsdorf, T.; Ritter, A.; Zhong, K. Alzheimer's disease drug development pipeline: 2017. Alzheimers Dement (N Y) 2017, 3, 367-384.
36. Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer's disease. Arch. Pharm. Res. 2013, 36, 375-399.
37. Herrmann, N.; Chau, S. A.; Kircanski, I.; Lanctôt, K. L. Current and emerging drug treatment options for Alzheimer's disease: a systematic review. Drugs 2011, 71, 2031-2065.
38. Zemek, F.; Drtinova, L.; Nepovimova, E.; Sepsova, V.; Korabecny, J.; Klimes, J.; Kuca, K. Outcomes of Alzheimer's disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf. 2014, 13, 759-774.
39. Watkins, P. B.; Zimmerman, H. J.; Knapp, M. J.; Gracon, S. I.; Lewis, K. W. Hepatotoxic effects of tacrine administration in patients with Alzheimer's disease. JAMA 1994, 271, 992-998.
40. Zhang, H. Y. New insights into huperzine A for the treatment of Alzheimer's disease. Acta Pharmacol. Sin. 2012, 33, 1170-1175.
41. Folch, J.; Ettcheto, M.; Petrov, D.; Abad, S.; Pedrós, I.; Marin, M.; Olloquequi, J.; Camins, A. Review of the advances in treatment for Alzheimer disease: Strategies for combating β-amyloid protein. Neurología (English Edition) 2018, 33, 47-58.
42. Ghosh, A. K.; Osswald, H. L. BACE1 (beta-secretase) inhibitors for the treatment of Alzheimer's disease. Chem. Soc. Rev. 2014, 43, 6765-6813.
43. Luo, Y.; Bolon, B.; Kahn, S.; Bennett, B. D.; Babu-Khan, S.; Denis, P.; Fan, W.; Kha, H.; Zhang, J.; Gong, Y.; Martin, L.; Louis, J. C.; Yan, Q.; Richards, W. G.; Citron, M.; Vassar, R. Mice deficient in BACE1, the Alzheimer's beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat. Neurosci. 2001, 3, 231-232.
44. Yan, R. Stepping closer to treating Alzheimer's disease patients with BACE1 inhibitor drugs. Transl Neurodegener 2016, 5, 1-13.
45. Eketjall, S.; Janson, J.; Kaspersson, K.; Bogstedt, A.; Jeppsson, F.; Falting, J.; Haeberlein, S. B.; Kugler, A. R.; Alexander, R. C.; Cebers, G. AZD3293: A Novel, Orally Active BACE1 Inhibitor with High Potency and Permeability and Markedly Slow Off-Rate Kinetics. J. Alzheimers Dis. 2016, 50, 1109-1123.
46. Kennedy, M. E.; Stamford, A. W.; Chen, X.; Cox, K.; Cumming, J. N.; Dockendorf, M. F.; Egan, M.; Ereshefsky, L.; Hodgson, R. A.; Hyde, L. A.; Jhee, S.; Kleijn, H. J.; Kuvelkar, R.; Li, W.; Mattson, B. A.; Mei, H.; Palcza, J.; Scott, J. D.; Tanen, M.; Troyer, M. D.; Tseng, J. L.; Stone, J. A.; Parker, E. M.; Forman, M. S. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer's disease patients. Sci. Transl. Med. 2016, 8, 1-13.
47. Timmers, M.; Van Broeck, B.; Ramael, S.; Slemmon, J.; De Waepenaert, K.; Russu, A.; Bogert, J.; Stieltjes, H.; Shaw, L. M.; Engelborghs, S.; Moechars, D.; Mercken, M.; Liu, E.; Sinha, V.; Kemp, J.; Van Nueten, L.; Tritsmans, L.; Streffer, J. R. Profiling the dynamics of CSF and plasma Abeta reduction after treatment with JNJ-54861911, a potent oral BACE inhibitor. Alzheimers Dement (N Y) 2016, 2, 202-212.
48. Olsauskas-Kuprys, R.; Zlobin, A.; Osipo, C. Gamma secretase inhibitors of Notch signaling. Onco. Targets Ther. 2013, 6, 943-955.
