請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7769完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡恆修(Henghsiu Tsai) | |
| dc.contributor.author | Ting-Hung Yu | en |
| dc.contributor.author | 余定宏 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:52:56Z | - |
| dc.date.available | 2022-07-20 | |
| dc.date.available | 2021-05-19T17:52:56Z | - |
| dc.date.copyright | 2017-07-20 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-17 | |
| dc.identifier.citation | [1] Y. Aït-Sahalia. Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach. Econometrica, 70(1):223–262, 2002.
[2] Y. Aït-Sahalia and P. A. Mykland. Estimators of diffusions with randomly spaced discrete observations: a general theory. Annals of Statistics, pages 2186–2222, 2004. [3] P. Brockwell, R. Davis, and Y. Yang. Continuous-time gaussian autoregression. Statistica Sinica, 17(1):63, 2007. [4] P. Brockwell and R. Hyndman. On continuous-time threshold autoregression. International Journal of Forecasting, 8(2):157–173, 1992. [5] P. Brockwell and O. Stramer. On the approximation of continuous time threshold ARMA processes. Annals of the Institute of Statistical Mathematics, 47(1):1–20, 1995. [6] P. J. Brockwell. On continuous-time threshold ARMA processes. Journal of Statistical Planning and Inference, 39(2):291–303, 1994. [7] P. J. Brockwell, R. J. Hyndman, and G. K. Grunwald. Continuous time threshold autoregressive models. Statistica Sinica, pages 401–410, 1991. [8] K.-S. Chan. Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. The annals of statistics, pages 520–533, 1993. [9] K.-S. Chan and R. S. Tsay. Limiting properties of the least squares estimator of a continuous threshold autoregressive model. Biometrika, 85(2):413–426, 1998. [10] J. Chang, S. X. Chen, et al. On the approximate maximum likelihood estimation for diffusion processes. The Annals of Statistics, 39(6):2820–2851, 2011. [11] J. C. Cox, J. E. Ingersoll Jr, and S. A. Ross. A theory of the term structure of interest rates. Econometrica: Journal of the Econometric Society, pages 385–407, 1985. [12] P. D. Feigin. Maximum likelihood estimation for continuous-time stochastic processes. Advances in Applied Probability, 8(4):712–736, 1976. [13] B. E. Hansen. Inference in TAR models. Studies in nonlinear dynamics & econometrics, 2(1), 1997. [14] B. E. Hansen. Threshold autoregression in economics. Statistics and its Interface, 4(2):123–127, 2011. [15] T. Henghsiu. Topics in continuous-time modeling, 1998. [16] I. Karatzas and S. Shreve. Brownian motion and stochastic calculus, volume 113. Springer Science & Business Media, 2012. [17] F. C. Klebaner. Introduction to stochastic calculus with applications. World Scientific Publishing Co Inc, 2005. [18] Y. A. Kutoyants. On identification of the threshold diffusion processes. Annals of the Institute of Statistical Mathematics, 64(2):383–413, 2012. [19] D. Li and S. Ling. On the least squares estimation of multiple-regime threshold autoregressive models. Journal of Econometrics, 167(1):240–253, 2012. [20] D. Li, S. Ling, and J.-M. Zakoïan. Asymptotic inference in multiple-threshold double autoregressive models. Journal of Econometrics, 189(2):415–427, 2015. [21] O. Stramer, R. Tweedie, and P. Brockwell. Existence and stability of continuous time threshold arma processes. Statistica Sinica, pages 715–732, 1996. [22] F. Su. Statistical analysis of non-linear diffusion process, 2011. [23] F. Su and K.-S. Chan. Quasi-likelihood estimation of a threshold diffusion process. Journal of Econometrics, 189(2):473–484, 2015. [24] H. Tong. Non-linear time series. A Dynamical System Approach, 1990. [25] H. Tong. Nonlinear time series analysis since 1990: Some personal reflections. Acta Mathematicae Applicatae Sinica (English Series), 18(2):177–184, 2002. [26] H. Tong and I. Yeung. Threshold autoregressive modeling in continuous time. Statistica Sinica, pages 411–430, 1991. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7769 | - |
