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摘要

本論文係根據 Su和 Chan於 2015年 [23]所提出的 quasi-likelihood

estimator(QLE)所發想而成，其中我們關注在如何計算單一閾值擴散過

程 (a threshold diffusion process)其最大概似估計量 (maximum likelihood

estimator)的問題。起因是現實世界的觀測的資料是離散而且可能是

不規則區間 (irregularly-spaced)，且針對閾值擴散過程其最大概似估計

量 (maximum likelihood estimator)也因其概似函數 (likelihood function)

為非線性的結構，所以閾值擴散過程的最大概似估計量只有以隨機積

分 (stochastic integrals)表示的隱形式 (implicit form)，也因此產生一個

問題：如何使用離散而不規則的資料去“近似”單一閾值擴散過程的

最大概似估計量？針對這個問題，我們提出了所謂“近似最大概似估

計法 (approximate maximum likelihood method)”去估計單一閾值擴散過

程上的參數，而根據此法而得的估計量則稱為“近似最大概似估計量

(approximate maximum likelihood estimator；AMLE)”；更進一步，我們

利用模擬的結果去給出近似最大概似估計量的大樣本性質，並且也利

用這個方法針對長期的利率結構進行一些判讀，而使用的利率資料

為 Federal Reserve Bank’s H15 資料集中的 three-month US treasury rate

和 10-year treasury constant maturity rate-3-month treasury bill: secondary

market rate。

關鍵字：不規則區間資料,閾值擴散過程,非線性連續時間序列,隨

機微分方程,最大概似估計。
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Abstract

Based on the idea of quasi-likelihood estimator(QLE) in Su andChan(2015),

we focus on a problem arisen from estimating the maximum likelihood esti-

mators(MLEs) for a threshold diffusion process. Since the data observed are

discrete in the real world, and MLE for a threshold diffusion process is an im-

plicit form of stochastic integrals due to the nonlinear structure of likelihood

function of the threshold diffusion process, there might arise the question:

how to ”approximate” the MLEs via using the discrete data without the ana-

lytic form of the estimator? Therefore, we propose an approximate maximum

likelihood method for estimating MLEs of a threshold diffusion process, and

the estimator we obtain is called approximate maximum likelihood estima-

tor(AMLE). Moreover, from the simulation results, we give some conjectures

about the large sample properties of the AMLE. Finally, we apply our method

to study the term structure of a long time series of US interest rates (three-

month US treasury rate and 10-year treasury constant maturity rate-3-month

treasury bill: secondary market rate, which are based on the Federal Reserve

Bank’s H15 data set).

Keywords:irregularly-spaced data, threshold diffusion process, nonlinear

continuous time series, stochastic differential equation, maximum likelihood

estimator.
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Chapter 1

Introduction

In recent years, the diffusion process has been a standard tool for modeling the uncer-

tainty of risky assets in financial markets, and the results are usually considered to be the

benchmarks when people trade or hedge these risky assets in practice. Specifically, for the

purpose of modeling the market yield, e.g., interest rate, there arises a number of diffusion

models in the literature, such as the famous CIR model(Cox et al. 1985, [11]) which is

used to capture the pattern of an interest rate process. Though the CIR model is equipped

a square root diffusion term, it is still fail to catch asymmetric volatility when there exists

nonlinear characteristic and conditional heteroscedasticity in real data.

Since we face aforementioned problems, it is natural to extend a linear model to a

nonlinear model, and the common one is the famous continuous-time threshold autore-

gressive(CTAR) model, which is introduced by Tong(1990) [24]. By the definition(see

section 2), the first-order CTARmodel turns out to be the threshold diffusion(TD) process

automatically. In this case, a TD process is a solution to a stochastic differential equa-

tion(SDE) with a piecewise linear drift term and a piecewise smooth diffusion term, e.g.,

a piecewise constant function or a piecewise power function.

Since the underlying processes in continuous time models are usually given, the max-

imal likelihood(ML) theory is a natural candidate to be considered when we want to es-

timate the parameters in those models. In this case, Feigin(1976) [12] derives the ML

theory for continuous time processes via using the martingale limit theorem and some

properties of Markov processes under some regular conditions. However, Feigin’s setting

focused on asymptotic properties of ML estimates for continuous models with differen-

tiable drift term and a constant diffusion term though it can be used in a wide-range regular

1
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distribution class.

After that, Tong and Yeung(1991) [26] extended the idea from threshold autoregres-

sive(TAR) time series to CTAR. In the view of nonlinear diffusion models, Brockwell and

Hyndman(1992) [4] developed a recursive method to calculate the estimates of CTAR

and use it to do prediction. Moreover, Brockwell(1994) [6] used the same idea to extend

CTAR models to continuous-time threshold ARMA(CTARMA) processes with a positive

boundary on threshold parameters, and Brockwell and Stramer(1995) [5] emphasized on

how to approximate the boundary to the threshold parameter.

It also needs to mention the brilliant works that Brockwell et al(2007) [3] did. They

proposed conditional maximal likelihood estimation(CMLE) for CAR(p) model via using

closely-spaced discrete data and derive its asymptotic normality. Moreover, they also used

the same method to give the formula to calculate and to simulate estimates for CTAR(p)

models with a constant diffusion term. To sum up, their work gives a simple but efficient

approach to calculate a good estimate for CTAR(p) with constant diffusion at a heuristic

stage.

On the other hand, to focus on the MLE for the differentiable nonlinear diffusion pro-

cess ,Aït-Sahalia(2002) [1], Aït-Sahalia andMykland(2004) [2] ,andChang et al.(2011) [10]

did some exciting works. The first one started to use a series-expansion approach to imple-

ment regular-spaced data to approximate the transition density of the multivariate differ-

entiable nonlinear diffusion process, but it did not analyze the asymptotic behavior of the

approximate maximum likelihood estimation(AMLE) which he named. Thus, the third

one gave the details of the asymptotic results in some practical scenarios for the first one.

The second one follow the first one as well. They extended such approximate approach

with somemodifications to the time separating successive observationwhichmay possibly

be random. Although what they have done extend our knowledge to use the discrete data

to estimate the parameters on the multivariate differentiable nonlinear diffusion process,

yet it is still mysterious on the field of estimating the threshold diffusion process.

Surprisingly, Su andChan(2015) [23] proposed quasi-likelihood estimation(QLE)method

to solve the problem of estimating the drift parameters indexing the drift term of a thresh-

old diffusion process without the prior knowledge of the functional form of the diffusion

term. Their work, which focused on the piecewise linear drift and allows the misspecifi-

cation on the diffusion form, extended the case of CTAR(1) in Brockwell et al(2007) [3].

2
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Since the underlying process is the standard Brownian motion, the estimation framework

and asymptotic theorems of QLE parallel to the those of the least squared method for TAR

models, which was proposed by Chan(1993) [8], Chan and Tsay(1988) [9].

Here, we found a problem that theQL approachwould fail when threshold phenomenon

present in the diffusion term only. That is, the process is equipped with an affine drift and

a piecewise smooth diffusion term, e.g., a piecewise constant function. On the other hand,

while we want to specify the process with a piecewise smooth diffusion term, the exact

MLE of the TD process is the nonlinear functional form of the stochastic integrals. Under

such intractable problem, how could we ”approximate” the ML estimates by using the

discrete data?

To solve the problems we concerned, we propose an approximate ML approach for

estimating both the drift and the diffusion parameters of a TD process simultaneously

at two stages. First, we assume the threshold parameter is known and differentiate the

log-likelihood function, which is constructed by the irregular-spaced discrete data and the

famous Cameron-Martin-Girsanov formula, with respect to parameters, and then set the

derivatives equal to zero to obtain an iterative formula.