49. Golde, T. E.; Koo, E. H.; Felsenstein, K. M.; Osborne, B. A.; Miele, L. γ-Secretase Inhibitors and Modulators. Biochim. Biophys. Acta 2013, 1828, 2898-2907.
50. Mayer, S. C.; Kreft, A. F.; Harrison, B.; Abou-Gharbia, M.; Antane, M.; Aschmies, S.; Atchison, K.; Chlenov, M.; Cole, D. C.; Comery, T.; Diamantidis, G.; Ellingboe, J.; Fan, K.; Galante, R.; Gonzales, C.; Ho, D. M.; Hoke, M. E.; Hu, Y.; Huryn, D.; Jain, U.; Jin, M.; Kremer, K.; Kubrak, D.; Lin, M.; Lu, P.; Magolda, R.; Martone, R.; Moore, W.; Oganesian, A.; Pangalos, M. N.; Porte, A.; Reinhart, P.; Resnick, L.; Riddell, D. R.; Sonnenberg-Reines, J.; Stock, J. R.; Sun, S. C.; Wagner, E.; Wang, T.; Woller, K.; Xu, Z.; Zaleska, M. M.; Zeldis, J.; Zhang, M.; Zhou, H.; Jacobsen, J. S. Discovery of Begacestat, a Notch-1-Sparing γ-Secretase Inhibitor for the Treatment of Alzheimer’s Disease. J. Med. Chem. 2008, 51, 7348-7351.
51. Doody, R. S.; Raman, R.; Sperling, R. A.; Seimers, E.; Sethuraman, G.; Mohs, R.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Sun, X.; Ernstrom, K.; Thomas, R. G.; Aisen, P. S. Peripheral and central effects of gamma-secretase inhibition by semagacestat in Alzheimer's disease. Alzheimers Res. Ther. 2015, 7, 1-7.
52. Fahrenholz, F.; Postina, R. Alpha-secretase activation--an approach to Alzheimer's disease therapy. Neurodegener. Dis. 2006, 3, 255-261.
53. Sampson, E. L.; Jenagaratnam, L.; McShane, R. Metal protein attenuating compounds for the treatment of Alzheimer's dementia. Cochrane Database Syst. Rev. 2012, CD005380.
54. Wisniewski, T.; Konietzko, U. Amyloid-β immunisation for Alzheimer’s disease. Lancet Neurol. 2008, 7, 805-811.
55. Morgan, D. Immunotherapy for Alzheimer's disease. J. Intern. Med. 2011, 269, 54-63.
56. Wang, Y. J. Alzheimer disease: Lessons from immunotherapy for Alzheimer disease. Nat. Rev. Neurol. 2014, 10, 188-189.
57. Bachurin, S. O.; Bovina, E. V.; Ustyugov, A. A. Drugs in Clinical Trials for Alzheimer's Disease: The Major Trends. Med. Res. Rev. 2017, 37, 1186-1225.
58. Cavalli, A.; Bolognesi, M. L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-Directed Ligands To Combat Neurodegenerative Diseases. J. Med. Chem. 2008, 51, 347-372.
59. Dias, K. S.; Viegas, C. J. Multi-Target Directed Drugs: A Modern Approach for Design of New Drugs for the treatment of Alzheimer's Disease. Curr. Neuropharmacol. 2014, 12, 239-255.
60. Wang, Y.; Wang, H.; Chen, H. Z. AChE Inhibition-based Multi-target-directed Ligands, a Novel Pharmacological Approach for the Symptomatic and Disease-modifying Therapy of Alzheimer's Disease. Curr. Neuropharmacol. 2016, 14, 364-375.
61. Bolognesi, M. L.; Cavalli, A.; Melchiorre, C. Memoquin: a multi-target-directed ligand as an innovative therapeutic opportunity for Alzheimer's disease. Neurotherapeutics 2009, 6, 152-162.
62. Yogev-Falach, M.; Bar-Am, O.; Amit, T.; Weinreb, O.; Youdim, M. B. A multifunctional, neuroprotective drug, ladostigil (TV3326), regulates holo-APP translation and processing. FASEB J. 2006, 20, 2177-2179.