| dc.description.abstract | 本論文係根據Su和Chan於2015年~cite{su2015quasi}所提出的quasi-likelihood estimator(QLE)所發想而成,其中我們關注在如何計算單一閾值擴散過程(a threshold diffusion process)其最大概似估計量(maximum likelihood estimator)的問題。起因是現實世界的觀測的資料是離散而且可能是不規則區間(irregularly-spaced),且針對閾值擴散過程其最大概似估計量(maximum likelihood estimator)也因其概似函數(likelihood function)為非線性的結構,所以閾值擴散過程的最大概似估計量只有以隨機積分(stochastic integrals)表示的隱形式(implicit form),也因此產生一個問題:如何使用離散而不規則的資料去“近似”單一閾值擴散過程的最大概似估計量?針對這個問題,我們提出了所謂“近似最大概似估計法(approximate maximum likelihood method)”去估計單一閾值擴散過程上的參數,而根據此法而得的估計量則稱為“近似最大概似估計量(approximate maximum likelihood estimator;AMLE)”;更進一步,我們利用模擬的結果去給出近似最大概似估計量的大樣本性質,並且也利用這個方法針對長期的利率結構進行一些判讀,而使用的利率資料為Federal Reserve Bank's H15 資料集中的three-month US treasury rate 和 10-year treasury constant maturity rate-3-month treasury bill: secondary market rate 。 | zh_TW |
| dc.description.abstract | Based on the idea of quasi-likelihood estimator(QLE) in Su and Chan(2015), we focus on a problem arisen from estimating the maximum likelihood estimators(MLEs) for a threshold diffusion process. Since the data observed are discrete in the real world, and MLE for a threshold diffusion process is an implicit form of stochastic integrals due to the nonlinear structure of likelihood function of the threshold diffusion process, there might arise the question: how to 'approximate' the MLEs via using the discrete data without the analytic form of the estimator? Therefore, we propose an approximate maximum likelihood method for estimating MLEs of a threshold diffusion process, and the estimator we obtain is called approximate maximum likelihood estimator(AMLE). Moreover, from the simulation results, we give some conjectures about the large sample properties of the AMLE. Finally, we apply our method to study the term structure of a long time series of US interest rates (three-month US treasury rate and 10-year treasury constant maturity rate-3-month treasury bill: secondary market rate, which are based on the Federal Reserve Bank's H15 data set). | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:52:56Z (GMT). No. of bitstreams: 1 ntu-106-R04246013-1.pdf: 3224711 bytes, checksum: dd23d2d8739ffa532b4e5c8cf3cbe8ed (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Contents
誌謝 iii 摘要 v Abstract vii 1 Introduction 1 2 Introduction to Quasi-Likelihood Estimation Method 5 2.1 Introduction to the Threshold Diffusion Process 5 2.2 Estimation Framework of Quasi-Likelihood 8 2.3 Asymptotic theory of Quasi-Likelihood Estimation 9 3 Approximate Maximum Likelihood Estimation 13 3.1 The Idea of Approximate Maximal Likelihood Estimation 13 3.2 Estimation Procedure for AMLE 14 3.3 Some Large Sample Conjectures about AMLE 18 4 Simulation 21 4.1 Ornstein-Uhlenbeck process with Both the Drift and the Diffusion Are Nonlinear 22 4.2 Ornstein-Uhlenbeck process with Only the Diffusion Is Nonlinear 24 4.3 Cox-Ingersoll-Ross model with Both the Drift and the Diffusion Are Non- linear 25 4.4 Cox-Ingersoll-Ross model with Only the Diffusion Is Nonlinear 28 5 Application 31 5.1 3-Month Treasury Bill: from 1934.1.1 to 2017.4.1 32 5.2 10-Year Treasury Constant Maturity Rate-3-Month Treasury Bill: from 1962.1.2 to 2017.5.11 33 6 Conclusion 35 Bibliography 37 | |
| dc.language.iso | en | |
| dc.title | 閾值擴散過程的近似最大概似估計法 | zh_TW |
| dc.title | Approximate Maximum Likelihood Estimation of a Threshold Diffusion Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 翁久幸(Ruby Chiu-Hsing Weng),銀慶剛(Ching-Kang Ing) | |
| dc.subject.keyword | 不規則區間資料,閾值擴散過程,非線性連續時間序列,隨機微分方程,最大概似估計, | zh_TW |
| dc.subject.keyword | irregularly-spaced data,threshold diffusion process,nonlinear continuous time series,stochastic differential equation,maximal likelihood estimator, | en |
| dc.relation.page | 39 | |
| dc.identifier.doi | 10.6342/NTU201701414 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-07-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用數學科學研究所 | zh_TW |
| 顯示於系所單位: | 應用數學科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf | 3.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