In practice, however, the threshold parameter, say r0, is unknown. So, in the second

stage, we obtain the MLE of r0 by optimizing log-likelihood function via using the grid

search on a prespecified data interval. Moreover, the simulation result shows that the

asymptotic behavior of the MLE of the drift and the diffusion parameters of a TD process

assuming the threshold parameter known is the same as the results assuming the threshold

parameter is unknown. For simplicity, we mainly treat the TD process as a two-regime

TD process in the whole thesis, and the results could be generalized to the multiple-regime

TD process.

In addition to the theoretical discussion, we demonstrate some simulation results for

ourAMLE. In that section, we perform theOrnstein-Uhlenbeck processwith two cases:only

diffusion is threshold and both drift and diffusion are threshold; as a result, our AMLE con-

verges to the true value as the observed interval getting larger. Besides, we also demon-

strate the Cox-Ingersoll-Ross model with threshold in both drift and diffusion. The simu-

lation results perform.

In the view of application , we use ourAMLE and the two-regimeTDmodel with/without

square-root diffusion term to get a simulation study and to estimate the term structure of

3
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a long time series of US interest rates (three-month US treasury rate based on the Federal

Reserve Bank’s H15), which was used in Su and Chan(2015), and 10-Year Treasury Con-

stant Maturity Rate-3-Month Treasury Bill: Secondary Market Rate . The conclusion will

be given in the last.

4
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Chapter 2

Introduction to Quasi-Likelihood

Estimation Method

2.1 Introduction to the Threshold Diffusion Process

For the purpose of making the results clearly, it is necessary to introduce the threshold

diffusion process. We start from the general nonlinear diffusion process:

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dW (t) (2.1)

where the function µ(x, t) is called the drift term , the function σ(x, t) is the diffusion

term, andW (t) is the standard Brownian process.

In this model, the drift term,µ(x, t), represents the instantaneous mean function, and

the diffusion term, σ(x, t), is the instantaneous variance function. Here, we put our at-

tention on the case that the drift term and diffusion term are time-homogeneous, that is,

µ(x, t) ≡ µ(x), σ(x, t) ≡ σ(x). Usually, those functions are equipped some parameters,

and we write µβ for µ and σν for σ, where the drift parametes β and diffusion parameters

ν are vectors that may have some common values.

Among all nonlinear diffusion processes, the first-order q-regime threshold diffusion(TD)

process, which is the first-order continuous-time threshold autoregressive(CTAR(1)) time

series(see [26]) with the threshold diffusion, has received much attention in the literature,

and it is defined to be the solution of the following stochastic differential equation(SDE):

5
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dX(t) =

q∑
j=1

{β⊤
j

 1

X(t)

 dt+ σjdW (t)}I(rj−1 < X(t) ≤ rj). (2.2)

where −∞ = r0 < r1 < · · · < rq = ∞ are the threshold parameters, β⊤
j =

(βj0, βj1), j = 1, · · · , q, are the autoregressive parameters, σj, j = 1, · · · , q, are the dif-

fusion parameters, andW (t) is the standard Brownian process.

In this case, the drift term is a piecewise function while the diffusion term is a piece-

wise constant function, and the two functions have the same threshold points. Specif-

ically, µ(x) =
∑q

j=1(βj0 + βj1x)I(rj−1 < x ≤ rj), and σ(x) =
∑q

j=1 σjI(rj−1 <

x ≤ rj). When the process is in the jth regime, i.e. X(t) ∈ (rj−1, rj], it is an Ornstein-

Uhlenbeck(OU) process, which is widely used in the application of financial pricing and

economic forecast(see [25], [14], [22]). Thus, the q-regime TD process above can be used

to model the situation that a process is doubt to be governed by the different OU mecha-

nism in each interval. Also, due to the properties of a Brownian motion, the TD process

would switch regime to regime infinitely many times in an arbitrary small time interval.

Since we have the TD process now, it might be natural to ask when the stationary

solution of a TD process will exist. The following theorem give us the necessary and

sufficient conditions to conclude the existence of the stationary solution of a TD process,

and it gives the form of the solution as well.(see [5], [4], [21] )

Theorem 2.1.1. Suppose σj > 0, j = 1, · · · , q. Then the process defined in (2.2) has a

stationary distribution if, and only if

lim
x→−∞

µ(x) > 0 and lim
x→∞

µ(x) < 0 (2.3)

i.e., β11 < 0 and βq1 > 0, or in the case that β11 = 0 (βq1 = 0) and β10 < 0 (βq0 > 0).

Further, if (2.3) is hold, the stationay density of (2.2) is given by

π(x) =

q∑
j=1

kjexp(
2βj0x+ βj1x

2

σ2
j

)I(rj−1 < X(t) ≤ rj) (2.4)

where the constants kj are determined by the following conditions:

6
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(i)

∫ ∞

−∞
π(x) = 1 (2.5)

(ii)

σ2
jπ(rj−) = σ2

j+1π(rj+), j = 1, · · · , q (2.6)

where π(rj−) and π(rj+) are the left and right limits of π at rj , respectively.

That is, the function σ2(x)π(x) is continuous at all threshold points, and the stationary

density function, π(x), is continuous only if the variance function, σ2(x), is continuous at

the threshold points.

Proof : see reference [4] or [7] for a clear discussion.

Remark 2.1 It is obviously that the stationary density above is generally non-Gaussian,

asymmetric, and multi-modal for a TD process. Also, the form of the stationary density

implies that it has finite moment of all orders and is geometrically ergodic(see [18]).

To accommodate a more general model class, we can relax the piecewise constant dif-

fusion term to a piecewise smooth function. For example, by using power transformation,

i.e., replacing σj by σjx
γj where γj are known parameters, we can still get the result as

the same as Theorem2.1 via using the famous Ito formula and rewriting the stationary

conditions.(see [21], [23])

Example 2.1 To summarize this section, we give an example to demonstrate the re-

sults above. The threshold diffusion process we consider is dXt = ((−2 − 5Xt)dt +

4dWt)I(Xt ≤ 0) + ((3 − 3Xt)dt + 8dWt)I(Xt > 0) where Wt stands for the standard

Brownian process.

From the (2.1.1), since the process satisfies (2.3), we have the stationary distribution

of this process:

π(x) = k1exp(
−5(x+2/5)2

42
)I(x ≤ 0) + k2exp(

−3(x−1)2

82
)I(x > 0)

where

k1 = (
√

16π
5
Φ( 1√

10
) +

√
64π
5
(1− Φ(−

√
32
5
)
exp( −1

320
)

4
))−1 and k2 = (

exp( −1
320

)

4
)k1

Noting thatΦ(·) is the cumulative density function of the standard normal distribution.

7
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2.2 Estimation Framework of Quasi-Likelihood

Since our work is based on the results in Su and Chan(2015) [23], it is important to

introduce the QLE. We, here, mainly focus on discussing the estimation framework and

the asymptotic results, which are the factors that inspire the idea for AMLE. We start with

the following model:

dX(t) =

q∑
j=1

{β⊤
j

 1

X(t)

}I(rj−1 < X(t) ≤ rj)dt+ σ(X(t))dW (t). (2.7)

where −∞ = r0 < r1 < · · · < rq = ∞ are the threshold parameters, β⊤
j =

(βj0, βj1), j = 1, · · · , q, are the autoregressive parameters, σ(X(t),is an unspecified dif-

fusion function, andW (t) is a standard Brownian process.