63. Marco-Contelles, J.; Unzeta, M.; Bolea, I.; Esteban, G.; Ramsay, R. R.; Romero, A.; Martinez-Murillo, R.; Carreiras, M. C.; Ismaili, L. ASS234, As a New Multi-Target Directed Propargylamine for Alzheimer's Disease Therapy. Front Neurosci. 2016, 10, 294.
64. Hefti, F.; Weiner, W. J. Nerve growth factor and Alzheimer's disease. Annals. of Neurology 1986, 20, 275-281.
65. Eyjolfsdottir, H.; Eriksdotter, M.; Linderoth, B.; Lind, G.; Juliusson, B.; Kusk, P.; Almkvist, O.; Andreasen, N.; Blennow, K.; Ferreira, D.; Westman, E.; Nennesmo, I.; Karami, A.; Darreh-Shori, T.; Kadir, A.; Nordberg, A.; Sundström, E.; Wahlund, L. O.; Wall, A.; Wiberg, M.; Winblad, B.; Seiger, Å.; Wahlberg, L.; Almqvist, P. Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer's disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimers Res. Ther. 2016, 8, 1-11.
66. Huang, W.; Wei, W.; Shen, Z. Drug-like chelating agents: a potential lead for Alzheimer's disease RSC Adv. 2014, 4, 52088-52099.
67. LeVine, H. r.; Ding, Q.; Walker, J. A.; Voss, R. S.; Augelli-Szafran, C. E. Clioquinol and other hydroxyquinoline derivatives inhibit Abeta(1-42) oligomer assembly. Neurosci. Lett. 2009, 465, 99-103.
68. Adlard, P. A.; Cherny, R. A.; Finkelstein, D. I.; Gautier, E.; Robb, E.; Cortes, M.; Volitakis, I.; Liu, X.; Smith, J. P.; Perez, K.; Laughton, K.; Li, Q. X.; Charman, S. A.; Nicolazzo, J. A.; Wilkins, S.; Deleva, K.; Lynch, T.; Kok, G.; Ritchie, C. W.; Tanzi, R. E.; Cappai, R.; Masters, C. L.; Barnham, K. J.; Bush, A. I. Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron 2008, 59, 43-55.
69. Chang, P. T.; Talekar, R. S.; Kung, F. L.; Chern, T. R.; Huang, C. W.; Ye, Q. Q.; Yang, M. Y.; Yu, C. W.; Lai, S. Y.; Deore, R. R.; Lin, J. H.; Chen, C. S.; Chen, G. S.; Chern, J. W. A newly designed molecule J2326 for Alzheimer's disease disaggregates amyloid fibrils and induces neurite outgrowth. Neuropharmacology 2015, 92, 146-157.
70. Amit, T.; Bar-Am, O.; Mechlovich, D.; Kupershmidt, L.; Youdim, M. B. H.; Weinreb, O. The novel multitarget iron chelating and propargylamine drug M30 affects APP regulation and processing activities in Alzheimer's disease models. Neuropharmacology 2017, 123, 359-367.
71. Zheng, H.; Weiner, L. M.; Bar-Am, O.; Epsztejn, S.; Cabantchik, Z. I.; Warshawsky, A.; Youdim, M. B.; Fridkin, M. Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer's, Parkinson's, and other neurodegenerative diseases. Bioorg. Med. Chem. 2005, 13, 773-783.
72. Youdim, M. B.; Fridkin, M.; Zheng, H. Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech. Ageing Dev. 2005, 126, 317-326.
73. Ritchie, C. W.; Bush, A. I.; Mackinnon, A.; Macfarlane, S.; Mastwyk, M.; MacGregor, L.; Kiers, L.; Cherny, R.; Li, Q. X.; Tammer, A.; Carrington, D.; Mavros, C.; Volitakis, I.; Xilinas, M.; Ames, D.; Davis, S.; Beyreuther, K.; Tanzi, R. E.; Masters, C. L. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch. Neurol. 2003, 60, 1685-1691.
74. Mao, X.; Schimmer, A. D. The toxicology of Clioquinol. Toxicol. Lett. 2008, 182, 1-6.
75. Faux, N. G.; Ritchie, C. W.; Gunn, A.; Rembach, A.; Tsatsanis, A.; Bedo, J.; Harrison, J.; Lannfelt, L.; Blennow, K.; Zetterberg, H.; Ingelsson, M.; Masters, C. L.; Tanzi, R. E.; Cummings, J. L.; Herd, C. M.; Bush, A. I. PBT2 rapidly improves cognition in Alzheimer's Disease: additional phase II analyses. J. Alzheimers Dis. 2010, 20, 509-516.
76. Lannfelt, L.; Blennow, K.; Zetterberg, H.; Batsman, S.; Ames, D.; Harrison, J.; Masters, C. L.; Targum, S.; Bush, A. I.; Murdoch, R.; Wilson, J.; Ritchie, C. W. Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2008, 7, 779-786.
77. Shachar, D. B.; Kahana, N.; Kampel, V.; Warshawsky, A.; Youdim, M. B. Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology 2004, 46, 254-263.
78. Zhao, Y.; Sun, P.; Chen, B.; Lun, P.; Dou, Y.; Cao, W. W. A study on the effect of ion chelating agent on Alzheimer disease. Biomed. Res. 2017, 28, 8022-8026.
79. Borg, J. The neurotrophic factor, n-hexacosanol, reduces the neuronal damage induced by the neurotoxin, kainic acid. J. Neurosci. Res. 1991, 29, 62-67.
80. Azzouz, M.; Kenel, P. F.; Warter, J.-M.; Poindron, P.; Borg, J. Enhancement of mouse sciatic nerve regeneration by the long chain fatty alcohol, N-Hexacosanol. Exp. Neurol. 1996, 138, 189-197.
81. Polinsky, R. J. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer's disease. Clin. Ther. 1998, 20, 634-647.
82. Grossberg, G. T. Cholinesterase inhibitors for the treatment of Alzheimer's disease: getting on and staying on. Curr. Ther. Res. Clin. Exp. 2003, 64, 216-235.
83. Armitage, M.; Bret, G.; Choudary, B. M.; Kingswood, M.; Loft, M.; Moore, S.; Smith, S.; Urquhart, M. W. J. Identification and Development of an Efficient Route to SB-649915. Org. Process Res. Dev. 2012, 16, 1626-1634.
84. Kouznetsov, V. V.; Mendez, L. Y. V.; Gomez, C. M. M. Recent Progress in the Synthesis of Quinolines. Curr. Org. Chem. 2005, 9, 141-161.
85. Weissman, S. A.; Zewge, D. Recent advances in ether dealkylation. Tetrahedron 2005, 61, 7833-7863.
86. Yu, C. W.; Chen, G. S.; Huang, C. W.; Chern, J. W. Efficient Microwave-Assisted Pd-Catalyzed Hydroxylation of Aryl Chlorides in the Presence of Carbonate. Org. Lett. 2012, 14, 3688-3691.
87. Jann, M. W. Rivastigmine, a new-generation cholinesterase inhibitor for the treatment of Alzheimer's disease. Pharmacotherapy 2000, 20, 1-12.
88. Čolović, M. B.; Krstić, D. Z.; Lazarević-Pašti, T. D.; Bondžić, A. M.; Vasić, M. V. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013, 11, 315-335.
89. Furukawa-Hibi, Y.; Alkam, T.; Nitta, A.; Matsuyama, A.; Mizoguchi, H.; Suzuki, K.; Moussaoui, S.; Yu, Q. S.; Greig, N. H.; Nagai, T.; Yamada, K. Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-β peptide in mice. Behav. Brain. Res. 2011, 225, 222-229.
90. Hartmann, J.; Kiewert, C.; Duysen, E. G.; Lockridge, O.; Greig, N. H.; Klein, J. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J. Neurochem. 2007, 100, 1421-1429.
91. Greig, N. H.; Utsuki, T.; Yu, Q.; Zhu, X.; Holloway, H. W.; Perry, T.; Lee, B.; Ingram, D. K.; Lahiri, D. K. A new therapeutic target in Alzheimer's disease treatment: attention to butyrylcholinesterase. Curr. Med. Res. Opin. 2001, 17, 159-165.
92. Ellman, G. L.; Courtney, K. D.; Jr., V. A.; Featherstone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88-95.
93. Bush, A. I.; Tanzi, R. E. Therapeutics for Alzheimer's disease based on the metal hypothesis. Neurotherapeutics 2008, 5, 421-432.