Let Pθ be the probability measure of a general diffusion process, { X(t), 0 ≤ t ≤

T} , with drift term indexed by θ, say µθ and P be a probability measure for W (t) ,

Su and Chan use the celebrated Girsanov’s formula for semimartingale to derive the log-

likelihood function:

log(Λ) = log(
dPθ

dP
)

=

∫ T

0

µθ(X(t))

σ(X(t))
dW (t) +

1

2

∫ T

0)

µ2
θ(X(t))

σ2(X(t))
dt

=

∫ T

0

µ2
θ(X(t))

σ2(X(t))
dX(t)− 1

2

∫ T

0

µ2
θ(X(t))

σ2(X(t))
dt (2.8)

In the case of a constant diffusion term, i.e. σ(X(t)) = c, for some c > 0, the log

likelihood log(Λ) is proportional to

l(θ) =

∫ T

0

µθ(X(t))dW (t) +
1

2

∫ T

0

µ2
θ(X(t))dt (2.9)

For simplicity, we assume q=2, ie. we only have two regimes, and hence, µθ(X(t)) =

(β10 + β11X(t))I(X(t) ≤ r0) + (β20 + β21X(t))I(X(t) > r0). To obtain the estimates,

first, they fix r0, differentiate l(θ) with respect to δ = (β10, β11, β20, β21), and set the

derivatives equal to zero to solve the δ̃r. Second, they put δ̃r into l(θ) and get the l(δ̃r, r).

Since l(δ̃r, r) is non-differentiable w.r.t r, they use grid search on the prespecified interval,

8
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say [a, b], to search for the r̃, which leads us to get the maximum , l(θ̃).

To elucidate the description above, we organize theQL estimation procedure as follow:

Denote θ̃ = (δ̃r, r̃) as the quasi-likelihood estimator of θ = (β10, β11, β20, β21, σ1, σ2, r),

I1(t; r) = I(X(t) ≤ r), and I2(t; r) = I(X(t) > r)

Step 1. Given the time series data {X0, X1, ..., Xq}, compute the order statistics {X(0), ..., X(q)},

whereX(0) ≤ X(1) ≤ · · ·X(q). Let a = X(⌊q∗p⌋), and b = X(⌊q∗(1−p)⌋), where ⌊y⌋ de-

notes the largest integer less than or equal to y, and p∈ [0, 1/2) . Let r̃i = a+i/100,

for i = 0, 1, 2, ..., λ, where b = r̃λ = a+ λ/100.

Step 2. Fix r̃i, for i = 0, ..., λ.

(i)For i = 0, ..., λ, compute δ̃r̃i = δ̃(r̃i), where

δ̃r =



∫ T

0
I1(t;r)

T
dt

∫ T

0
X(t)I1(t;r))

T
dt 0 0∫ T

0
X(t)I1(t;r))

T
dt

∫ T

0
X2(t)I1(t;r))

T
dt 0 0

0 0
∫ T

0
I2(t;r)

T
dt

∫ T

0
X(t)I2(t;r))

T
dt

0 0
∫ T

0
I2(t;r)

T
dt

∫ T

0
X(t)2I2(t;r))

T
dt



−1

∫ T

0
I1(t;r)

T
dt∫ T

0
X(t)I1(t;r))

T
dt∫ T

0
I2(t;r)

T
dt∫ T

0
X(t)I2(t;r))

T
dt


(ii)For i = 0, ..., λ, compute θ̃i = (δ̃(r̃i), r̃i).

Step 3. For i = 0, ..., λ, compute (i) by plugging θ̃i into (2.9).

Suppose (τ) is the maximum among {(0), ..., (λ)}, then the quasi-likelihood estimator

is θ̃τ .

Remark 2.2The estimation procedure is the same as the section 6 in Brockwell(2007)(see

[1]), yet the original model between these two papers are different at the assumption on the

diffusion term. The former allows that the diffusion function can be finitely discontinuous

on the threshold parameters as in drift term with left and right limits(see later) whereas the

later assumes the diffusion term is a positive constant. Although the estimation procedure

seems complex, it still remains the same spirit as in the discrete threshold time series(see

[4]).

2.3 Asymptotic theory of Quasi-Likelihood Estimation

Since we obtain the QL estimator, we will ask whether it possesses any good property for

the (2.7) with q=2? The answer is yes under some regular conditions. We demonstrate the

9
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conditions and the main results which are proposed by Chan and Su (2015) as follow.

(A1). (i) β1,0 ̸= β2,0, where βi,0 = (βi1, βi2), i = 1, 2 ; (ii) (β1,0 − β2,0) · (1, r0)⊤ ̸= 0

(A2). The process {X(t), 0 ≤ t ≤ T} in (2.7) is stationary, geometric ergodicity, and

of 4th finite moment. More precisely, we give the details.

(i)(stationarity) Stationarity of (2.7) holds if (2.3) holds in Theorem2.1, and the

invariant density π exists uniquely;

(ii)(Geometric Ergodicity) ∃ a π-integrable positive function M(x) and a constant

ρ ∈ (0, 1) such that
∫∞
−∞ |P t−s(x, y) − π(y)|dy < ρt−sM(x), where P t−s(x, y) =

P (X(t) = y|X(s) = x)

(A3). Assumptions on the σ(Xt)

(i) σ(·) is time-homogeneous and positive. i.e. σ(Xt, t) = σ(Xt) > 0.

(ii) σ(x) is linear growth. i.e. ∃ c0, c1 such that σ(x) ≤ c0 + c1x, ∀x

(iii) σ(x) admits finitely many discontinuous points, say{ r1, ..., rq}, with

max{σ(ri−), σ(ri+)} < ∞, i = 1, ..., q

(A4). Assumptions on the threshold parameter.

(i)The true threshold parameter r0 lies in the prespecified interval [a, b].

(ii)The marginal density and invariant density of the process {X(t), 0 ≤ t ≤ T}

are discontinuous only if σ(Xt) is discontinuous at r0.

Remark 2.3 (A1) preserves the model’s identifiability so that the theory can work.

(A2) restricts the model class as what we do in any stationary time series analysis. (A3)

is also to preserve the stationarity of the process and gives us the idea of relaxing the

likelihood theory for diffusion process as in Fegin(1976)(see [12]) as well. (A4) is a

natural assumption to guarantee that we can find the threshold parameter. Without loss

of generality, they assume r0=0 and −∞ < a < 0 < b < ∞ to simplify the asymptotic

analysis of QLE.

Now, under the above conditions, Su and Chan(2015) [23] establish the large sample

properties for their QLE. Noting that θT = (δ̃T , r̃T ) is the QLE on the interval [0, T ], and

the large sample properties are based on the T goes to infinity.

10
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Theorem 2.3.1. Under (A1)-(A4), the quasi-likelihood estimator of the threshold param-

eter is T-consistent:

r̃ = r0 +Op(1/T ).

Theorem 2.3.2. Under (A1)-(A4), and let l̃T (κ) = l̃(δ̃(r0+κ/T ), r0+κ/T )− l̃(δ̃(r0), r0),

T (r̃T − r0) has a weakly convergence, i.e.

T (r̃T − r0) = arg max
r∈[a,b]

l̃T (r) ⇒ r̃ = arg max
r∈[a,b]

{l̃1(r)I(r > 0) + l̃2(r)I(r < 0)},

where

l̃1(κ) =
−1

2
f 2(r0)π(r0+) + f(r0)

√
π(r0+)σ(r0+)W (κ),

l̃2(κ) =
−1

2
f 2(r0)π(r0−) + f(r0)

√
π(r0−)σ(r0−)W (−κ),

f(r0) = (β1,0 − β2,0) · (1, r0)⊤, and W(κ) is a standard Brownian motion on κ ∈ R.

Moreover, r̃ has density

gr̃(s) = I(s < 0)
f 2(r0)π(r0−)

2
[

1√
−ms

ϕ(
−
√
−ms

σ2(r0−)
)− 1

σ2(r0−)
Φ(

−
√
−ms

σ2(r0−)
)]

+I(s > 0)
f 2(r0)π(r0+)

2
[

1√
ms

ϕ(
−
√
ms

σ2(r0+)
)− 1

σ2(r0+)
Φ(

−
√
ms

σ2(r0+)
)], s ̸= 0

wherem = σ2(r0+)f 2(r0)π(r0+) = σ2(r0−)f 2(r0)π(r0−) > 0, f(·) is as above, π(·)

is stationary density of process {X(t)|t ∈ [0, T ]}, ϕ(·) is pdf of N(0, 1), and Φ(·) is cdf

of N(0, 1).