94. Wang, Z.; Wang, Y.; Li, W.; Mao, F.; Sun, Y.; Huang, L.; Li, X. Design, synthesis, and evaluation of multitarget-directed selenium-containing clioquinol derivatives for the treatment of Alzheimer's disease. ACS Chem. Neurosci. 2014, 5, 952-962.
95. Wang, Z.; Wang, Y.; Wang, B.; Li, W.; Huang, L.; Li, X. Design, Synthesis, and Evaluation of Orally Available Clioquinol-Moracin M Hybrids as Multitarget-Directed Ligands for Cognitive Improvement in a Rat Model of Neurodegeneration in Alzheimer's Disease. J. Med. Chem. 2015, 58, 8616-8637.
96. Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications. Drug Des. Devel. Ther. 2013, 7, 1157-1178.
97. Hansen, M. B.; Nielsen, S. E.; Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 1989, 119, 203-210.
98. Moreira, P. I.; Santos, M. S.; Oliveira, C. R.; Shenk, J. C.; Nunomura, A.; Smith, M. A.; Zhu, X.; Perry, G. Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol. Disord. Drug Targets 2008, 7, 3-10.
99. Rodríguez-Franco, M. I.; Fernández-Bachiller, M. I.; Pérez, C.; Hernández-Ledesma, B.; Bartolomé, B. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J. Med. Chem. 2006, 49, 459-462.
100. Mao, F.; Yan, J.; Li, J.; Jia, X.; Miao, H.; Sun, Y.; Huang, L.; Li, X. New multi-target-directed small molecules against Alzheimer's disease: a combination of resveratrol and clioquinol. Org. Biomol. Chem. 2014, 12, 5936-5944.
101. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3-26.
102. Pajouhesh, H.; Lenz, G. R. Medicinal Chemical Properties of Successful Central Nervous System Drugs. NeuroRx. 2005, 2, 541-553.
103. Di, L.; Herns, E. H.; Hong, Y.; Chen, H. Development and application of high throughput plasma stability assay for drug discovery. Int. J. Pharm. 2005, 297, 110-119.
104. Chu, F.; Dueno, E. E.; Jung, K. W. Cs2CO3 promoted O-alkylation of alcohols for the preparation of mixed alkyl carbonates. Tetrahedron Lett. 1999, 40, 1847-1850.
105. Kitamura, C.; Maeda, N.; Kamada, N.; Ouchi, M.; Yoneda, A. Synthesis of 2-(substituted methyl)quinolin-8-ols and their complexation with Sn(II) J. Chem. Soc., Perkin Trans. 1 2000, 40, 781-785.
106. Sajiki, H.; Kuno, H.; Hirota, K. Suppression Effect of the Pd/C-Catalyzed Hydrogenolysis of a Phenolic Benzyl Protective Group by the Addition of Nitrogen—Containing Bases. Tetrahedron Lett. 1998, 39, 7127-7130.
107. Casnati, A.; Sansone, F.; Sartori, A.; Prodi, L.; Montalti, M.; Zaccheroni, N.; Ugozzoli, F.; Ungaro, R. Quinoline-Containing Calixarene Fluoroionophores: A Combined NMR, Photophysical and Modeling Study. Eur. J. Org. Chem. 2003, 1475-1485.
108. Kawase, M.; Kikugawa, Y. Intramolecular Cyclization of Alkylhydroxylamines in Acid. Chem. Pharm. Bull. 1981, 29, 1615-1623.
109. Braunholtz, W. T. K. A comparison of three isomeric carbocyanines. J. Chem. Soc., Trans., 1922, 121, 169-173.
110. Norbert, J. C.; Kantial, R. H.; Geoffrey, S.; Kevin, T.; Mervya, T. WIPO Patent: WO 2002034754 A2. 2011.
111. Zheng, H.; Youdim, M. B.; Fridkin, M. Site-activated chelators targeting acetylcholinesterase and monoamine oxidase for Alzheimer's therapy. ACS Chem. Biol. 2010, 5, 603-610.