Remark 2.4 In the case of discrete time threshold autoregressive(TAR) model, the

limiting distribution of threshold parameter is related to the compound Poisson process(see

[8], [19]), and Hansen(1997)(see [13]) shows that up to scale the proceeding density,

gr̃(s), is the same as the limiting distribution of the threshold parameter in discrete time

self-exciting threshold autoregressive (SETAR)when the autoregresive coefficients in two

regimes are asymptotically equal.

Theorem 2.3.3. Under (A1)-(A4), the quasi-likelihood estimator of coefficients, δ̃r, is

11
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√
T -consistent.

δ̃r − δ0 = Op(1/
√
T ).

Moreover,
√
T (δ̃r−δ0) is asymptotically normally distributed with the same distribution as

for the case of known threshold, i.e.,N(0,Σ), whereΣ=plimT→∞
∂2(θ0)
∂δ∂δ⊤

−1 ∂(θ0)
∂δ

∂(θ0)
∂δ

⊤ ∂2(θ0)
∂δ∂δ⊤

−1
.

12



doi:10.6342/NTU201701414

Chapter 3

Approximate Maximum Likelihood

Estimation

3.1 The Idea of Approximate Maximal Likelihood Esti-

mation

Since we have some basic knowledge of the TD process and QLE, a real data set contains

only finite observations and we aim to estimate the drift term and diffusion term simulta-

neously. It still makes some difficulty to estimate the mle for parameters in a TD model

while we can not collect the whole time path of a realization.

To solve this problem, we will show how to derive the joint density for the finite

observations of a TD process(see [15]) and the we can use the joint density to illustrate

our idea to obtain the approximate maximal likelihood estimation(AMLE).

LetX={X0, X1, · · · , Xq} be the observed data, which are observed at {0 = t0 < t1 <

· · · < tq = T}, β be the drift parameters, and σ be the diffusion parameters. Under some

regularity conditions, the Gameron-Martin-Girsanov formula (see, e.g., Theorem 3.5.1 of

Karatzas and Shreve, 1991, [16], or ch10 in [17] ) can be applied to show that the pdf of

X with respect to the Lebesgue measure exists. First, note that

13
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Pβ,σ(X0 ≤ x0, X1 ≤ x1, · · · , Xq ≤ xq)

= Eβ,σ[I(X0 ≤ x0, X1 ≤ x1, · · · , Xq ≤ xq)]

= E0,σ

[
I(X0 ≤ x0, X1 ≤ x1, · · · , Xq ≤ xq)

dPβ,σ

dP0,σ

]

= E0,σ

[
E0,σ

[
I(X0 ≤ x0, X1 ≤ x1, · · · , Xq ≤ xq)

dPβ,σ

dP0,σ

]∣∣∣∣∣X
]

= E0,σ

[
I(X0 ≤ x0, X1 ≤ x1, · · · , Xq ≤ xq)E0,σ

[
dPβ,σ

dP0,σ

∣∣∣∣∣X
]]

=

∫ xq

−∞
· · ·

∫ x0

−∞
E0,σ

[
dPβ,σ

dP0,σ

∣∣∣∣∣x
]
f
X;(0,σ)(x)dx0 · · · dxq,

where dP0,σ is the measure induced by the Brownian processW = {Wt} and dPβ,σ is

the measure induced by the original process X = {Xt, t ∈ [0, T ] }. Thus,

f
X;(β,σ)

(x) = E0,σ

[
dPβ,σ

dP0,σ

∣∣∣∣∣x
]
f
X;(0,σ)(x).

Therefore, lX(β,σ), the log-likelihood function ofX is

lX(β,σ)

= log E0,σ

[
dPβ,σ

dP0,σ

∣∣∣∣∣x
]
+ lX(0,σ)

= log E0,σ

[
exp

{∫ T

0

µβ(Xt)

σ2
σ(Xt)

dXt −1

2

∫ T

0

µ2

β(Xt)

σ2
σ(Xt)

dt

}∣∣∣∣∣x
]

+ lX(0,σ).(3.1)

3.2 Estimation Procedure for AMLE

The threshold diffusion process we consider is

dXt = {(β10 + β11Xt)I(Xt ≤ t) + (β20 + β21Xt)I(Xt > t)} dt

+{σ1I(Xt ≤ t) + σ2I(Xt > r)}Xγ
t dWt, (3.2)

whereW = {Wt} stands for the standard Brownian process.

14
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Let {X0, X1, · · · , Xq} be the observed data at observing times {t0, · · · , tq}. Let∆j =

tj − tj−1, then Model (2.2) can be approximated by

Xj −Xj−1 = ∆j {(β10 + β11Xj−1)I(Xj−1 ≤ r) + (β20 + β21Xj−1)I(Xj−1 > r)}

+{σ1I(Xj−1 ≤ r) + σ2I(Xj−1 > r)}Xγ
j−1(Wj −Wj−1),

whereWj−Wj−1 ∼ N(0,∆j). Therefore, the log-likelihood function of {X0, X1, · · · , Xq}

is

−2l = C +

q∑
j=1

log{σ2
1I(Xj−1 ≤ r) + σ2

2I(Xj−1 > r)}

+

q∑
j=1

[Xj −Xj−1 −∆j {(β10 + β11Xj−1)I(Xj−1 ≤ r) + (β20 + β21Xj−1)I(Xj−1 > r)}]2

{σ2
1I(Xj−1 ≤ r) + σ2

2I(Xj−1 > r)}∆jX
2γ
j−1

.

(3.3)

Note that (3.1) is equivalent to (3.3) if we approximate these two integrations of (3.1)

by Euler’s method.

Differentiating (3.3) with respect to β10, β11, β20, β21, σ2
1 , and σ2

2 give

−2
∂l

∂β10

= −2

q∑
j=1

{Xj −Xj−1 −∆j(β10 + β11Xj−1)} I(Xj−1 ≤ r)

{σ2
1I(Xj−1 ≤ r) + σ2

2I(Xj−1 > r)}∆jX
2γ
j−1

, (3.4)

−2
∂l

∂β11

= −2

q∑
j=1

{Xj −Xj−1 −∆j(β10 + β11Xj−1)}Xj−1I(Xj−1 ≤ r)

{σ2
1I(Xj−1 ≤ r) + σ2

2I(Xj−1 > r)}∆jX
2γ
j−1

, (3.5)

−2
∂l

∂β20

= −2

q∑
j=1

{Xj −Xj−1 −∆j(β20 + β21Xj−1)} I(Xj−1 > r)

{σ2
1I(Xj−1 ≤ r) + σ2

2I(Xj−1 > r)}∆jX
2γ
j−1

, (3.6)

−2
∂l

∂β21

= −2

q∑
j=1

{Xj −Xj−1 −∆j(β20 + β21Xj−1)}Xj−1I(Xj−1 > r)

{σ2
1I(Xj−1 ≤ r) + σ2

2I(Xj−1 > r)}∆jX
2γ
j−1

, (3.7)

−2
∂l

∂σ2
1

=

q∑
j=1

I(Xj−1 ≤ r)

σ2
1I(Xj−1 ≤ r) + σ2

2I(Xj−1 > r)

−
q∑

j=1

{Xj −Xj−1 −∆j(β10 + β11Xj−1)}2 I(Xj−1 ≤ r)

{σ4
1I(Xj−1 ≤ r) + σ4

2I(Xj−1 > r)}∆jX
2γ
j−1

, (3.8)

15
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and

−2
∂l

∂σ2
2

=

q∑
j=1

I(Xj−1 > r)

{σ2
1I(Xj−1 ≤ r) + σ2

2I(Xj−1 > r)}

−
q∑

j=1

{Xj −Xj−1 −∆j(β20 + β21Xj−1)}2 I(Xj−1 > r)

{σ4
1I(Xj−1 ≤ r) + σ4

2I(Xj−1 > r)}∆jX
2γ
j−1

. (3.9)

Equating (3.4) and (3.5) to zero gives

 β̂10

β̂11

 =


∑q

j=1
I(Xj−1≤r)

{σ2
1I(Xj−1≤r)+σ2

2I(Xj−1>r)}X2γ
j−1

∑q
j=1

Xj−1I(Xj−1≤r)

{σ2
1I(Xj−1≤r)+σ2

2I(Xj−1>r)}X2γ
j−1∑q

j=1
Xj−1I(Xj−1≤r)

{σ2
1I(Xj−1≤r)+σ2

2I(Xj−1>r)}X2γ
j−1

∑q
j=1

X2
j−1I(Xj−1≤r)

{σ2
1I(Xj−1≤r)+σ2

2I(Xj−1>r)}X2γ
j−1


−1


∑q

j=1
(Xj−Xj−1)I(Xj−1≤r)

{σ2
1I(Xj−1≤r)+σ2

2I(Xj−1>r)}∆jX
2γ
j−1∑q

j=1
(Xj−Xj−1)Xj−1I(Xj−1≤r)

{σ2
1I(Xj−1≤r)+σ2

2I(Xj−1>r)}∆jX
2γ
j−1

 . (3.10)

Equating (3.6) and (3.7) to zero gives

 β̂20

β̂21

 =


∑q

j=1
I(Xj−1>r)

{σ2
1I(Xj−1≤r)+σ2

2I(Xj−1>r)}X2γ
j−1

∑q
j=1

Xj−1I(Xj−1>r)

{σ2
1I(Xj−1≤r)+σ2

2I(Xj−1>r)}X2γ
j−1∑q

j=1
Xj−1I(Xj−1>r)

{σ2
1I(Xj−1≤r)+σ2

2I(Xj−1>r)}X2γ
j−1

∑q
j=1

X2
j−1I(Xj−1>r)

{σ2
1I(Xj−1≤r)+σ2

2I(Xj−1>r)}X2γ
j−1


−1


∑q

j=1
(Xj−Xj−1)I(Xj−1>r)

{σ2
1I(Xj−1≤r)+σ2

2I(Xj−1>r)}∆jX
2γ
j−1∑q

j=1
(Xj−Xj−1)Xj−1I(Xj−1>r)

{σ2
1I(Xj−1≤r)+σ2

2I(Xj−1>r)}∆jX
2γ
j−1

 . (3.11)

Similarly, equating (3.8) and (3.9) to zero gives

σ̂2
1 =

∑q
j=1

{Xj−Xj−1−∆j(β10+β11Xj−1)}2I(Xj−1≤r)

{σ4
1I(Xj−1≤r)+σ4

2I(Xj−1>r)}∆jX
2γ
j−1∑q

j=1
I(Xj−1≤r)

σ4
1I(Xj−1≤r)+σ2

1σ
2
2I(Xj−1>r)

, (3.12)

and

σ̂2
2 =

∑q
j=1

{Xj−Xj−1−∆j(β20+β21Xj−1)}2I(Xj−1>r)

{σ4
1I(Xj−1≤r)+σ4

2I(Xj−1>r)}∆jX
2γ
j−1∑q

j=1
I(Xj−1>r)

σ2
1σ

2
2I(Xj−1≤r)+σ4

2I(Xj−1>r)

. (3.13)

So, we propose the following procedure to compute the approximate maximum like-

lihood estimator of θ = (β10, β11, β20, β21, σ1, σ2).
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Step 1. Given the time series data {X0, X1, ..., Xq}, compute the order statistics {X(0), ..., X(q)},

where X(0) ≤ X(1) ≤ · · ·X(q). Let a = X(⌊q/5⌋), and b = X(⌊4q/5⌋), where

⌊y⌋ deontes the largest integer less than or equal to y. Let r̂i = a + i/100, for

i = 0, 1, 2, ..., λ, where b = r̂λ = a+ λ/100.

Step 2. Fix r̂i, for i = 0, ..., λ.

(i) Compute σ̂2
1(0) and σ̂2

2(0), the initial estimate of σ2
1 and σ2

2 , by Equation (8) of

Su and Chan (2015). More specifically,

σ̂2
1(0) =

1

T

q∑
j=1

{XiI(Xi ≤ r)−Xi−1I(Xi−1 ≤ r)}2,

σ̂2
2(0) =

1

T

q∑
j=1

{XiI(Xi > r)−Xi−1I(Xi−1 > r)}2.

(ii) Given the estimate θ̂(k − 1) = (β̂10(k − 1), β̂11(k − 1), β̂20(k − 1), β̂21(k −

1), σ̂2
1(k − 1), σ̂2

2(k − 1)), compute θ̂(k) as follows:

 β̂10(k)

β̂11(k)



=


∑q

j=1

I(Xj−1≤r̂i)

{σ̂2
1(k−1)I(Xj−1≤r̂i)+σ̂2

2(k−1)I(Xj−1>r̂i)}X
2γ
j−1

∑q
j=1

Xj−1I(Xj−1≤r̂i)

{σ̂2
1(k−1)I(Xj−1≤r̂i)+σ̂2

2(k−1)I(Xj−1>r̂i)}X
2γ
j−1∑q

j=1

Xj−1I(Xj−1≤r̂i))

{σ̂2
1(k−1)I(Xj−1≤r̂i)+σ̂2

2(k−1)I(Xj−1>r̂i)}X
2γ
j−1

∑q
j=1

∆jX
2
j−1I(Xj−1≤r̂i)

{σ̂2
1(k−1)I(Xj−1≤r̂i)+σ̂2

2(k−1)I(Xj−1>r̂i)}X
2γ
j−1


−1


∑q

j=1

(Xj−Xj−1)I(Xj−1≤r̂i)

{σ̂2
1(k−1)I(Xj−1≤r̂i)+σ̂2

2(k−1)I(Xj−1>r̂i)}X
2γ
j−1∑q

j=1

(Xj−Xj−1)Xj−1I(Xj−1≤r̂i)

{σ̂2
1(k−1)I(Xj−1≤r̂i)+σ̂2

2(k−1)I(Xj−1>r̂i)}X
2γ
j−1

 , (3.14)

 β̂20(k)

β̂21(k)



=


∑q

j=1

I(Xj−1>r̂i)

{σ̂2
1(k−1)I(Xj−1≤r̂i)+σ̂2

2(k−1)I(Xj−1>r̂i)}X
2γ
j−1

∑q
j=1

Xj−1I(Xj−1>r̂i)

{σ̂2
1(k−1)I(Xj−1≤r̂i)+σ̂2

2(k−1)I(Xj−1>r̂i)}X
2γ
j−1∑q

j=1

Xj−1I(Xj−1<r̂i))

{σ̂2
1(k−1)I(Xj−1≤r̂i)+σ̂2

2(k−1)I(Xj−1>r̂i)}X
2γ
j−1

∑q
j=1

X2
j−1I(Xj−1>r̂i)

{σ̂2
1(k−1)I(Xj−1≤r̂i)+σ̂2

2(k−1)I(Xj−1>r̂i)}X
2γ
j−1


−1


∑q

j=1

(Xj−Xj−1)I(Xj−1>r̂i)

{σ̂2
1(k−1)I(Xj−1≤r̂i)+σ̂2

2(k−1)I(Xj−1>r̂i)}X
2γ
j−1∑q

j=1

(Xj−Xj−1)Xj−1I(Xj−1>r̂i)

{σ̂2
1(k−1)I(Xj−1≤r̂i)+σ̂2

2(k−1)I(Xj−1>r̂i)}X
2γ
j−1

 , (3.15)

and

σ̂2
1(k) =

∑q
j=1

{Xj−Xj−1−∆j(β̂10(k−1)+β̂11(k−1)Xj−1)}2
I(Xj−1≤r̂i))

{σ̂4
1I(Xj−1≤r̂i)+σ̂4

2(k−1)I(Xj−1>r̂i)}∆jX
2γ
j−1∑q

j=1
I(Xj−1≤r̂i))

σ̂4
1(k−1)I(Xj−1≤r̂i))+σ̂2

1(k−1)σ̂2
2(k−1)I(Xj−1>r̂i))

, (3.16)
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σ̂2
2(k) =

∑q
j=1

{Xj−Xj−1−∆j(β̂20(k−1)+β̂21(k−1)Xj−1)}2
I(Xj−1>r̂i))

{σ̂4
1(k−1)I(Xj−1≤r̂i)+σ̂4

2(k−1)I(Xj−1>r̂i)}∆jX
2γ
j−1∑q

j=1
I(Xj−1>r̂i))

σ̂1
2(k−1)σ̂2

2(k−1)I(Xj−1≤r̂i))+σ̂4
2(k−1)I(Xj−1>r̂i))

. (3.17)

(iii) Repeat (ii) until θ̂(k) converge.

Let the converged estimator be θ̂i = (β̂10,i, β̂11,i, β̂20.i, β̂21,i, σ̂1,i, σ̂2,i, r̂i).

Step 3. For i = 0, ..., λ, compute −2(i) by plugging θ̂i into (3.3).

Suppose −2(τ) is the minimum among {−2(0), ..., 2(λ)}, then the approximate maxi-

mum likelihood estimator is θ̂τ .

3.3 Some Large Sample Conjectures about AMLE

The approximate maximum likelihood estimator is obtained by a two-step procedure.

First, for given r, obtain the likelihood estimator for θ = (β10, β11, β20, β21, σ1, σ2), and

denote this estimator by θ̂r. This can be done by minimizing (3.3) with respect to θ. Sec-

ond, we perform a grid search over the region of r ∈ [a, b], where [a, b] are often chosen

to be some percentiles of the observed data in order to guarantee data abundance for es-

timation in each regime. Let r̂ denote the threshold estimator which maximizes (δ̂k, k).

More specifically, δ̂r = (β̂10,r, β̂11,r, β̂20,r, β̂21,r, σ̂1,r, σ̂2,r), and r̂ = arg maxk∈[a,b](δ̂k, k).

Let θ̂T = (β̂10, β̂11, β̂20, β̂21, σ̂1, σ̂2, r̂) be the approximate maximum likelihood estimator

of θ, and θ0 = (β10,0, β11,0, β20,0, β21,0, σ1,0, σ2,0, r0) be the true parameter of θ.

Since we have the AMLE, one will ask whether the AMLE possesses any good statisti-

cal properties? According to our model formulation, which satisfies the regular conditions

(A1)-(A4) as in QLE asymptotic theory, we aim at establishing the following conjectures,

which are still in progress.

Conjecture 3.3.1. Under the regular conditions, the approximate maximum likelihood

estimator of the threshold parameter is T-consistent:

r̂ = r0 +Op(1/T ).

Conjecture 3.3.2. Under the regular conditions, the approximate maximum likelihood

18
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estimator of the threshold parameter converges weakly to the random variable , r∞,:

T (r̂ − r0) ⇒ r∞.

Conjecture 3.3.3. Under the regular conditions, we have：

δ̂r − δ0 = Op(1/
√
T ).

Conjecture 3.3.4. Under the regular conditions,
√
T (δ̂r̂ − δ0) and T (r̂ − r0) are asymp-

totically independent, and
√
T (δ̂r̂ − δ0) is asymptotically normally distributed with the

same distribution as for the case of known threshold, i.e.,

√
T (δ̂r̂ − δ0)

D−→ N(0,Σ(θ0))

where

Σ(θ0) = plim
T→∞

−∂2
T (θ0)

∂δ∂δ⊤

−1

= plim
T→∞



∫ T

0

X−γ
t I(Xt≤r0)

Tσ2
1

dt
∫ T

0

X1−γ
t I(Xt≤r0)

Tσ2
1

dt 0 0 A F∫ T

0

X1−γ
t I(Xt≤r0)

Tσ2
1

dt
∫ T

0

X2−γ
t I(Xt≤r0)

Tσ2
1

dt 0 0 B I

0 0
∫ T

0

X−γ
t I(Xt>r0)

Tσ2
2

dt
∫ T

0

X1−γ
t I(Xt>r0)

Tσ2
2

dt C J

0 0
∫ T

0

X1−γ
t I(Xt>r0)

Tσ2
2

dt
∫ T

0

X2−γ
t I(Xt>r0)

Tσ2
2

dt D K

A B C D E 0

F I J K 0 L
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A =
1

Tσ4
1

(

∫ T

0

(β⊤
1

 1

Xt

)X−γ
t I(Xt ≤ r0)dt−

∫ T

0

X−γ
t I(Xt ≤ r0)dXt)

B =
1

Tσ4
1

(

∫ T

0

(β⊤
1

 1

Xt

)X1−γ
t I(Xt ≤ r0)dt−

∫ T

0

X1−γ
t I(Xt ≤ r0)dXt)

C =
1

Tσ4
1

(

∫ T

0

(β⊤
1

 1

Xt

)X−γ
t I(Xt > r0)dt−

∫ T

0

X−γ
t I(Xt > r0)dXt)

D =
1

Tσ4
1

(

∫ T

0

(β⊤
1

 1

Xt

)X1−γ
t I(Xt > r0)dt−

∫ T

0

X1−γ
t I(Xt > r0)dXt)

E =
1

Tσ6
1

(2

∫ T

0

(β⊤
1

 1

Xt

)X−γ
t I(Xt ≤ r0)dXt −

∫ T

0

(β⊤
1

 1

Xt

)2X−γ
t I(Xt ≤ r0)dt)

F =
1

Tσ4
2

(

∫ T

0

(β⊤
2

 1

Xt

)X−γ
t I(Xt ≤ r0)dt−

∫ T

0

X−γ
t I(Xt ≤ r0)dXt)

I =
1

Tσ4
2

(

∫ T

0

(β⊤
2

 1

Xt

)X1−γ
t I(Xt ≤ r0)dt−

∫ T

0

X1−γ
t I(Xt ≤ r0)dXt)

J =
1

Tσ4
2

(

∫ T

0

(β⊤
2

 1

Xt

)X−γ
t I(Xt > r0)dt−

∫ T

0

X−γ
t I(Xt > r0)dXt)

K =
1

Tσ4
2

(

∫ T

0

(β⊤
2

 1

Xt

)X1−γ
t I(Xt > r0)dt−

∫ T

0

X1−γ
t I(Xt > r0)dXt)

L =
1

Tσ6
2

(2

∫ T

0

(β⊤
2

 1

Xt

)X−γ
t I(Xt > r0)dXt −

∫ T

0

(β⊤
2

 1

Xt

)2X−γ
t I(Xt > r0)dt).

Remark 3.1 Since our method is based on the ML approach, it has no too much sur-

prise to have such results. The most different part is the convergence rate for the threshold

parameter due to violation of the regularity of MLE theory in continuous-time stochastic

process( [12]). However, there are no standard ML theory in threshold diffusion process

in the literature. Furthermore, the asymptotic results we guess in AMLE are based on the

results in QLE but the concrete proofs are in progress. Last, the probability limits above

will exist by the lemma 1 in [23] and the (A2) in QLE.
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Chapter 4

Simulation

We now report some simulation results about the finite sample performance of the max-

imum likelihood estimator. We have experimented with both regularly and irregularly

spaced data from

dXt = {(β10 + β11Xt)I(Xt ≤ r) + (β20 + β21Xt)I(Xt > r)} dt

+{σ1I(Xt ≤ r) + σ2I(Xt > r)}Xγ
t dWt, (4.1)

whereW = {Wt} stands for the standard Brownian process.

(A)Regularly spaced data were sampled as follows.

First, we specify the time interval unit and split the unit into m pieces. That is, let [0,1]

be the time interval unit and dt ≈ ∆t = 1
m
, we get {0, 1

m
, · · · , m−1

m
, 1}. Since the time

interval is [0, T ], we get {tk = k∗T
m

: k = 0, · · · ,m ∗ T}. Second, we simulated the

regularly spaced time series data from Model (4.5) via using Euler approximation.

(B)Irregularly spaced data were sampled as follows.

First, we simulated si, i = 1, ..., q, independently from the exponential distribution with

mean equal to 0.005, and recursively set the sampling epochs with t0 = 0, and ti =

ti−1 + si + 0.5, i = 1, ..., q; hence the sampling intervals are independent, identically

distributed and of unit mean. Second, we simulated the irregularly spaced time series data

from Model (4.5) via using Euler approximation.
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4.1 Ornstein-Uhlenbeck process with Both the Drift and

the Diffusion Are Nonlinear

Model:

dXt = {(β10 + β11Xt)I(Xt ≤ r) + (β20 + β21Xt)I(Xt > r)} dt

+{σ1I(Xt ≤ r) + σ2I(Xt > r)}dWt, (4.2)

whereW = {Wt} stands for the standard Brownian process.

Table 4.1: Averages (standard deviations) of 1,000 simulations of the approximate maxi-

mum likelihood estimators of the parameters r, β10, β11, β20, β21, σ1, and σ2. (Ornstein -

Uhlenbeck process with Both the Drift and the Diffusion Are Nonlinear)
parameter true value \ T 10 100 200

r 0.75 0.8227(0.1563) 0.7529(0.0134) 0.7512(0.0061)

β10 1 1.8348(1.8773) 1.0231(0.2259) 1.0138(0.1504)

regularly β11 -2 -2.8387(2.3957) -2.0059(0.4930) -2.0121(0.3116)

-spaced β20 1.5 2.5165(2.9872) 1.5348(0.2637) 1.5159(0.1904)

β21 -1.5 -2.4749(2.5171) -1.5382(0.2548) -1.5183(0.1836)

σ1 0.4 0.3740(0.0415) 0.3990(0.0062) 0.3996(0.0036)

σ2 0.3 0.3013(0.0189) 0.3000(0.0026) 0.3000(0.0181)

r 0.75 0.8143(0.1570) 0.7525(0.0122) 0.7509(0.0043)

β10 1 1.9375(2.1259) 1.0327(0.2443) 1.0184(0.1626)

irregularly β11 -2 -2.9336(2.7337) -2.0330(0.5229) -2.0195(0.3292)

-spaced β20 1.5 2.4076(2.8209) 1.5343(0.2944) 1.5136(0.1968)

β21 -1.5 -2.4077(2.4245) -1.5385(0.2824) -1.5169(0.1904)

σ1 0.4 0.3748(0.0411) 0.3993(0.0060) 0.3997(0.0035)

σ2 0.3 0.3022(0.0249) 0.3000(0.0026) 0.3001(0.0018)
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Figure 4.1.1: Asymptotic Density for the AMLEs - OU Process with Both the Drift and

the Diffusion Are Nonlinear - Regular Data

Figure 4.1.2: Asymptotic Density for the AMLEs - OU Process with Both the Drift and

the Diffusion Are Nonlinear - Irregular Data
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4.2 Ornstein-Uhlenbeck process with Only the Diffusion

Is Nonlinear

Model:

dXt = (β0 + β1Xt)dt+ {σ1I(Xt ≤ r) + σ2I(Xt > r)}dWt, (4.3)

whereW = {Wt} stands for the standard Brownian process.

Table 4.2: Averages (standard deviations) of 1,000 simulations of the approximate maxi-

mum likelihood estimators of the parameters r, β0, β1, σ1, and σ2. (Ornstein - Uhlenbeck

process with Only the Diffusion Is Nonlinear)
parameter true value \ T 10 100 200

r 0.75 0.7492(0.0226) 0.7507(0.0033) 0.7508(0.0031)

β0 1.5 1.8456(0.6423) 1.5243(0.1621) 1.5145(0.1122)

regularly β1 -2 -2.4438(0.7867) -2.0315(0.2039) -2.0194(0.1411)

-spaced σ1 0.4 0.4002(0.0153) 0.3995(0.0044) 0.3993(0.0031)

σ2 0.3 0.2992(0.0104) 0.3002(0.0028) 0.3004(0.0020)

r 0.75 0.7492(0.0186) 0.7510(0.0033) 0.7507(0.0032)

β0 1.5 1.8418(0.6977) 1.5251(0.1718) 1.5143(0.1224)

irregularly β1 -2 -2.4392(0.8582) -2.0329(0.2156) -2.0194(0.1534)

-spaced σ1 0.4 0.4004(0.0154) 0.3994(0.0043) 0.3993(0.0031)

σ2 0.3 0.2993(0.0101) 0.3002(0.0028) 0.3004(0.0020)
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Figure 4.2.3: Asymptotic Density for the AMLEs - OU Process with Only the Diffusion

Is Nonlinear - Regular Data

Figure 4.2.4: Asymptotic Density for the AMLEs - OU Process with Only the Diffusion

Is Nonlinear - Irregular Data

4.3 Cox-Ingersoll-Ross model with Both the Drift and the

Diffusion Are Nonlinear

dXt = {(β10 + β11Xt)I(Xt ≤ r) + (β20 + β21Xt)I(Xt > r)} dt

+{σ1I(Xt ≤ r) + σ2I(Xt > r)}
√
XtdWt, (4.4)

whereW = {Wt} stands for the standard Brownian process.
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Table 4.3: Averages (standard deviations) of 1,000 simulations of the approximate max-

imum likelihood estimators of the parameters r, β10, β11, β20, β21, σ1, and σ2. (Cox-

Ingersoll-Ross model with Both the Drift and the Diffusion Are Nonlinear)
parameter true value \ T 10 100 200

r 0.75 0.7622(0.1764) 0.7509(0.0084) 0.7507(0.0039)

β10 1 1.6374(1.7315) 1.0101(0.1592) 1.0029(0.1060)

regularly β11 -2 -2.7261(2.4105) -2.0025(0.3507) -1.9986(0.2288)

-spaced β20 1.5 2.3057(2.6327) 1.5346(0.2979) 1.5151(0.2102)

β21 -1.5 -2.5508(2.7468) -1.5420(0.2948) -1.5195(0.2079)

σ1 0.4 0.3812(0.0381) 0.3998(0.0045) 0.3998(0.0029)

σ2 0.3 0.3127(0.0337) 0.3000(0.0031) 0.3000(0.0021)

r 0.75 0.7548(0.1764) 0.7506(0.0065) 0.7505(0.0038)

β10 1 1.6438(1.7125) 1.0226(0.1662) 1.0090(0.1164)

irregularly β11 -2 -2.7315(2.4472) -2.0334(0.3568) -2.0111(0.2487)

-spaced β20 1.5 2.2186(2.5855) 1.5465(0.3374) 1.5226(0.2224)

β21 -1.5 -2.4400(2.5341) -1.5543(0.3320) -1.5277(0.2206)

σ1 0.4 0.3827(0.0379) 0.4000(0.0041) 0.3999(0.0028)

σ2 0.3 0.3133(0.0342) 0.3000(0.0033) 0.3001(0.0021)
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Figure 4.3.5: Asymptotic Density for the AMLEs - CIR Process with Both the Drift and

the Diffusion Are Nonlinear - Regular Data

Figure 4.3.6: Asymptotic Density for the AMLEs - CIR Process with Both the Drift and

the Diffusion Are Nonlinear - Irregular Data
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4.4 Cox-Ingersoll-Ross model with Only the Diffusion Is

Nonlinear

Model:

dXt = (β0 + β1Xt)dt+ {σ1I(Xt ≤ r) + σ2I(Xt > r)}
√

XtdWt, (4.5)

whereW = {Wt} stands for the standard Brownian process.