112. Chan, S. H.; Chui, C. H.; Chan, S. W.; Kok, S. H.; Chan, D.; Tsoi, M. Y.; Leung, P. H.; Lam, A. K.; Chan, A. S.; Lam, K. H.; Tang, J. C. Synthesis of 8-Hydroxyquinoline Derivatives as Novel Antitumor Agents. ACS Med. Chem. Lett. 2013, 4, 170-174.
113. Bhattacharyya, S.; Chatterjee, A.; Williamson, J. S. Reductive Amination with Zinc Borohydride. Efficient, Safe Route to Fluorinated Benzylamines. Synth. Commun. 1997, 27, 4265-4274.
114. Lemes, L. F. N.; de Andrade Ramos, G.; de Oliveira, A. S.; da Silva, F. M. R.; de Castro Couto, G.; da Silva Boni, M.; Guimaraes, M. J. R.; Souza, I. N. O.; Bartolini, M.; Andrisano, V.; do Nascimento Nogueira, P. C.; Silveira, E. R.; Brand, G. D.; Soukup, O.; Korabecny, J.; Romeiro, N. C.; Castro, N. G.; Bolognesi, M. L.; L.A.S., R. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer's disease. Eur. J. Med. Chem. 2016, 108, 687-700.
115. Sang, Z.; Qiang, X.; Li, Y.; Yuan, W.; Liu, Q.; Shi, Y.; Ang, W.; Luo, Y.; Tan, Z.; Deng, Y. Design, synthesis and evaluation of scutellarein-O-alkylamines as multifunctional agents for the treatment of Alzheimer's disease. Eur. J. Med. Chem. 2015, 94, 348-366.
116. Xu, Y. X.; Wang, H.; Li, X. K.; Dong, S. N.; Liu, W. W.; Gong, Q.; Wang, T. D.; Tang, Y.; Zhu, J.; Li, J.; Zhang, H. Y.; Mao, F. Discovery of novel propargylamine-modified 4-aminoalkyl imidazole substituted pyrimidinylthiourea derivatives as multifunctional agents for the treatment of Alzheimer's disease. Eur. J. Med. Chem. 2018, 143, 33-47.
117. Chen, Z.; Digiacomo, M.; Tu, Y.; Gu, Q.; Wang, S.; Yang, X.; Chu, J.; Chen, Q.; Han, Y.; Chen, J.; Nesi, G.; Sestito, S.; Macchia, M.; Rapposelli, S.; Pi, R. Discovery of novel rivastigmine-hydroxycinnamic acid hybrids as multi-targeted agents for Alzheimer's disease. Eur. J. Med. Chem. 2017, 125, 784-792.
118. Chierrito, T. P. C.; Pedersoli-Mantoani, S.; Roca, C.; Requena, C.; Sebastian-Perez, V.; Castillo, W. O.; Moreira, N. C. S.; Perez, C.; Sakamoto-Hojo, E. T.; Takahashi, C. S.; Jimenez-Barbero, J.; Canada, F. J.; Campillo, N. E.; Martinez, A.; Carvalho, I. From dual binding site acetylcholinesterase inhibitors to allosteric modulators: A new avenue for disease-modifying drugs in Alzheimer's disease. Eur. J. Med. Chem. 2017, 139, 773-791.
119. Jeřábek, J.; Uliassi, E.; Guidotti, L.; Korábečný, J.; Soukup, O.; Sepsova, V.; Hrabinova, M.; Kuča, K.; Bartolini, M.; Peña-Altamira, L. E.; Petralla, S.; Monti, B.; Roberti, M.; Bolognesi, M. L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer's disease. Eur. J. Med. Chem. 2017, 127, 250-262.
120. Hegarty, S. V.; Sullivan A. M.; O'Keeffe, G. W. Protocol for evaluation of neurotrophic strategies in Parkinson’s disease-related dopaminergic and sympathetic neurons in vitro. J. Biol. Methods 2016, 3, 1-11.
121. Mishra, C. B.; Kumari, S.; Manral, A.; Prakash, A.; Saini, V.; Lynn, A. N.; Tiwari, M. Design, synthesis, in-silico and biological evaluation of novel donepezil derivatives as multi-target-directed ligands for the treatment of Alzheimer's disease. Eur. J. Med. Chem. 2017, 125, 736-750.
122. Zheng, H.; Youdim, M. B.; Fridkin, M. Site-activated multifunctional chelator with acetylcholinesterase and neuroprotective-neurorestorative moieties for Alzheimer's therapy. J. Med. Chem. 2009, 52, 4095-4098.
123. Ou, B.; Hampsch-Woodill, M.; Prior, R. L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619-4626.
124. Dávalos, A.; Gómez-Cordovés, C.; Bartolomé, B. Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J. Agric. Food Chem. 2004, 52, 48-54.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77816-
dc.description.abstract老年相關神經退化性疾病乃由神經元細胞以及神經突觸功能退化,隨著時間推進而惡化,為一種無法醫治且毀滅性的疾病。其中,阿茲海默症(又稱老年失智症)為最常見的神經退化性疾病;在過去這二十年期間,被視為影響全球健康醫療的重要議題。現今,臨床上治療阿茲海默症所使用的藥物主要可分為乙醯膽鹼酶抑制劑(donepezil、 galantamine、rivastigmine)以及NMDA受體拮抗劑(memantine)。然而,上述的藥物只能減輕該疾病所引起的症狀,而無法達到有效治癒的效果。該疾病主要的神經病理標誌物為β-類澱粉樣蛋白,在腦部神經元周圍逐漸堆積形成的斑塊,進而引發一系列的致病性級聯反應,最終造成神經細胞永久性損傷以及失智症狀。因此,近年來的治療策略主要著重於減少β-類澱粉樣蛋白的產生和堆積。然而,在臨床試驗研究上表示這些抗β-類澱粉樣蛋白藥物並未達到治療效果而宣告失敗,主要原因來自於β-類澱粉樣蛋白在腦內的複雜致病機制,因而開發出一創新的治療方法-¬多標靶藥物,進而取代先前的單一標靶藥物。藉由先前實驗室的研究,合成出一多標靶藥物J2326,即有金屬螯合能力、抗金屬誘導性的β-類澱粉樣蛋白堆積以及促進神經滋養活性。在此課題中,我們以J2326、正二十六醇以及rivastigmine的設計概念,設計、合成出新一系列的多標靶藥物,並探討其生物活性。經由結構與活性關係之研究結果證實5-二甲基氨基甲酸酯喹啉-2-氨基辛醇衍生物可做為具有奈米摩爾等級的膽鹼酯酶抑制劑。除此之外,體外生物活性評估結果也顯示其衍生物具有神經滋養活性、減少活性氧化物質生成能力,同時在理化性質上具有適當的溶解度可通過血腦屏障。此多標靶藥物之策略確實證明達到該病症之療效。綜合上述之研究,本論文所開發出來的化合物24a、43c和43d為最有潛力的膽鹼酯酶抑制劑,可進一步做為阿茲海默症之潛在治療藥物。zh_TW
dc.description.abstractAge-related neurodegenerative disorders are incurable and debilitating diseases which are marked by a progressive degeneration function of neuronal cells and synapses. Alzheimer’s disease (AD) is considered as the most ordinary neurodegenerative disorder and appears as a serious public health threat over the past two decades. The currently available medication of AD treatment belongs to acetylcholinesterase inhibitors (AChEI, donepezil, galantamine, and rivastigmine) and N-methyl-D-aspartate receptor (NMDA) antagonist (memantine). Regrettably, these anti-AD agents merely provide the symptoms relief or slow down the AD progression. Beta amyloid (Aβ) peptide, a major histopathological hallmark of AD, assembled to form amyloid plaques which consequently initiated a sequence of neuropathological events and caused the degeneration of neuronal process. Hence, reduction of Aβ has considered as the major target against AD recently. However, the anti-Aβ agents were failed to achieve their treatment effects in clinical trials due to the complex pathogenic mechanism of Aβ. Thus, an approach of multi-target directed ligands (MTDLs) has been discovered and prompted the investigation of it into innovative therapeutics over single-target anti-AD drugs. Our previous studies obtained the J2326 as MTDL with specific metal-chelating ability, anti-metal-induced Aβ aggregation, and neurite protection effects. Herein, this dissertation will advance the work of designed, synthesized, and biologically evaluated a novel series compound of multitarget agents by conjugating the pharmacophore of J2326 (8-methoxyquinoline), n-hexacosanol (long aliphatic chain alcohol), and rivastigmine (carbamate). Intensive structure-activity-relationship (SAR) studies of this project were identified the 2-(((8-hydroxyoctyl)amino)methyl)quinolin-5-yl dimethylcarbamate derivatives as potent cholinesterases (ChEs) inhibitors in nano-molar range. Besides, they also have the abilities to induce the neurotrophic activities, reduce reactive oxygen species (ROS) generation, as well as containing an appropriated solubility that could penetrate the blood-brain barrier (BBB). The strategy of MTDL has verified to offer potential therapeutic benefits in AD. Therefore, the compound 24a, 43c, and 43d which prepared in this dissertation with potent inhibitory activity against ChEs might serve as the promising candidates for the development of potential anti-AD drugs.