Table 4.4: Averages (standard deviations) of 1,000 simulations of the approximate max-

imum likelihood estimators of the parameters r, β0, β1, σ1, and σ2. (Cox-Ingersoll-Ross

model with Only the Diffusion Is Nonlinear)
parameter true value \ T 10 100 200

r 0.75 0.7498(0.0189) 0.7506(0.0034) 0.7508(0.0030)

β0 1.5 1.8303(0.5892) 1.5237(0.1484) 1.5138(0.1030)

regularly β1 -2 -2.4335(0.7529) -2.0314(0.1953) -2.0189(0.1355)

-spaced σ1 0.4 0.3998(0.0147) 0.3994(0.0044) 0.3993(0.0030)

σ2 0.3 0.2994(0.0108) 0.3003(0.0029) 0.3005(0.0021)

r 0.75 0.7499(0.0181) 0.7508(0.0034) 0.7507(0.0031)

β0 1.5 1.8265(0.6403) 1.5246(0.1571) 1.5144(0.1121)

irregularly β1 -2 -2.4290(0.8218) -2.0330(0.2065) -2.0198(0.1473)

-spaced σ1 0.4 0.4000(0.0148) 0.3993(0.0042) 0.3992(0.0030)

σ2 0.3 0.2994(0.0108) 0.3003(0.0030) 0.3005(0.0021)
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Figure 4.4.7: Asymptotic Density for the AMLEs - CIR Process with Only the Diffusion

Is Nonlinear - Regular Data

Figure 4.4.8: Asymptotic Density for the AMLEs - CIR Process with Only the Diffusion

Is Nonlinear - Irregular Data

Remark 4.1 From the simulation results in this chapter, we have some evidence, which

is still lack of mathematical proof, to conclude our conjectures in chapter 3 for the large

sample properties for AMLE.

29



doi:10.6342/NTU201701414

30



doi:10.6342/NTU201701414

Chapter 5

Application

We consider two series, namely the 3-Month Treasury Bill: Secondary Market Rate (from

1934.1.1 to 2017.4.1), which are downloable at https://fred.stlouisfed.org/series/TB3MS,

and the 10-Year Treasury ConstantMaturity Rate-3-Month Treasury Bill: SecondaryMar-

ket Rate (from 1962.1.2 to 2017.5.11), which are available at

https://fred.stlouisfed.org/graph/?g=oGg.

Note that the first series are regularly-spaced and count on every first day in month(1001

data points), whereas the second one is irregulary-spaced count on every day(14444 data

points). The values of the first series are always positive, whereas the values of the second

one could be negative.
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5.1 3-Month Treasury Bill:from 1934.1.1 to 2017.4.1

Figure 5.1.1: 3-Month Treasury Bill: Secondary Market Rate (from 1934.1.1 to 2017.4.1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.010 0.380 3.060 3.527 5.360 16.300

Table 5.1: Summary Statistics:3-Month Treasury Bill

For the 3-Month Treasury Bill, the fitted models are

dXt = {(0.4518− 0.5520Xt)I(Xt ≤ 0.510) + (4.6530− 1.0174Xt)I(Xt > 0.510)} dt

+{0.4288I(Xt ≤ 0.510) + 4.2345I(Xt > 0.510)}dWt,

dXt = {(0.4554− 0.3803Xt)} dt+ {0.4288I(Xt ≤ 0.510) + 4.2403I(Xt > 0.510)}dWt,

dXt = {(0.6846− 0.1164t)I(Xt ≤ 5.780) + (21.649− 2.7826Xt)I(Xt > 0.578)} dt

+{1.2943I(Xt ≤ 5.780) + 2.1984I(Xt > 5.780)}
√

XtdWt,

dXt = {(0.6940− 0.1579Xt)} dt+ {1.2943I(Xt ≤ 5.780) + 2.2063I(Xt > 5.780)}
√

XtdWt,

Remark 5.1 For those working model above, the threshold values could be viewed as

the level that the whole investor in the financial market will change their attitude toward

the 3-Month Treasury Bill under the assumptions to those specific models.

32



doi:10.6342/NTU201701414

Figure 5.1.2: 3-Month Treasury Bill: Secondary Market Rate with Threshold Values

5.2 10-Year Treasury Constant Maturity Rate-3-Month

Treasury Bill:from 1962.1.2 to 2017.5.11

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.73 0.62 1.61 1.56 2.58 5.41

Table 5.2: Summary Statistics:10-Year Treasury Constant Maturity Rate-3-Month Trea-

sury Bill

For the 10-Year Treasury ConstantMaturity Rate-3-Month Treasury Bill, the fitted models

are

dXt = {(0.2816− 1.0308Xt)I(Xt ≤ 0.390) + (0.2889− 0.1330Xt)I(Xt > 0.390)} dt

+{1.0458I(Xt ≤ 0.390) + 0.6834I(Xt > 0.390)}dWt,

dXt = {(0.0164− 0.1865Xt)} dt+ {0.1577I(Xt ≤ 1.110) + 0.2367I(Xt > 1.110)}dWt,

Remark 5.2 For those working model above, again, the threshold values could be
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viewed as the level that the whole investor in the financial market will change their attitude

toward the 10-Year Treasury Constant Maturity Rate-3-Month Treasury Bill under the

assumptions to those specific models. Moreover, we can use this data to infer the arbitrage

direction if we should hold 10-Year Treasury Constant Maturity Rate or short 3-Month

Treasury Bill.

Figure 5.2.3: 10-Year Treasury Constant Maturity Rate-3-Month Treasury Bill with

Threshold Values
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Chapter 6

Conclusion

In this thesis, we introduce the threshold diffusion process and the quasi-likelihood estima-

tion(QLE), and we point out that searching maximum likelihood estimator via irregular-

spaced data lead to an estimating problem. Thus, we propose approximate maximum

likelihood estimation(AMLE) to estimate the parameters in drift term and diffusion term.

Moreover, we use simulation study to confirm our conjecture about some large sample

properties of AMLE, such as consistency and asymptotic normality. Although we do not

give more specifically sufficient conditions to prove these properties transparently, we still

formalize these asymptotic results and derive the asymptotic variance for the asymptotic

normality. In simulation, we can see that AMLE converges to the true value in the sense

of larger time interval when the specification is right.

In addition to the theoretical discussion, we also apply the model and our AMLE to

real data, the application of real data gives us a idea to diagnostic whether the diffusion is

a threshold constant function , a threshold smooth power function. or even a nonstationary

process.

The advantage is that one can do the hypothesis test for all parameters jointly ex-

cept the threshold parameters. However, it remains some technical parts which may left

as future work. Also, a test procedure for the existence of threshold parameters and the

pricing formula of a threshold diffusion process might follow the results in Su’s PhD the-

sis(2011) [22].

As what we might ask in discrete time series, procedures of prediction and model

selection for a threshold diffusion process based on AMLE are also in our interest for the

future work.
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Furthermore, the results in the discrete time threshold time series such as [9], [20],

and [25] are potential to extended to the CTAR model or the CTARMA model.
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