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:35:22Z (GMT). No. of bitstreams: 1
ntu-107-F00423027-1.pdf: 8352701 bytes, checksum: 582c054357571f665aa0257adbd5afde (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………… i
中文摘要……………………………………………………………………… ii
Abstract…………………………………………………………………… iii
Contents…………………………………………………………………… v
List of Schemes………………………………………………………… vii
List of Figures…………………………………………………………… viii
List of Tables…………………………………………………………… x
List of Abbreviations………………………………………………… xii
Chapter 1. Alzheimer disease 1
1.1. Introduction of Alzheimer’s disease………………………… 1
1.2. Pathogenesis of AD…………………………………………….…… 2
1.2.1. Amyloid cascade hypothesis……………………… 2
1.2.2. Cholinergic hypothesis………………………………. 5
1.2.3. Oxidative stress and metal dyshomeostasis hypotheses…………………………………………… 7
1.3. Current strategies of AD drug development…………………… 8
1.4. Development of multi-target-directed ligands for the treatment of AD……………………………………………………………. 13
CHAPTER 2. Design and synthesis of quinoline scaffold containing long chain alcohol and carbamate moiety as potential anti-AD agents 16
2.1. Introduction……………………………………………………. 16
2.2. Rational design………………………………………………… 20
2.3. Chemistry………………………………………………………… 22
2.4. Results and discussion……………………………………… 34
2.4.1. In vitro cholinesterase enzymatic inhibitory activities 34
2.4.2. Assessment of metal-chelating properties…………… 45
2.4.3. Evaluation the in vitro neurotrophic activities……… 47
2.4.4. Assessment the neuronal cell viability……………….… 50
2.4.5. Assessment the in vitro antioxidant activity…………. 51
2.4.6. Physicochemical and pharmacokinetic (PK) properties to across the blood-brain barrier (BBB) …………………… 52
2.5. Summary…………………………………………………… 56
2.6. Experimental section…………………………………………… 57
2.6.1. Chemistry……………………………………………. 57
2.6.2. Biological evaluation…………………………… 139
CHAPTER 3. Conclusions and perspectives……………………….… 148
CHAPTER 4. References……………………………………………………… 152
-
dc.language.isoen-
dc.title兼具誘導神經元生長之膽鹼酯酶抑制劑作為阿茲海默症潛在治療藥物zh_TW
dc.titleThe Neurite Outgrowth Inducer with Cholinesterase Inhibitory Activities as Potential Agent for Anti-Alzheimer's Diseaseen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee顧記華;忻凌偉;梁碧惠;陳香惠zh_TW
dc.contributor.oralexamcommitteeJih-Hwa Guh;Ling-Wei Hsin;Pi-Hui Liang;Shiang-Huei Chenen
dc.subject.keyword阿茲海默症,乙醯膽鹼?抑制劑,多標靶藥物,神經滋養,血腦屏障,zh_TW
dc.subject.keywordAlzheimer’s disease,acetylcholinesterase inhibitors,multi-target directed ligands,neurotrophic activities,blood-brain barrier,en
dc.relation.page167-
dc.identifier.doi10.6342/NTU201800890-
dc.rights.note未授權-
dc.date.accepted2018-06-19-
dc.contributor.author-college醫學院-
dc.contributor.author-dept藥學研究所-
dc.date.embargo-lift2023-10-09-
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  目前未授權公開取用
8.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved